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Abstract— We present as a contribution to the field of human-
machine interaction a system that analyzes human movements
online through multiple observers, based on the concept of
Laban Movement Analysis (LMA). The implementation uses
a Bayesian model for learning and classification, while the
results are presented for the application to analyze expressive
movements. In sports like Karate four judges are placed in the
corners to observe the fight to ensure that the overall judgment
is correct. In this paper we propose a multi-ocular system where
each sub-system observes a movement from a different monoc-
ular perspective. The sub-systems send continuously guesses in
form of probability distributions to the central system. The
central system fuses the evidences and presents the final result.
We present the Laban Movement Analysis as a concept to
identify useful features of human movements to classify human
actions. The movements are extracted using both, vision and
magnetic tracker. The descriptor opens possibilities towards
expressiveness and emotional content. To solve the problem of
classification we use the Bayesian framework as it offers an
intuitive approach to learning and classification. The presented
work targets applications like social robots, smart houses and
surveillance.

I. INTRODUCTION

The research field of computational Human Movement
Analysis is lacking a general underlying modeling language
[1]. A semantic descriptor allows to pose the classification
task as a problem to recognize a sequence of symbols
taken from an alphabet consisting of motion-entities. Systems
which are based on such a modeling language can use it as
a ground truth for recoding and labeling training data. The
inherent constraints of a modeling language can be used to
make the task of movement recognition more tractable.

The framework of Laban Movement Analysis (LMA) has
already been suggested as a semantic descriptor for human-
robot interaction in [2]. Their system implemented the Space
component of LMA through the concept of Vector Symbols.
The low-level features were extracted from a monocular
camera mounted on the mobile robot ’Nicole’. For tracking
the color-based algorithm CAMshift [3] was used. Their
classifier was based on a Bayesian approach which allowed
a ’online’ recognition of six gestures. The robustness of
the probabilistic algorithm allowed a trial in a natural en-
vironment with untrained actors. The work also introduced
anticipation as a characteristic of the system emerging from
the probabilistic algorithm.
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The aim of this article is to show that the concept of
movement classification based on LMA [2] can be applied to
multi-ocular systems. We will follow the Bayesian approach
to benefit from its robustness for the tasks of multi-sensor
data integration and movement capture based on vision. For
the former we will follow a hybrid approach by i) recording
labeled 3-D movement data using a commercial motion
capture device, ii) mapping the data to 2-D planes aligned
with the camera planes, iii) learning the LMA descriptors of
these planes, iv) classifying ’online’ an unknown movement
by each of the cameras and finally v) fusing the (pre-)results
of the observer systems by taking into account the ’certainty’
of their beliefs.

Our system benefits from the simpler processing and
higher precision of the commercial motion capture device
(’active sensor’ [1]) during the recoding step, while using
the attractive touch-free alternative of computer vision for
the classification step.

The presented system does not require an accurate cam-
era calibration, specially the effect of lens distortions has
been neglected. This robustness is partially due to the type
of descriptors (Vector Symbols) and partially due to the
probabilistic approach. The probabilistic approach adds to
this robustness by learning features from several trials and
persons. This produces probabilities of a certain amount for
neighboring values. Additionally, a less accurate calibration
allows us to pose less demands on the accuracy of the visual
tracking.

The problems that arise when movements are observed
by vision, e.g. occlusions, are solved through the Bayesian
sensor fusion. A camera which detects the disappearance
of a tracked object (e.g. through occlusion) will continue
its update with uniformly distributed descriptors resulting in
an increasing uncertainty. The algorithm for sensor fusion
will assign a lower confidence value having the effect that
observers without occlusions are weighted stronger.

In [4] 3-D data from an active sensor was used to obtain
a set of movement sequences. Then 2-D projections from
several orientations are generated. For the same orientations,
projections of a 3-D model to images are created. Treating
the two sets as input-output data a neural network was
trained. The problem of data association is not trivial due to
ambiguity and was solved by clustering statistically homo-
geneous data points in the 2-D projected marker space. They
achieved good results for training five sequences sampled at
32 orientations. As their system only provides the pose of a
human body, the classification of movements still remained
a open issue and consequently no descriptor was introduced.
Also, online or real-time behavior was not addressed in their
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work.
Section II presents the geometric model and the concept

of calibration. Section III presents the concepts of LMA
with focus on the Space component and the database of
expressive movements. Section IV shows the design of the
model, learning and classification in the framework of an
Bayesian approach. Section VI closes with a discussion and
an outlook for future works.

II. GEOMETRIC MODEL

A. Projective Matrix

The projective matrix, is a matrix that represents the rela-
tionship between two different spaces. The pinhole camera
model [5] establishes the geometric relationship between a
point in a 3-D object space and it’s representation in a 2-
D image space. The relationship between image space I =
(u, v, 1) and object space O = (x, y, z, 1) in homogeneous
coordinates is given by a projective matrix H as follows

IT = HOT

The method used to compute this matrix was Direct
Linear Transform (DLT) [5]. The mathematical details of
this methods are out of the scope of this work, hence will
not be discussed. However this is a data processing tool that
will provide an effective way to map points from an Object
Space into an Image Space. This model doesn’t deal with
lens distortion, but that fact was considered not to be relevant
considering our human movement model, based in spatial
displacements (in form of euclidean distances). As it will
be seen in the next chapter, the displacements are direction
vectors discretized by 45 degrees, thus exact positions do
not pose a real problem to our model, and the approximation
taken is considered valid to some extent.

B. Using Calibration to learn rotated Files

The gesture recognition algorithm is divided in three prin-
cipal steps: i) Acquisition of movement data, ii) Learning of
specific 2-D trajectories and iii) Classification of movements
from 2-D camera data. For the first step movement data is
acquired by using an active sensor. Three sensors of are
attached to the hands (lh, rh) and the face (f ) as shown in
Fig. 1 a). The 3-D trajectories of several persons and trials
are stored for further use. In the Learning step the data is
projected to 2-D planes e.g. the principal planes Door Plane
(vertical) πv , Table plane (horizontal) πh, and the Wheel
Plane (sagittal) πs as shown in Fig. 1. Working with a static
configuration like the principal planes poses a problem for
the Recognition step in situations where the real orientation
of the cameras is not aligned with the planes.

Another approach was made in order to make the Learning
stage as robust as possible preventing such phenomenon
from happening. Considering that the cameras used in the
Classification step are calibrated and remain static relative
to a base referential, the trajectory was learned from the
camera’s point of view, i.e. the trajectory is mapped into
each camera, as it can be seen in Figure 1 b), there is 3-
D trajectory in a base referential and its correspondent 2-D

Fig. 1. a) Data acquisition. Three active sensors (green dots) attached to
the hands (lh and rh) and the face (f ). Orientation of the three principal
planes πv , πh and πs. b) Classification. Two cameras tracking lh, rh and
f in 2-D aligned with πv and πh.

mapped trajectory as seen from both cameras 1 and 2. This
means that in the Classification stage, matching will occur
based on parallel planes.

The presented approach opens the possibility to pose
the problem of occlusion as a problem of perspective: An
occlusion that occurs in one camera (perspective) might not
occur in the other. Furthermore the system can speed up the
Classification as the learning of 2-D descriptors from 3-D
data can be done offline.

III. LABAN MOVEMENT ANALYSIS

Laban Movement Analysis (LMA) is a method for observ-
ing, describing, notating, and interpreting human movement.
It was developed by a German named Rudolf Laban (1879
to 1958), who is widely regarded as a pioneer of European
modern dance and theorist of movement education [6].
The general framework was described in 1980 by Irmgard
Bartenieff a scholar of Rudolf Laban in [7]. A computational
model of gesture acquisition and synthesis to learn motion
qualities from live performance has been proposed in [8].
In neuroscience the usefulness of LMA to describe certain
effects on the movements of animals and humans [9] has
been inverstigated. The theory of LMA consists of several
major components. The works of Norman Badler’s group
[6] mention five major components. Relationship describes
modes of interaction with oneself, others, and the environ-
ment (e.g. facings, contact, and group forms). Body specifies
which body parts are moving, their relation to the body center
, the kinematics involved and the emerging locomotion.
Space treats the spatial extent of the mover’s Kinesphere
(often interpreted as reach-space) and what form is being
revealed by the spatial pathways of the movement. Effort
deals with the dynamic qualities of the movement and the
inner attitude towards using energy. Shape is emerging from
the Body and Space components and focused on the body
itself or directed towards a goal in space.

762



Fig. 2. Vector Symbols B of πv and rh for byebye. a) The displacement
vector ∆X is converted into the Vector Symbol Brh. b) Grid of Vector
Symbols superimposed on the movement trajectory. c) The continuous
computation results in a stream of Vector Symbols.

A. Space

The Space component presents the different concepts to
describe the pathways of human movements inside a frame
of reference, when ”carving shapes in space” [7]. Space
specifies different entities to express movements in a frame of
reference determined by the body of the actor. Thus, all of the
presented measures are relative to the anthropometry of the
actor. The concepts differ in the complexity of expressiveness
and dimensionality but are all of them reproducible in the
3-D Cartesian system. The following definition is taken from
Choreutics (see [10]) and will help to contextualize the first
2 stages of experimental results. Choreutics defines the Three
Planes - Door Plane (vertical) πv , Table plane (horizontal)
πh, and the Wheel Plane (sagittal) πs. We have based our
approach on the idea of mapping 3-D trajectories to 2-D
planes, though this work does not stick with the ’static’
concept of principal planes.

The direction symbols used in the ’original’ Labanota-
tion encode a position-based concept of space. As absolute
positions demand a higher accuracy from the sensory data
we have adopted an earlier concept of Laban. Recently,
Longstaff [11] has translated a concept of Laban which is
based on lines of motion rather than points in space into
modern-day Labanotation. Longstaff coined the expression
Vector Symbols to emphasize that they are not attached to a
certain point in space.

Figure 2 b) shows the Vector Symbols presented in [11] as
a grid superimposed on a movement trajectory. As shown in
Fig. 2 b) we use a coarse (45 degree) discretization of the
displacement vector ∆X. For the ease of communication
and implementation we use letters to represent the Vector
Symbols. The correspondence between the direction D, the
signs taken from [11] and the letters can be seen in Fig. 2

Fig. 3. Recorded 3-D trajectory and observed image sequence for a)a
horizontal waving (byebye) and b) a sagittal waving (nthrow).

Fig. 4. Two movements with a potential confusion when observed from the
Door Plane πv alone. The nthrow movement looses his oscillatory character
from a frontal view and can hardly be distinguished from lifting the hand
to make the ok gesture. The cipher in brackets indicate person and trial

c). The figure shows the stream of Vector Symbols generated
from a byebye movement of right hand rh observed in the
Door Plane πv .

B. Database of Expressive Movements

To test our approach we have chosen a set of movements
from our database. Some of the movements are based on
suggestions mentioned in [7] and [6]. As shown in the
example of Fig. 3 some movements can only distinguished if
the orientation of the observer is known. In the example the
byebye gesture represents a horizontal waving, while nthrow
represents a sagittal waving. In the case of byebye the signal
can be described primarily by a sequence of R and L Vector
Symbols, while nthrow would be described primarily by F
and B Vector Symbols.

When observed from the Door Plane πv alone, both
movements can still be distinguished, though nthrow would
produce primarily non-movement (0) Vector Symbols. When
comparing the movement nthrow with ok a potential confu-
sion occurs when observing only from the Door Plane πv

as can be verified in Fig. 4.
Also in the case of the movement maestro and byebye a

potential confusion occurs as they appear quite similar when
observed from the Door Plane πv see (Fig. 5). Though the
plane πv appears as the optimal perspective a view from the
side (πs) may help to resolve the confusion.

It can be seen, that by using the proposed Vector Sym-
bol descriptors an accurate camera calibration is not really
necessary. Specially the effect of lens distortions can been
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Fig. 5. Two movements with a potential confusion when observed from the
Door Plane πv alone. The byebye as well as the maestro movement oscillate
from left to right. An additional Wheel Plane πs observation might help to
distinguish. The cipher in brackets indicate person and trial

neglected for the following reasons: i) The Vector Symbols
are not depending on absolute positions nor on the magnitude
of the displacement and ii) the Vector Symbols are discretized
with a coarse resolution of 45 degree for a 360 degree range.

IV. PROBABILISTIC MODEL

A. LMA Space Model

It was shown in Fig. 2 that the angular values of the
directions D are translated into the Vector Symbols Bbp

of the Door Plane πv . The index bp corresponds to the
bodypart like the right hand rh, the left hand lh and the
head (face) f . The Vectors Symbols receive one additional
value, i.e. the indication of no movement v = 0. As we
describe the spatial pathway of a movement by ’atomic’
displacements, we refer to the Vectors Symbols sometimes
as atoms. Movements which are parallel to one of the axes
are expressed as up, down, left and right movement resulting
in the values U , D, L and R. This represents the concept
of Pure Dimensional Movements within LMA, while the
concepts of Pure Diagonal Movements and Deflections are
described as combinations of Pure Dimensional Movements.
The temporal dependency of the Vectors Symbols is indicated
by the frame I . The variables and their sample space are
shown in (1).

M ∈{maestro, . . . , nthrow} 〈8〉
I ∈{1, . . . , Imax} 〈Imax〉

Bbp ∈{O,U,UR,R,DR,D,DL,L,UL} 〈9〉
(1)

The Space model assumes that each movement M = m
produces a certain atom Bbp = b at a certain point in
time, i.e. frame I = i and for a certain Bodypart bp. This
dependency is also reflected in the Bayesian-net of Fig. IV-
A. In this model a certain movement m is ’causing’ the
atoms a, b and c at the frame i. The evidences that can be
measured are the atoms b and the frame i. The movement
M is associated with the concept space, while the Vector
Symbols are part of both, the Laban space and the physical
space. The frame I is given by the system as some kind of
clock and thus regarded as a ’pure’ low-level feature from the
physical space. The model might be applied to any number
of body parts bp which are treated as independent evidences

Fig. 6. Bayes-Net for the Space component of LMA. The movement M
belongs to the concept space while the Vector Symbols are part of both,
the Laban space and the physical space. Their instances are in the left and
right hand. The frame I is associated with the physical space only.

and thus expressed through a product as shown in the joint
distribution of (2).

P (M I A B C)

= P (M) P (I)
∏
bp

{P (Bbp |M I)} (2)

The joint distribution contains several distributions. All
distributions belong to one of the following groups: i)
Distributions that can be determined by ’expert wisdom’ and
ii) distributions that need to be ’learned’. In the first group
priors like P (M) and P (I) can be found. Through ’expert
wisdom’ we state that all movements are equally likely to
occur and thus a uniform distribution is assigned to P (M).
In the second group the distribution P (B | M I) can be
found. In our case ’learning’ means that trials with a known
label are fed into the system which in return identifies the
parameters of a chosen distribution.

B. Continuous classification of movements

Continuous update of the believe is a desirable charac-
teristic of Human-Machine Interaction. With this the system
can continuously refine his classification results through the
newly incoming evidences. The previous step of learning
provided us with the possibility to determine the probability
that the atom B has value b given a frame i from all possible
frames I and a given a movement m from all possible
movements M , i.e. P (b | m i). The table P(B | M I)
holds the probability distribution for all possible values of
atom B given all possible movements M and frames I .

Knowing the conditional probability P(B |M I) together
with the prior probabilities for the movements P(M) we
are able to apply Bayes rule and compute the probability
distribution for the movements M given the frame I and the
atom B with

P (M | I B) ∝ P (M)P (B |M I) (3)

It is possible to compute how likely it is that an observed
sequence of n atoms was caused by a certain movement
m. An example for this stream of atoms was shown in 2
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for the movement m = byebye. To compute the likelihood
we assume that the observed atoms are independently and
identically distributed (i.i.d.). In (4) the sequence of n
observed values for atom b is represented by b1:n. For each
movement m the joint probability will be the product of the
probabilities from frame i = 1 to i = n, where the jth frame
of the sequence is indicated by ij .

P (b1:n | m i1:n) =
n∏

j=1

P (bj | m ij) (4)

We can formulate (4) in a recursive way and for all move-
ments M and get

P (bn+1 |M i1:n+1) = P (bn |M i1:n) P (bn+1 |M in+1)
(5)

The likelihood computation (5) can be plugged in our
question (3). Assuming that each frame i a new observed
direction symbol arrives we can continuously (online) update
our classification result.

P (Mn+1 | i1:n+1 b1:n+1) ∝ P (Mn) P (bn+1 |M in+1)
(6)

We can see that the prior of step n + 1 is the result of
the classification of step n. Given a sufficient number of
evidences (atoms) and assuming that the learned tables repre-
sent the phenomenon sufficiently good, the classification will
converge to the correct hypothesis. The final classification
result is given by the maximum a posteriori (MAP) method.

V. IMPLEMENTATION

A. Human Movement Tracking

For active sensing we use a 6-DoF magnetic tracker to
provide 3-D position data with a sufficiently high accuracy
and speed (50Hz). The active sensors are attached to specific
body parts, which can also be detected by the visual tracker,
i.e. left hand lh, right hand rh and face f .

The visual tracker performs skin-color detection and object
tracking based on the continuously adaptive mean shift
(CAMshift) algorithm presented in [3]. CAMshift extends
the mean shift functionality by being adaptive to the position
and size of a color object. Based on a learned Histogram for
skin color a probability will be associated to each pixel that
it belongs to a skin colored object. The position of a skin
colored object is found by association with the mean of a
distribution inside a search window.

It can be seen, that the visual tracker yields a 2-D position
that represents the hands not always accurately. The process
produces the mean of a 2-D distribution of pixels that
have skin color. This yields the center of objects like the
hands only under perfect conditions. Changes of the lighting
conditions and the shape can shift this ’center’ to any position
on the object.

B. Results

The experimental database consists of a set of 8 move-
ments, performed by 4 persons with an average of 4 trials
per person for each of the movements, which results in

TABLE I
CONFUSION TABLE FOR THE SET OF MOVEMENTS WHEN OBSERVING

ONLY FROM THE Door Plane πv .

1 2 3 4 5 6 7 8
∑

errors
1 Lunging 7 5 1 6
2 Maestro 5 8 8
3 Stretch 12 1 1
4 Ok 7 1 5 6
5 Point 1 10 1 2
6 Byebye 13 0
7 Shake 4 9 4
8 Nthrow 4 1 5

32(of 95)

TABLE II
CONFUSION TABLE FOR THE SET OF MOVEMENTS THAT WERE LEARNED

IN THE Door Plane πv BUT OBSERVED FROM A 45 DEGREE

PERSPECTIVE.

1 2 3 4 5 6 7 8
∑

errors
1 Lunging 10 1 2 3
2 Maestro 1 12 12
3 Stretch 7 2 4 6
4 Ok 1 10 2 12
5 Point 2 10 2
6 Byebye 13 0
7 Shake 3 2 2 6 7
8 Nthrow 5 5

47(of 95)

approximately a 160 trials. Two cameras and a commercial
motion capture device were used to acquire the data. The
3-D movement data is mapped to planes in 2-D according to
the orientation of the cameras. For the Classification, only
camera data is used. The following three experiments have
been conducted.

In the first experiment a single camera was mounted in
position parallel to the Door Plane πv . After computing the
projective matrix, a 2-D projection of the movement data was
retrieved and learned for this specific orientation. During the
Recognition step movements were performed in front of the
camera, yielding the results shown in Table V-B. The results
show the typical confusions that occur when observing in
the Door Plane πv alone. The confusion between maestro
and byebye can be verified in Fig. 5 and the the confusion
of nthrow and ok in Fig. 4. With a total of 32 wrong
classifications, the classification rate is 66%.

In the second experiment the influence of a distorted
perspective was tested. The same single camera was rotated
by 45 degree around the performer but now new perspective
was learned. During the Recognition step movements were
performed yielding the results shown in Table V-B. As
can be expected most of the results got worse yielding a
classification rate of only 51%.

For the third experiment a second camera was mounted in
a position parallel to the Wheel Plane πs. After computing
the additional projective matrix, the 2-D projections of the
movement data were retrieved and learned for these specific
orientations. Additional cameras and perspectives might be
added accordingly. During the Recognition step movements
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Fig. 7. Continuous update of the probability distribution for the movements while performing nthrow a) Cam1 aligned with πv produces a high entropy.
b) Cam2 aligned with πs classifies the movement correctly. c) The fusion follows the belief of Cam2 due to its higher certainty.

TABLE III
CONFUSION TABLE FOR THE SET OF MOVEMENTS WHEN OBSERVING

FROM THE Door πv AND Wheel Plane πs .

1 2 3 4 5 6 7 8
∑

errors
1 Lunging 11 1 1 2
2 Maestro 11 2 2
3 Stretch 12 1 1
4 Ok 7 2 4 6
5 Point 1 11 1 2
6 Byebye 13 0
7 Shake 3 1 1 8 5
8 Nthrow 5 0

18(of 95)

were performed in front of camera one and sideways to
camera two. The two independent results were then fused
in a ’central unit’, yielding the results shown in Table V-B.

Concerning the classification rate the results improved to
81%.

This system yields and important characteristic for human-
machine interaction. In [2] the characteristic of anticipation
for human-robot interaction scenarios was introduced and
three factors of anticipation were defined. Similar to their
measure of anticipation-confidence we compute the entropy
H(M) of the movement variable M as a measure of
’certainty’. With this, for each observer system (Cam1 and
Cam2) the certainty in their belief can be calculated. Figure
7 shows the evolution of probabilities and the entropy for
the observer and central systems during the performance of
a nthrow movement.

It can be seen that the frontal observer (Cam1) is quite
uncertain in his hypothesis (ok and shake) producing an
entropy bigger than 1.0. The sideway observer (Cam2) which
has a clear clearer view of the performance has a entropy
converging towards 0. I this case the central system (Central)
will mainly follow the belief of Cam2.

VI. CONCLUSIONS AND FUTURE WORKS

The results show that the concept of movement classifica-
tion based on LMA can be applied to multi-ocular systems.
The concept of first recording labeled 3-D movement data
using a active sensor and then classifying an unknown

movement using computer vision performed well. Using
the concepts of Vector Symbol descriptors and a Bayesian
approach allowed a less accurate calibration resulting in
a higher robustness. The Bayesian fusion of multio-cular
system allows the introduction of certainty using the measure
of entropy. Problems that occur during visual tracking, e.g.
occlusions, can be addressed by taking into account the
certainty of an observation.

We are currently implementing the Bayesian models for
the Effort and Shape component of the LMA. With a
growing database (HID) we can evaluated classification and
anticipation of expressive movements. Once evaluated, we
want to put our attention to manipulatory movements and the
use of LMA as a cue to describe objects properties. A parallel
path follows the goal to improve visual tracking by high level
knowledge derived from the LMA Space component.
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