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Abstract: The aim of this work is to ezamine and de-
velop a depth map acquisition system with real-time
characteristics and based on a binocular active vi-
sion system. In order to obtain depth information
we present a method that combines stereo matching
with mechanical activity, reducing the time spent to
perform the correspondence between the image points
on the left and right images. Controlling the cam-
eras’ vergence or the baseline distance it is possible
to change continuously the fization point in the space
and, at the same time, to select points with correspon-
dent image projections. Computing the distance from
those points to the vision system, is possible to obtain
a dense relative map of the scene. The correspon-
dence 1s established based on similarity measures be-
tween 1mage regions. This measures are performed by
operators with characteristics that makes this method
suitable for parallel implementation. Since the depth
information is relative, the calibration of the active
vision system is minimal.

Keywords: Depth maps, Active Vision, Vergence,
Correlation.

1. Introduction

Dense depth maps are arrays with the distances from
the object to the imaging system and the computation
of precise depth information is in generally a time con-
suming task. In this paper we propose an algorithm
to extract a relative dense depth map that has not re-
quirements of a precise knowledge of the stereo system
settings (calibration precision)[2]. The information of
these dense relative maps can be integrated as a depth
cue on higher level processes including object recogni-
tion, robot navigation or any other task that requires
a three-dimensional representation of the physical en-
vironment.

In vision research many different methods had been
used to extract information about the structure of the
world from video pictures obtained by active vision
systems - some examples are [1], [5], [7], [8].

A common way of approaching this is to use two stereo
cameras in a similar fashion to the human visual sys-
tem (see figure 1.a). A given point in the scene will,
in general, project into two different planes and the in-
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(a)-Active vision system (b)-Convergent
cameras geometry

Figure 1.

formation about its 3D position can be inferred from
the vector between the two images. Depth recover-
ing algorithms are well documented in the literature
(references with pointers to other references [10],[9],
(6], [8]), nevertheless the algorithms included in our
tests were selected for their potential robust real-time
operation and their moderate hard and software im-
plementation cost.

The algorithm proposed was tested with binocular im-
ages obtained by the active vision system in the figure
1.a) . This active vision system enables the control of
the the cameras’ vergence or the distance between the
cameras and these features are used during the algo-
rithm execution.

For convergent cameras geometry it is possible to de-
fine a visual ray passing through any image point and
the respective lens center. The set of visual rays with
origin on left and right cameras intersect in space and
if we select the intersections from visual rays that have
the same order in left and right cameras and ver-
ify the order constraint, we will obtain intersection
points (see figure 1.b), I1 =11Nrl, 12 =12N7r2,I3 =
13N73,...). When any of these points is on the object’s
surface the disparity is zero and the match probabil-
ity is high between the correspondent image points is
high. Controlling the cameras’ vergence or the base-
line distance we can sweep the space with this set of
visual rays and, at the same time, select the intersec-
tion points that have the maximum correlation. If we
record the position of these points (that are related




Figure 2. Space being sweep and the similarity out-
puts

with the vergence angle or the baseline distance) we
will obtain a dense depth map where the depth dis-
tances are recorded as positions where the intersec-
tion point intersect the object’ surface. The method
combines a software and a mechanical search to per-
form the correspondence between the image points
on the left and right images-see figure 2. Verging
the cameras from near parallel to several degrees of
vergence, sweeps the visual rays and the intersection
points through the scene.

The intersection points that are in the the objects’
surface present high value in a similarity measure-
ment. During the algorithm execution this output is
continuously analyzed, for each corresponding image
point pair. The peaks of this one-dimensional signal,
correspond to likely object depths and when associ-
ated with the vergence angles, a three-dimensional
map of depth is possible to obtain (see figure 2).
Each similarity operator is implemented with opera-
tors that work independently and always on the same
image point pair. This fact makes the method fast and
ideal for hardware parallel implementation, generat-
ing simultaneously the similarity measurements for all
image pairs.

2. Description of the algorithm

The key problem on depth map building by stereo
vision can be identified as finding the correct corre-
spondence of image projections, i.e. homologous im-
age points that represent a single point in the phys-
ical scene. There are not standard solution for the
so-called correspondence problem, but the majority of
approaches used can be roughly classified into two
classes: correlation-based and feature-based methods.

The solution on this article belongs to the correlation-
based techniques, which continuously comparing areas
in the left and right images. The algorithm uses a
simplification of the epipolar constraint because it as-
sumes that for a small vergence movement, any 3D
point will be projected always in the same image row.

This assumption is also considered for small baseline
movements. It also uses the continuity constraint and
assumes that the intensities at two corresponding pix-
els are approximately the same.

The important constraint in our approach consists on
the application of similarity operators just to image
points that have same coordinates on both images.
Using this constraint, that acts like a zero-disparity
filter for convergent cameras, we ensure that the ob-
served 3D point is on the horopter, i.e. it belongs
to a curve in space that has zero disparity (or at
least the disparity is minimum), which is desirable
because points or features on such condition can be
easily picked from the scene. This approach enables
the separation of the object of interest from surround-
ings and simplify the calculus.

Since we know which points match, the measurement
of the disparity is trivial and to know the real distance
Jjust requires the knowledge of the cameras’ geometry.

During the execution, we perform the correlation over
all image points and just store the best matches.
The accuracy of these measures is very important be-
cause all the algorithm depends of the certainty of
these matches. Similarity measures are computed by
comparing a fixed window in the left image with a
corresponding window in the right image while the
vergence or baseline movements are performed. For
each corresponding pair of pixel a curve of correla-
tion scores is generated and the highest (or lowest
depending of the similarity operator) give us the best
matching point.

We tested some similarity operators such as the sum
of absolute differences (SAD) (1), normalized cross-
correlation operator (NCC) (2) and the zero normal-
ized cross-correlation operator (ZNCC) (3)[3]. L and
R stands for the left and right gray level images, with
a wxw search window and L and R are the average
gray level for the left and right image, respectively.
Although the first operators have a low computational
cost the results with real images are not good enough.
The best operator seems to be the zero normalized
cross-correlation operator but the computational cost
is considerable. Experimentally this operator presents
the best results because it is most invariant to affine
transformations of the images which may result from
slightly different cameras’ settings. In our case the
gray level distribution between images is slightly dif-
ferent and the equalization performed by this operator
is essential.
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Figure 3. Algorithm overview scheme

2.1. Validating matches and the hierarchical
algorithm

Validating matches presents a serious problem and in
order to certify the corresponding points we are using
some specific constraints:

e The temporal continuity of the correlation scores
curve, i.e. for each correlation curve associated
to a corresponding pair of pixel’s we analyze if
the maximum(or minimum) values are consistent
with the earlier and posterior values. Abrupt
peaks can be noise.

e An uncertainty measure, based on the spatial
matches distribution, i.e. we expect that the
point with the highest match is surrounded by
high match probability points.

e Multi-resolution coherence. Finally to increase
the reliability we perform matching at several lev-
els of resolution (computed by sub-sampling orig-
inal images or gaussian smoothed images) with
equal size windows (see figure 3).

The matching computation proceeds independently at
all levels of resolution and in the end the results gen-
erated at low resolution are used to validate the re-
sults at higher levels. The method assumes that the
results generated at low resolution are more reliable,
if less precise, than those generated at high resolu-
tions. For each image pair iteration, and at each level
(a,b,c), we obtain a match probability map (i.e. a
zero-disparity map) and a depth map. These depth
maps are continuously updated during the vergence or
baseline movements (each movement correspond to a
few pixel shifts in the images rows). In the end, the
low level resolution depth maps are expanded to the
original size and together with the original one we
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Figure 4. (a)-Depth map of a box. (b)-Score curve

Figure 5. Stereo image pair

compute a weighted average depth map (or simply
reject those points where the peaks do not match).
By the algorithm description it is possible to see that
several processes can be executed in parallel and to
speeding up the depth map acquisition process.

2.2. Experiments with Baseline Control

The software matching processes (correlations) are
the time consuming tasks. The processing time is pro-
portional to the size window search. However similar-
ity operators SAD (equation 1) and NCC (equation
2) can be implemented to avoid redundant multipli-
cation using recursions over the indices. With these
operators it is possible to make the processing time
independent of the window size but, as mentioned,
the result’s precision are not as good as the ZNCC
operator. We are using search windows with 21x21
pixels. Smaller search windows can speedup the sys-
tem, but the results are not so reliable (i.e. we miss
the object pattern). Because the method is iterative
the result precision is also dependent on the number
of image pair acquisitions and on the range of each
verging or baseline increments.

Figure 4.a shows a relative depth map of a big ro-
tated box that, has, on top some other small boxes
at different distance ranges. The big box is in front
of the robot head around 215 cm from the baseline.
The map is represented in shades of gray, dark mean-
ing close, white meaning far. Figure 4.b represents
the score curve correlation of a pixel with 100,128
coordinates. Figure 5 is one of the stereo image
pair acquired during the baseline movements. The
illustrated experience was achieved with a symmetric
fixation geometry and changing the baseline distance
with decrements of 1.5 mm (1.0823 cm in depth). We
started with a initial baseline distance of 29.01cm.




AJ
l HOST COMPUTER l

Figure 6. DSP hardware architecture

2.3. DSP implementation

The active vision system consists of a 5 d.o.f. (see fig-
ure la) robotics platform with independent vergence,
baseline, pan and tilt axes. This robot head is con-
trolled by one host computer (PC 486/66 MHz) and
a dual C40 Image Processing and frame-grabber PC
board.

The image acquisition and processing is performed by
a dual C40 image processing board from Transtech
Parallel Systems. One of the two DSP C40 is asso-
ciated with a frame-grabber (TDM435) and is des-
ignated as master while the other is called slave.
The host computer communicates with the mas-
ter C40 through a FIFO memory channel allowing
transfer rates of 2MBytes/sec. The transference be-
tween the two C40’s is performed through DMA con-
trolled bi-directional comports allowing transfer rates
of 40MBytes/sec even while they are processing (see
figure 6). The frame-grabber can do acquisitions at a
video rate frequency of 25Hz and it has multiple video
entries, but just one at each time can be captured.

In order to implement the presented depth recovering
algorithm in the Transtech image processing board we
use the master C40 to perform the matching process
between the left and right images at the original res-
olution (256x256) and their respectively filtering. At
the same time, we transfer the original pair of images
to the slave C40, that starts the sub-sampling and the
matching process for low level resolutions, typically
(128x128) and (64x64). Once the slave C40 have fin-
ished his task it sends the low resolution results to the
master C40 which perform the validation process and
computes of the final relative depth map. The master
C40 is updated with the data geometry of the system
and is responsible by the next baseline or vergence
movement.

The actual parallel execution of the algorithm is ques-
tionable, and we still testing different C40 alloca-
tion solutions in order to improve the software per-
formance.

2.4. Conclusions

In this article we have shown that a dense relative
depth map acquisition system with real-time charac-
teristics is possible. By using an active vision sys-
tem we split the correspondence process between the
left and right image into a software and a mechanical
search. This search combination simplifies the match-
ing phase and makes the software algorithm part suit-
able for parallel hardware implementation with all the
advantages for a real-time system. It is robust, reli-

able and based on a low-cost active vision system.
There is some simplifying assumptions about the en-
vironment (such as no abrupt depth changes), but
they produce fairly dense results whose validity and
accuracy can be quantitatively evaluated. The quality
of these results is sufficient for depth cues in many 3D
reconstruction applications. The independence of the
algorithm from the calibration process is also an ad-
vantage because the results are relative distances be-
tween different points on the object, obtained without
a precise camera calibration.
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