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Abstract. This paper presents a novel approach to analyze the appear-
ance of human motions with a simple model i.e. mapping the motions
using a virtual marionette model. The approach is based on a robot us-
ing a monocular camera to recognize the person interacting with the
robot and start tracking its head and hands. We reconstruct 3-D trajec-
tories from 2-D image space (IS) by calibrating and fusing the camera
images with data from an inertial sensor, applying general anthropo-
metric data and restricting the motions to lie on a plane. Through a
virtual marionette model we map 3-D trajectories to a feature vector in
the marionette control space (MCS). This implies inversely that now a
certain set of 3-D motions can be performed by the (virtual) marionette
system. A subset of these motions are considered to convey information
(i.e. gestures). Thus, we are aiming to build up a database which keeps
the vocabulary of gestures represented as signals in the MCS. The main
contribution of this work is the computational model of the IS-MCS-
Mapping. We introduce the guide robot “Nicole” to place our system
in an embodied context. We sketch two novel approaches to represent
human motion (i.e. Marionette Space and Labananalysis). We define a
gesture vocabulary organized in three sets (i.e. Cohens Gesture Lexicon,
Pointing Gestures and Other Gestures).

1 Introduction

Robotics field is facing the challenge to develop robots that share an environment
with humans. The two basic skills social robots need to have is to interact with
the people and to navigate in the world. To study possible solutions and feasible
techniques we started the development of the robot guide Nicole. Nicole will
guide visitors through the Institute of Systems and Robotics (ISR), talk about
the research and react on gestures performed by persons recognized as “god-
fathers”. The interaction part as well as the navigation part will strongly rely
on visual cues. This paper is concerned with robot vision for human-machine-
interaction of “Nicole”.

If the perceptual system of a robot is based on vision, interaction will involve
visual human motion analysis. The ability to recognize humans and their activ-
ities by vision is key for a machine to interact intelligently and effortlessly with
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a human-inhabited environment [1]. Several surveys on visual analysis of human
movement have already presented a general framework to tackle this problem [2],
[1], [3] and [4]. Aggarwal and Cai point out in their survey [2] that one (of three)
mayor areas related to the interpretation of human motion is motion analysis of
the human body structure involving human body parts. The general framework
consists of: 1. feature extraction, 2. feature correspondence and 3. high level
processing. The architecture we present relates to this framework in that we
define: 1. Perception- , 2a. Motor/Model-, 2b. Impression- and 3. Interpretation
Level. As shown in fig. 5 e.g. the body part segmentation will be found in the
Perception Level being part of a Human Tracking Module.

Research on human behavior suggest, that infants could compare the sensory
information from his own unseen motor behavior to a supramodal representation
of the visually perceived gesture and construct the match required [5,6]. In im-
itating, infants attempt to match the organ relations they see exhibited by the
adults with those they feel themselves make [5]. Infants draw information from
what they see by matching it to what they do. We like to further describe this
process by proposing to simulate the motion through acting on a model inside
our head and interpreting the (virtual) sensor signals. We name our concept:
“The Marionette in the Head”.

This article is about the model we use to generate human motions and the
signals we extract to interpret a certain set of human gestures. To materialize the
solution we contribute the mathematical concept to build a mapping between
the 2-D image space (IS) of a monocular camera and the space of the signals
for gesture interpretation (MCS). We introduce the guide robot “Nicole” to
place our system in an embodied context. We sketch two novel approaches to
represent human motion (i.e. Marionette Space and Labananalysis). We define a
gesture vocabulary organized in three sets (i.e. Cohens Gesture Lexicon, Pointing
Gestures and Other Gestures).

An interesting research on gesture recognition provides us with the first set
of our vocabulary. In [7] Cohen et al. established a lexicon of 24 gestures which
were captured by a human moving a flashlight against a black background. In
our approach we are detecting and tracking the hands and the face automatically
without using special device (markers). The second set of gestures was inspired
by Kahn et al. [8] whose interface interprets pointing gestures. Similar to us they
were using multiple cues to track the persons hand and heads. Our approach also
incorporates face recognition for a personalized interaction.

Section 2, where we present our model, starts the extraction of the required
3-D data from the 2-D image and introduces entities of reference in the 3-D
world. In the next part we introduce a vocabulary of gestures and relate simple
commands for a mobile robot to it. In the third part we develop the puppet model
and present the signals that can be extracted. Sect. 3 shows the implementation
of our concept starting with a brief overview of the “Nicole” Roboticsystem,
followed by the Gesture Perception system, the Visual-Inertial Sensor and the
Human Tracking Module. Sect. 4 presents results on recorded gesture trajectories
and Sec. 5 closes with a discussion and an outlook for future works.
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2 Models

We have constrained the situation of interaction in the following way. The vision
system is calibrated for a person acting at a certain distance and orientation
towards the robot. In the current level of development the person needs to adopt
this initial position to interact by himself. The interaction will start when the
person is facing the robot and standing in a natural “at ease” position. The
camera system will cover the entire “kinesphere” of the person while the person
performs gestures using his Hands and Face. The position of the person’s body
is assumed to be static. Using our system in a situation as shown in Fig. 1 a) a
motion of hands and face need to be tracked and transformed to what we will
call “Marionette Space”.

Fig. 1. a) Nicole in position to interact with Enguerran. b) Projection of 3-D point P.

2.1 Projection Space

The first step is the recovery of 3-D trajectories from 2-D images created by
a projective camera. We start by defining the initial plane π{WI} and relate it
to the ground plane and the horizontal plane by π{WI} = πhorz = πgrd (see
Fig. 1 b)). We place the reference frame {WI} at the point of intersection of
the vertical body plane πvert, the sagittal plane πsag and the ground plane πgrd

shown in Fig. 1 b).
Any generic 3-D point P = [X Y Z]� and its corresponding projection

p = [u v]� on an image-plane can be mathematically related using projective
geometry and the concept of homogeneous coordinates through the following
equation, the projective camera relation, where s represents an arbitrary scale
factor [9]:

⎡
⎣
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s

⎤
⎦ =

⎡
⎢⎢⎣
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Matrix A is called the projection matrix, and through its estimation it is
possible to make the correspondence between any 3-D point and its projection
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in a camera’s image-plane. We can likewise express the matrix A by using the
parameters of the projective finite camera model, as stated in [10].

A = C
[
{C}R{WI} {C}−→t {WI}

]
(2)

Where C is the camera’s calibration matrix, more frequently known as the intrin-
sic parameters matrix, while the camera’s extrinsic parameters are represented
by the rotation orthogonal matrix R and the translation vector t that relates
the chosen {WI} to the camera frame.

The projective camera presents us, in fact, with the solution for the inter-
section of planes Πcam1 and Πcam2 which, assuming P̃ = [X Y Z 1]� (i.e.
homogeneous coordinates), can be proven from its projection expression to be
given by 3) (see [9]).

{
(a1 − ua3)�P + a1,4 − u = 0
(a2 − ua3)�P + a2,4 − u = 0 ⇐⇒

{
Πcam1P̃ = 0
Πcam2P̃ = 0

(3)

This solution is called the projection or projecting line, which can be alter-
natively represented by equation (4) [9].

−→n = (a1 − ua3) × (a2 − ua3) (4)

These relations indicate that all 3-D points on the projecting line correspond to
the same projection point on the image-plane, which means that the projection
equation is not unique. Thus, at least one additional restriction is needed to
establish an unique correspondence between the 3D point and its projection on
the image-plane. One possibility being restricting the locus of 3-D points to lie
on a plane.

2.2 Gestures and Labananalysis

In our search for a suitable description of human motions we found the Laban-
analysis, named after the founder R. Laban [11]. In Labananalysis the kinematic
chains are observed with relation to spatial shaping possibilities and the dynamic
qualities (Effort) accompanying them. A pioneer in the attempt to re-formulate
Labanotation in computational models is Norman Badler and his early works are
summarized in his book on simulating humans [12]. He suggests to not imple-
ment Labanotation directly but use it as a good set of default values for normal
human movements. More recently a computational model of gesture acquisition
and synthesis to learn motion qualities from live performance has been proposed
in [13].

We will investigate more the qualities of a gesture while trying to add an
Impression Level to our system. For now we only like to address the problem of
space or gesture plane. An interesting spatial concept is that of Scales. Scales
are movement possibilities with reference to geometric shapes and sequences.
Scales are related to the kinesphere which is defined as the reach space of the
body. The simplest Scale is called 1-D (or defense) Scale. It is built around
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Fig. 2. Laban Scale: Icosahedron

the axes of the kinesphere (vertical, horizontal, sagittal). Figure 2 a) shows the
axes and defined points (D = Deep, R = Right, L = Left, F = Front, B =
Back, H = High). A 2-D Scale is created if the movement to six peripheral
point are performed without returning to the center (e.g. a cycle around the
three planes πvert, πhorz, πsag). As a suitable description for 3-D movements
Laban used a Icosahedron see Fig. 2 a). The geometry of the Icosahedron can
be developed from the three planes (πvert, πhorz, πsag) superimposed and their
corners connected. Thus, twelve corners define maximal reach possibilities within
the kinesphere. As Scales are ordered sequences for the most economical and
expressive pathways between all the peripheral points (corners), Laban defined
several different Scales for 3-D movements. Of particular interest is the one
which goes along the outer edges of the icosahedron. Laban saw this Scale in
many communicative gestures and dance forms, thus calling it primary Scale.
This reflects that, although the sequences have been outlined as primarily total
body movements, they are also identifiable in small movements.

Fig. 3. a) Cohen’s Gesture Lexicon. b) Pointing Gestures. c) Other Gestures.
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To show the feasibility of our approach we have defined a vocabulary of
gestures and recorded a group of people performing them (see fig. 3). Cohen
et al. have already presented in [7] a gesture lexicon consisting of 24 planar
oscillators to control an actuated mechanism. We use his lexicon as Set 1 and
extend it by Pointing Gestures (Set 2) and Other Gestures (Set 3). The latter
were gestures expressing information like “Speak louder!”, “Be quiet!”, “I am
hungry!” and “Bye, bye!”. We will show later in this article that Set 1 can be
described by projecting the trajectory on a plane ΠgestP̃ = 0 parallel to πvert.
Using the geometry involved in the perspective projection of the world onto the
camera’s image-plane and the gesture-plane’s restriction, the 3D point in the
scene can be uniquely related to its 2-D projection point in the image-plane of
the camera using (5):

{
Πcam1P̃ = 0 Πcam2P̃ = 0 ΠgestP̃ = 0

}
(5)

Our vocabulary of gestures also determines the future interaction of Nicole her
“godfathers”. Set 1 will be used as command primitives (e.g. turn left, move
back), Set 2 to shift the focus of attention (e.g. look northwest) and Set 3 for
any other form of communication (e.g. speak louder).

2.3 Marionette Space

There are some examples for the attention puppetry receives from the research
community. The approaches involving marionettes are basically placed in the
area of entertainment. Generally marionette figures are articulated by a set of
servomotors to produce human-like motions. An early work was reported by
Hoffmann [14] who used a human dancer to teach the coarse movements to the
system. In [15] the marionette was used to produce gestures by superposition,
inhibition and sequencing of motor primitives. The work was based on evidences
for basic (innate) elementary neural motor programs from which all bodily move-
ments are constructed [16]. The system was further developed in [17] which also
gives a nice cultural summary on marionettes. Often human motion capture data
is mapped to the marionette while dealing with inverse kinematics and physical
constraints. In [18] the results compare the performance of two human actors
and the marionette telling a story. Apart from applications in entertainment
we also found comparisons of natural (human) and robot actuator systems. [19]
presents a control strategy for stable movement of a marionette under a sys-
tem of unidirectional muscle-like actuators. Analogies to monotonic function of
the firing rate of natural muscles were drawn. The underlying question common
to all contributions is: “What is the relationship between human and puppet
movements?” Our answer to this questions is a model that synthesizes human
movements by controlling a virtual puppet. The control vector associated to a
certain gesture will be used later for gesture recognition. Our primary interest lies
in the reduction of the parameters to describe the human motion i.e. to reduce
the dimensionality of the parameterspace. Our secondary goal is to maintain an
intuitive approach which can also be understood by non-engineers [20].
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From the various types of puppets the marionettes have received the most
scientific attention so far. We found are more promising concept in the rod
puppets. The puppet hands are manipulated using (rigid) sticks see fig. 2. We
will first invent a model of the puppet body considering a 3 DoF neck joint, 3
DoF shoulder joints, 1 DoF elbow joints and 3 DoF wrist joints. Next we will
place three control joints at the origin of {WI} and connect them with sticks
with the hand and the head. We connect the control joints by rigid control links
to the wrist joints and neck joint (see fig. 2 b). The hands control joints will
have two rotational and 1 translational DoF while the face control joint only has
1 rotational DoF. Thus, we have created a system with a 7-dimensional control
space that is able to synthesize a certain set of movements in 3-D space. We
are now able to express the relationship between the 3-D space and the control
space. We establish a feature vector F consisting of the face normal (gaze) nF (t)
and the positions of the hands PRH(t) and PLH(t).

F(t) =

⎡
⎣

nF (t)
PRH(t)
PLH(t)

⎤
⎦ (6)

We can express the components of the vector by using spherical coordinates.
Omitting the dependence on (t) for the moment we get

nF =

⎡
⎣

cos θCF

sin θCF

0

⎤
⎦ and PRH =

⎡
⎣

lCRH cos θCRH sin φCRH

lCRH sin θCRH sin φCRH

lCRH cosφCRH

⎤
⎦ (7)

for nF and PRH the expression for PLH goes accordingly. To make bimanual
movements [21] more obvious we will count the azimuthal angle θ counterclock-
wise from the positive x-axis with −π < θ ≤ π.

Representing the human motion in such a way is very close to proposals
made by researchers from physiology. In [22] Soechting and Flanders discuss
how spatial parameters may be represented by the activities of neurons. They
considered different motor tasks like postural responses, orienting movements
and arm movements to a spatial target. Introducing frames of reference and
coordinate systems they show that in all three motor tasks, one of the coordinate
axes was defined by the gravitational vertical. Another coordinate was defined
by the sagittal horizontal axis. They suggest that there is a common, earth-fixed
frame of reference utilized for all motor tasks. For postural responses findings in
research on human (and animal) motion suggests that bipedal posture can be
described using limb angles and length from the center of gravity to the base
of support.

3 Implementation

3.1 Architecture

As mentioned in section 1 the whole system of the robot “Nicole” needs to deal
with navigation as well as interaction. The base of Nicole is a Nomad Scout
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Fig. 4. a) Hardware architecture b) System Architecture

robot (see fig. 4 a)). The Motor Board Controller connects to the sonar, the
bumpers and the odometry. With this data and the input from the camera
and the inertial sensor the Navigation part will perform obstacle avoidance,
global path planning and people tracking. The interaction part will also use the
camera and the inertial sensor but additionally the loudspeaker as an output
device. It will perform gesture and face recognition and use a speech synthesizer
for speaking. The external hardware is supervisory control computer which is
connected to the Navigation part via WLan to have the option to control Nicole
and visualize her position. Fig. 4 b) shows the architecture of Nicole. In this
paper we focus on the Gesture Perception (GP)-System which is part of the
interaction layer.

3.2 The Gesture Perception (GP)-System

Fig. 5 shows the architecture of the GP-System. The system can be divided in
six levels of visual perception and understanding. The Processing starts at the
Perception Level with the Visual-Inertial Sensor dealing with Image Capture
and Inertial Data registration. The image data is used by the Human-Tracking-
Module to perform Face Detection, Face Recognition, Skin Color Detection and
Object Tracking. The Projection-Module reconstructs from the 2D Image tra-
jectory of Hands and Face the 3D trajectory. The output of the Perception Level
will be used by the Motor/Model Level and Impression Level. The former trans-
forming the trajectory to a feature vector in the marionette control space (MCS)
the latter using the Labananlysis to create qualities related to Effort. The In-
terpretation Level will use both inputs to perform a Emotional Tinted Gesture
Recognition. In the final step a Learning Level will refine the emotional and
personal gesture vocabulary inside the database of the Knowledge level.

3.3 The Visual-Inertial Sensor

Again, we want to follow our belief that a successful perception of human mo-
tion is achieved best when the system is built in human manner. The inner ear
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Fig. 5. Architecture of the GP-System

vestibular system in humans and in animals provides inertial sensing mainly for
orientation, navigation, control of body posture and equilibrium. This sensorial
system also plays a key role in several visual tasks and head stabilization, such
as gaze holding and tracking visual movements [23]. Continuing the argumen-
tation from section 2.2 about coordinate systems for human motion, Soechting
and Flanders show in [22] that one of the coordinate axes was defined by the
gravitational vertical. They point out the domination of gravitational force and
the visual horizon and the primary role of the vestibular system as an indicator
of the vertical direction.

From the practical point of view we need to establish a stable frame of ref-
erence (i.e. {WI}) to infer the correct spatial trajectory. This includes also the
correct initialization of the human body posture using hands and face position,
anthropometric data and projective geometry. Assuming a person to start his
interaction in a vertical body pose turns out to search and register the gravity
in the image.

Recent work of Lobo and Dias present the successful integration and calibra-
tion of visual and inertial data [24] and the detection of vertical features [25].
When the system is not accelerating, gravity provides a vertical reference for the
camera system frame of reference given by the sensed acceleration.

3.4 The Human Tracking Module

In brief our Human Tracking Module takes the images from the Visual-Inertial
Sensor and creates three image trajectories from the head and both hands. As
shown in fig. 5 the module contains of four mayor parts. The process starts with
the detection if any human is present in the scene. We use a face detection module
based on haar-like features as described in [26]]. In case a face is detected we try
to recognize the person if belonging to the group of “godfathers” or not. This
second part is based on eigen-objects and PCA as described in [27]. If the persons
is identified as a “godfather”. The third part will establish the communication
by activating the skin color detection an the tracking of the hands. For the skin
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detection and segmentation we use the CAMshift algorithm presented in [28].
To deal with hands and head occlusion we predict the positions and velocities
based on a Kalman-filter [29].

4 Results

Figure 6 compares the tracking results from our Human Tracking Module (left)
with a 3D magnetic tracker (miniBird, right). In the diagrams the image coor-
dinate system is placed next to the ZY-plane of the miniBird. The ZY-plane of
the miniBird reflects a projection of the motion trajectory on the vertical plane
πvert (see fig. 2). It can be seen, that the trajectories from our human tracking
module fits well with the ground truth data from miniBird. Furthermore the
gestures of Set 1 can be well distinguished from each other and due to their
repetitive character a robust recognition should be possible. Though, our dia-
grams show mainly the left hand trajectories they also contain the head and
right hand trajectories. Using the gestures of Set 2 we have the possibility (after
the projection in 3D space) to indicate the pointing direction by generating a
ray from the head to the hand position. Example b) shows a difficult situation
for our Human Tracking Module. The gesture “Speak louder” is represented by
moving the hand to the ear. Our skin detector melts the head and the hand
together interpreting it as one (bigger) head. The prediction of the hand does
not cover the fact that the hand is still and predicts a trajectory above the head.

Fig. 6. Comparison of tracking results. a) Big Circle b) Speak louder.

5 Discussion and Conclusions

This article presented a framework towards a human-robot interaction based
on gesture recognition. We presented the main architecture consisting of five
hierarchical organized parts (i.e. Perception, Motor/Model, Impression, Inter-
pretation and Knowledge Level). We introduced the guide robot “Nicole” to
place our system in an embodied context. We sketched to novel approaches to
represent human motion (i.e. Marionette Space and Labananalysis). We defined
a gesture vocabulary organized in three sets (i.e. Cohens Gesture Lexicon, Point-
ing Gestures and Other Gestures). We presented experimental results from our
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Human Tracking Module to show the feasibility of our gesture vocabulary and
its representation in the vertical plane.

The future work will concerned with presenting results on 3D trajectory
estimation and inertial sensor integration. To prove the benefits of a feature
vector in the Marionette Control Space. Implement the Labananalysis module
to produce Effort parameters.
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