Visual tracking of silhouettes for human-robot interaction
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Abstract

The interaction between man and machines has become
an important topic for the robotics community as it can
generalise the use of robots. One of the requirements for
this interaction is that a robot be able to detect and analyse
the motion of a person in its vicinity. This paper describes
a Monte-Carlo based method for human head/hand detec-
tion and tracking in video streams. The tracked part is
modelled by a spline. The pose estimation consists in fit-
ting the model to the current image gradient taking into
account with motion measurements. Results of detection
and tracking using these combined criteria are illustrated.
The limits of the method are also discussed. Finally, future
extensions are proposed, based on colour segmentation, to
improve the robustness of the method.

1 Introduction

Man-machine interaction has become an important
topic in the robotics community. In this context, advanced
robots must integrate capabilities to detect humans pres-
ence in their vicinity and interpret their motion. This per-
mits to anticipate and take countermeasures against any
possible collision or passage blockage.

For an active interaction, the robot must also be able to
follow a person’s gestures, as they can be part of an object
exchange or of a communication process. This requires the
determination of the person’s pose as well as the location
of the hand(s) and the estimation of their trajectories.

Many researchers have successfully tried to detect and
track people or human parts in video streams from one or
more cameras. Some of the existing approaches use prior
models of the human body (or body parts) and/or make as-
sumptions on the motion characteristics [5] to be detected
and analysed. These models are either 2D [1] (image plane
models) or 3D [9] (wire-frame or solid shape structures)
and can be deformable [4] or rigid [9].

Our approach is based on coarse 2D rigid models of the
human head or hand. These models although simplistic
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permit to reduce the complexity of the involved computa-
tions and still obtain good results as will be shown later.

Section 2 describes the method and focuses on motion
considerations to detect and track a human head or hand.
Results are presented in section 3. The performance and
limitations of the approach are also discussed therein. Re-
garding the limitations, some considerations are outlined
on how to integrate colour information to improve the ro-
bustness.

2 Visual tracking method

2.1 Overview

Performing automatically the visual tracking of a given
object is a very valuable goal but, unfortunately, it still
does not have a general answer. The fact is that an object
can generate very different images depending on its pose
or illumination. Silhouette-based approaches simplify the
problem by reducing the variability of the object represen-
tations.

In this case the silhouette contour is modelled by a
spline whose state is estimated using a particle filter. Ex-
amples of these models are shown in figure 1. The choice
of a particle filter as the tracking engine comes from its ca-
pability to work in the presence of nonlinearities and non-
Gaussian noise models. The details of this filter and its
associated formalism can be found in [6, 3, 1].

Figure 1: Contour templates for head or hand

Blake et al. [1] propose to consider the local deforma-
tion of the model by augmenting the state vector with the
coordinates of the spline control points. However this sub-
stantially increases the state space dimension and thus de-
teriorates the performance of the particle filter. So, a four-



dimensional state vector is considered, composed of the
position coordinates, the scale and the orientation of the
target silhouette in the image. In the following, this state
vector is noted Z = [z, v, s, 0]~

2.2 Dynamic model

The target dynamics are depicted by the auto-regressive
model

Xk = AXk_l + Wk, with Xk = [ _,mk :|

Tp—1
where k is relative to the kth image of the sequence and
W}, terms the process noise. This model is used during the
prediction step. It is worth noting that due to the versa-
tility of the particle filter, the above dynamics could have
been chosen nonlinear and the process noise could be non-
Gaussian.

2.3 Measurement model

The measurement model links the system state with the
measured output. In the particle filter update step, each
particle must be weighted by the likelihood that relates the
current measured output and state that corresponds to the
particle.

In the present case, the likelihood of each sample de-
pends on the sum of the squared distances between model
points and corresponding points on the image. The model
points are chosen to be uniformly distributed along the
spline. The closest edge point in the normal direction at
each sampled point of the spline is selected and the eu-
clidian distance between these two points constitutes our
local error measurement (figure 2). The matching criterion
between the proposed model state and the image edges is
defined in terms of conditional probabilies as

N
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by setting d(j) = [a(j) — 2 (j)]. #(j) is given by
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p otherwise

with z (j) the j-th measurement point of the spline cor-
responding to the i-th particle at time k, 2 (j) the closest
edge point on the spline normal, K, p and § predefined
constants.

2.4 Improvements to the measurement model

The simple measurement model is shown to work quite
well if the outer contour of the silhouette can be properly
extracted and the background does not present much clut-
ter that may confuse the tracker. Unfortunately this is not
always true and using only edges for template fitting is not
sufficient to make it robust enough. In some situations, due
to unfavourable illumination, the target contour may not be
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Figure 2: a) Measuring the correspondence between a
particle and an edge image; b) A representation of the con-
tour template, the spline normals and points that match
image edges.

so prominent as expected. Then there may be portions of
the image in which the template matches better with irrele-
vant contours than with the ones of the true target. Conse-
quently, the tracker may loose the target and “attach itself”
to that cluttered zone. This phenomenon happens because
the features used by the measurement model are not suffi-
ciently discriminant. Having stated this, and assuming that
the target is moving most of the time, the inclusion of mo-
tion based information in the likelihood expression (1) has
been considered.

Blake et al. described in [10] a tracker which com-
bines Kalman filtering and background modeling i.e. a
statistical form of background subtraction. In our case,
background subtraction facilitates the tracker initialisation
which remains often problematic, especially for cluttered
background. A variant is to consider optical flow.

Optical flow, though marginally used by Blake et al.,
allows to remove efficiently static clutter from the image
data. The two next sections describe these two directions,
namely the use of background subtraction and optical flow,
especially for initialisation phase focused on section 2.5.

2.4.1 Background subtraction. The segmentation of
a moving target out of a slowly-varying background can
be set up by carrying pixel-wise computations on an inten-
sity image. These lead to the labelling of each point as a
member of either the background or the target. The inter-
ests of such a method are its ease of implementation, its
low computational cost enabling it to run at video rate, and
the fact that it doesn’t require the use of a colour camera.
Yet, errors are to be expected due to the labelling of each
pixel regardless of its vicinity and of any a priori hypoth-
esis on the target’s motion type. Nevertheless, some of
these false detections in the segmented binary image can
be eliminated by subsequent morphological filtering.

As the considered video sequences are long, wide inten-
sity variations often happen both on the background and on
the target. The detection scheme proposed by Donohoe et
al. in [2] is designed so as to be well-behaved even in such
a context. It consists in labelling each image pixel from its
intensity by applying a simple binary hypothesis test.



The distribution of the intensity of each image pixel
has then to be characterised at every instant under each
of the two hypotheses “background” and “target”. As the
target can hold enlightened and shaded zones depending
on the scene illumination, its points intensities can extend
from dark to bright. Said it mathematically, the conditional
probability density function of the intensity of any pixel
under the hypothesis that it belongs to the target is uniform
whatever the considered image in the sequence. Besides,
the intensities distributions of the points lying on the back-
ground entail the computation at each instant of a so-called
dynamic reference frame, viz. of a secondary image whose
pixels are all obtained separately by a discrete-time unitary
static gain first-order filtering of the corresponding pixels
throughout the sequence. Choosing a high enough time-
constant leads to filter solely the moving target, so that the
dynamic reference frame is a good estimate of the back-
ground. The difference between this image and the actual
one can thus be assimilated as zero-mean additive imaging
noise. To get the conditional probability density for an im-
age pixel assuming this pixel belongs to the background, it
is then sufficient to empirically compute the — zero-mean—
spatial dispersion of the imaging noise over the whole se-
quence, and shift it in order to balance it on both sides of
the intensity of the corresponding pixel in the dynamic ref-
erence frame.

Once they are evaluated for the actual intensity of the
image pixel under categorisation, the above conditional
probability density functions are used as likelihoods for
hypotheses testing. As is usually done, they are compared
by means of a threshold, which can be selected so that
the decision process satisfies a predefined performance in-
dex [12].

Donohoe et al.’ technique was originally designed in
order to extract small-sized targets moving fast enough.
In the context of human-robot interaction by gestures, the
hand motion may be quite slow. Moreover, segmenting
both the hand and the forearm, which may be worth to
help the interpretation, can fail because of the forearm’s
quasi-immobility. The above technique has thus been im-
plemented with a slight modification enabling its use for
gestures segmentation.

Assume that 7 is a dummy variable representing an in-
tensity, n is the total number of intensity levels, A is the
decision threshold, and, at time k, i, terms the intensity
of a pixel of the actual image, my, terms the intensity of
the corresponding pixel on the dynamic reference frame
and oy, is the standard deviation of the — presumably Gaus-
sian — imaging noise. The computations concerning each
image pixel at time k are as follows, the last one being
somewhat different from the original method of Donohoe
etal.:

1. state p(¢|target) = % and p(i|background) ~ N (mp—_1,0%_;);

2. if % > A [resp. < AJ, then decide the current pixel is

a member of the background [resp. of the target];

3. if the current pixel is a member of the background, then
state my, = adp + (1 —a)my_1 with a € [0;1], else state
mp = Mmy—1; repeat a similar filtering process for the computa-
tion of a,%.

Various values of A have been tried out. Let Pr [resp.
Py r] be the probability to decide that the pixel under con-
cern belongs to the background while it lies on the target
[resp. belongs to the target while it lies on the background].
First, A has been computed so as to minimise Py, with Pg
fixed to 5%. The same was then done after reversing the
roles of Py; and Pp. Finally, A was set to 1, which turns
to minimise the probability Py; 4+ Pp of making a wrong
decision. As the image noise variance o} is always greater
than 5 in our experimental context, the two first strategies
give results very close to setting A = 0.1. Moreover, if
0,% < 20, the decision differs from the third strategy only
by up to 4 intensity levels. So, A = 1 has been selected.
Figure 3 presents an example of background estimation.
Here the top row shows a sequence of 3 input images and
the bottom row the corresponding evolution of the back-
ground estimate.

Figure 3: Example of background estimation. Top: in-
put video sequence; bottom: resulting background image
update

2.4.2 Optical flow. Being optical flow the apparent
motion induced in the image sequence by the relative mo-
tion between the camera and the scene, it would permit
the separation between the moving objects and the fixed
background. Existing techniques to estimate optical flow
vectors for every pixel in the image have been used. Nev-
ertheless, this kind of information can only be used if con-
sidering that the camera is fixed or is undergoing a pure
rotation with known angular velocity. In the latter case,
the effects of the rotation can be estimated and then com-
pensated on the computed vectors.

The optical flow field can then be used to create a mask
which selects only the edges that correspond to the mov-
ing zone for the calculation of the likelihood function (1).
Then, the points z}(j) in equation (2) receive the addi-
tional constraint that the corresponding optical flow vec-
tors must have nonzero norm.

This mask selection permits the distinction between
static background edges and the target moving edges. Nev-
ertheless, this method makes the tracker fail as soon as the



person stops moving. So, instead of removing the edges
that do not move, the moving ones are just more favoured,
so that the tracker will prefer them if they exist but still
finds the motionless ones. Given f{ (21(4)) the optical flow
vector for pixel 2} (j), the expression (2) is then replaced
by:

o) ={ W HpED IO )

1 otherwise

,y(zlzc(J)) — {0 iflf (ZIZc(J)) | #0 (4)

2.5 Initialisation

Filter initialisation is a crucial aspect of the tracking
process. An accurate initial estimate is required unless
the system can be fairly approximated by a linear model
subject to Gaussian noise. For instance a bad initial esti-
mate can make the filter converge to a local minimum other
than the one corresponding to the target. Then, the parti-
cle filter should be initialised with a set of samples which
can be generated from a multivariate Gaussian distribution
centred on some fairly good initial state estimate X and
covariance X.

The proposed initialisation method consists once again
in the use of motion information. So, the initial estimate is
extracted via the detection of a moving zone in the image
plane.

2.5.1 [Initialisation using background subtraction.
Background subtraction techniques can be used once again
for the initialisation purpose. These allow to coarsely iso-
late the image area corresponding to the target. So, the
research area in the image can be reduced and an initial es-
timate X can be deduced from the inertial moment char-
acteristics of the isolated object pixels. Figure 4 shows an
example of hand segmentation using the method discussed
in [2].

Figure 4: Region of interest on an image issued from back-
ground subtraction

2.5.2 Initialisation using optical flow. While the pre-
vious approach is restricted to fixed camera contexts, the
optical flow based approaches allow the separation of
zones with different directions of movement.

The target region, once isolated, is then used to assign
an initial estimate to the tracker.

Figure 5: Estimating the initial target location using mo-
tion information

Considering the case of tracking the head and torso of a
person and after having identified the moving area, the ini-
tial state estimate is obtained using the following assump-
tions:

e Normally people walk upright so the initial orienta-
tion 6 is fixed and equal to Oyprighs.

e Detecting the head position is done by scanning the
image from top to bottom to select the first pixel that
has a non zero motion vector after noise filtering. The
model can be described with respect to this point so
the position part (z,y) of the vector state is known.

e The scale s can be inferred from the width of the lines
of the moving zone. This is done by searching for the
first local maximum value in the top-to-down width
sequence.

As these estimated values are used to generate a multi-
variate Gaussian distribution, the corresponding positions
in the diagonal of the covariance matrix must reflect the
uncertainty associated to the initial estimate.

Figure 5 shows an example of obtaining an initial value
before launching the particle filter for the case of tracking
a head. As there is no automatic mechanism for inferring
the variance values these are preset by hand.

It should be noted that for other target types, e.g. hands,
a similar approximation can be applied, though it would
require some constraints on the initial hand pose.

3 Results and future works

3.1 Tracking results

The presented method has been implemented on a PIII-
1GHz laptop running Linux. Although no special care was
taken in terms of code optimisation, it was possible to ei-
ther track a hand or a head with reasonable performance.
The original method performs quite well in the presence of
some background clutter as can be seen on figure 6. Yet,
the background can generate too many edges which may
“confuse” the tracker as happens in figure 7. This happens
because, contrarily to Blake et al., the template deforma-
tion, that could render it closer to the hand contour, is not
allowed in this implementation. Nevertheless, by using a
lower dimension state space, a better behaviour of the par-
ticle filter is expected.



Considering this, cluttered edges due for example to
complex background may exhibit a better matching crite-
rion with the template than the edge features which really
belong to the real target.

Figure 7: Example case where the criterion based only on
distance fails

Adding the motion constraint to the tracker matching
criterion has permited to improve its performance. Ac-
tually, this made it converge in situations where it would
normally fail (figure 8). Figure 9 also shows a tracking ex-

Figure 8: Tracking example with a cluttered background

ample where the used spline roughly models the shape of
the head-neck-shoulders set.

Figure 9: Example of tracking a head

3.2 Improvements

Future extensions regarding color cues which aim at
making our tracker much more efficient, are discussed
hereafter. To our knowledge, color segmentation is
not considered in Blake’s approaches, in any case for
head/hand tracking purpose.

The goal is to achieve a segmentation of regions corre-
sponding to the skin parts in the scene. The requirements
comprise a method that can adapt to changing environmen-
tal illuminations and complex backgrounds. The segmen-
tation algorithm, which is inspired by [7], consists in two
phases:

1. Feature clustering and region growing process based
on chromaticity components. This enables the merg-
ing process independently of the beginning point and
the scanning order of the adjacent regions.

2. Local clustering to refine the segmented regions and
a labelling process based on both intensity and chro-
maticity components to extract skin-colour parts in
the observed scene.

Colour can be quantised using different representations,
generally called colour spaces. The problem of using
colour as a discriminant characteristic for image segmen-
tation raises the question of the best representation for this
purpose. The I I I3 space is frequently the one chosen be-
cause of its good performance in class separability [8]. An-
other related question is if the intensity component should
be rejected or not. Shin ef al. [11] show that separability
can be significantly affected if the intensity component is
neglected. This information is also considered in the sec-
ond step.

Only the chromaticity components I, I3 are taken into
account in the first step of separating skin and non-skin
regions. A training phase was performed where the clus-
ters correspond to skin classes as it is shown in figure 10
considering only two components. These classes were in-
teractively learnt beforehand from a large image database.

)
o

Figure 10: Classes generation from colour space division

A first image partition is done on-line by dividing the
image in square cells. Potential skin cells included in the
colour sub-space defined by the clusters are selected and
merged using an adjacency graph.



Then, a second and more selective clustering (fig-
ure 10), is achieved on these initial regions by automati-
cally detecting the principal peaks and valleys in the three
local I, I, I3 histograms [7]. The segmentation results
in different regions to be identified. In fact, these re-
gions, sometimes, correspond to skin-colour like entities
(figure 11-(b)) in the scene.

(b)

Figure 11: Examples of colour segmentation: (a) correct
segmentation;(b) incorrect identification of skin regions.

Finally, the means and variances of I, I3 are used to
characterise each extracted region and compare with the
learnt values in order to identify the skin parts. This per-
mits to filter spurious regions like the one that corresponds
to the shelf in figure 3.

Two alternatives are proposed to take into account the
colour in the tracking process. First, the segmented (skin
labelled) regions can simply delimit interest areas in the
image for template fitting, and the approach remains sim-
ilar to the one described in section 2. Secondly, we can
consider the segmented image by replacing the term v(z},)
in expression (4) by:

1) = o S =16 + Y 1)
z;, el Z}, €eE
where I and E are relative to the interior and exterior of
the model in image. 2} is relative to a pixel and [(z},) is its
label — 1 for skin class and 0 otherwise —,and w a weight
such as w > 1.

4 Conclusion

Tracking methods dedicated to H-R interaction context
are supposed to adapt to both changing environmental illu-
minations and complex backgrounds that may exist in an
office or laboratory.

Aiming to track a person or a person’s hand through
the use of a a video stream, this paper presents the meth-
ods used and the obtained results. The results show that
it is very difficult to perform tracking using only direct
measurements on individual images. It has been shown
however that by introducing motion information, captured
either using optical flow or background subtraction, the
performance of the tracker can be augmented. Results of
detection and tracking using these combined criteria are il-
lustrated and demonstrate the validity of the approach. Fi-
nally, future extensions are proposed based on colour cri-
teria to improve the robustness.
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