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Abstract. This paper presents a framework for gesture recognition by
modeling a system based on Dynamic Bayesian Networks (DBNs) from
a Marionette point of view. To incorporate human qualities like anticipa-
tion and empathy inside the perception system of a social robot remains,
so far an open issue. It is our goal to search for ways of implementation
and test the feasibility. Towards this end we started the development
of the guide robot ’Nicole’ equipped with a monocular camera and an
inertial sensor to observe its environment. The context of interaction is
a person performing gestures and ’Nicole’ reacting by means of audio
output and motion. In this paper we present a solution to the gesture
recognition task based on Dynamic Bayesian Network (DBN). We show
that using a DBN is a human-like concept of recognizing gestures that
encompass the quality of anticipation through the concept of prediction
and update. A novel approach is used by incorporating a marionette
model in the DBN as a trade-off between simple constant acceleration
models and complex articulated models.

1 Introduction

Nowadays, robotics has reached a technological level that provides a huge number
of input and output modalities. The future higher level cognitive systems must
benefit from the technological advances and offer an effortless and intuitive way
of interacting with a robot to its human counterpart.

Our solution to this problem is a cognitive system for a robot that mimics
human perception in two aspects: Anticipation, the ability to predict future sit-
uations in a world physically in motion and empathy, the ability to estimate the
intentions of our populated environment. Towards this end we define a library of
intuitive and useful gestures divided in three categories, including some earlier
sources of research [1], [2]. We present a system that extracts features of gestures
from a monocular camera image by detecting and markerless tracking of hands
and face. Our approach also incorporates face recognition to take advantage
of a person’s ”individual” gesture pattern. We contribute a novel probabilistic
model using the framework of Dynamic Bayesian Networks (DBNs) to anticipate
the gesture given the observed features. DBNs offer combinations of the whole
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family of probabilistic tools like Hidden Markov Models (HMMs), Kalman Fil-
ters and Particle Filters and their various modifications. Though, DBNs can be
used for all kind of system modeling (e.g. navigation, speech recognition, etc.)
they are specially suited for cognitive processes. The process of prediction and
update represents an intrinsic implementation of the mental concept of anticipa-
tion. Furthermore these methods have already proven their usability in gesture
recognition [3,4]. To enhance the quality of inference and learning we introduce
the marionette concept as a physical model of human motion to support the
probabilistic model. The concept which was inspired by research on human be-
havior [5] represents a trade-off between simple constant acceleration models and
complex articulated models.

The development of our guide robot named ’Nicole’ will receive this systems
as a part of it’s abilities to interact. Nicole will be able to guide visitors through
our Lab, talk about the research and react on gestures performed by people
recognized as ”godfathers”. We will be able to test several human-robot inter-
action scenarios to answer and probably also raise some questions related with
”social robots”. Some examples of successful development of guide robots is the
development of a family of robot guides serving at the Carnegie Museum of
Natural History as docents for five years [6]. The autonomous tour-guide/tutor
robot RHINO which was deployed in the ”Deutsches Museum Bonn” in 1997 [7]
and the mobile robot Robox which operated at the Swiss National Exhibition
Expo02 [8].

Section 2 introduces a concept to analysis gestures and the definition of a ges-
ture library. Section 3 introduces the marionette model and the computational
solution for gesture interpretation using a Hidden-Markov-Model framework.
Section 4 presents the architecture of the guide robot ’Nicole’ and aspects of
its implementation. Section 5 explains the process of feature extraction and the
techniques used. Section 6 shows how the features are registered in a gesture
plane by fusing camera and inertial data. Section 7 shows results on the regis-
tration of gesture trajectories. Section 8 closes with a discussion and an outlook
for future work.

2 Means of Interaction – Gesture Libraries

The communication from the human to the robot will be based on hand move-
ments conveying useful information, i.e. hand gestures. This raises two questions
to be answered: 1. What makes a movement to appear as a gesture? 2. What
is a useful set of gestures? To tackle the first question we start with a concept
proposed for human motion analysis. As a gesture is created by motion we need
to find an appropriate description for the spatio-temporal behavior. Our aim is
to define ’atomic’ segments of gestures which we can relate to our observation
sequence.

A suitable model is to divide the gesture into three phases [9]: 1. Pre-stroke
(preparation), 2. Stroke and 3. Post-stroke (retraction). Figure 2 a) - c) shows an
example for a deictic gesture (i.e. pointing gesture). Gesture recognition systems
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Table 1. Gesture-Action Mapping

Gesture Action Category
Circle Turn 360 1

Horizontal Line Sway left and right 1
Hand next to the ear Speak louder 1
Finger over the mouth Speak lower voice 1
Oscillation to the front Go back 1

Oscillation over shoulder Come close 1
Oscillating left or right Go left or right 1

Waving Bye-Bye Call\Send Away Nicole 3
Pointing gesture Look There 2

Oscillating pointing gesture Go There 1

have often adopted this temporal composition [3, 4]. In [10] the phases are called
’phonemes’ following the terms used in phonology to describe the principal sounds
in human languages.

The second question may be expressed in a more general way as: What kind of
knowledge about the world do I need to provide to the robot? The set of gestures
need to be rich enough to trigger a certain variety of actions and the gestures
must be intuitively and effortlessly performed by the human. The ’Nicole’ dic-
tionary maps a set of gestures into actions to be executed (see table 1). We have
divided the set of gestures into three categories: 1. Control Gestures, 2. Pointing
Gestures and 3. Social Gestures. An representative example for each gesture is
shown in fig. 7. Category 1 are gestures that are used to control movements
and audio output like ’move to the left’. Such sets have already been used in the
past to control actuated mechanisms [1]. Category 2 are deictic gestures that are
meant to shift Nicole’s focus of attention to a certain direction. Pointing gestures
have already been used in the past to search and find objects in an image [2].
The last category covers useful social gestures like ’Waving Bye-Bye’.

3 Gesture Recognition Using Dynamic Bayes Nets

Our goal is to design a probabilistic model using the framework of Dynamic
Bayesian Networks (DBNs) to anticipate the gesture given the observed fea-
tures. DBNs offer combinations of the whole family of probabilistic tools like
Hidden Markov Models (HMMs), Kalman Filters and Particle Filters and their
various modifications. Though, DBNs can be used for all kind of system modeling
(e.g. navigation, speech recognition, etc.) they are specially suited for cognitive
processes. The process of prediction and update represents an intrinsic imple-
mentation of the mental concept of anticipation. In general, modeling offers the
opportunity to reach a modest dimensionality of the parameter space that de-
scribes the human motion. Bayesian models in particular also maintain an intu-
itive approach which can also be understood by non-engineers [11]. Furthermore
these methods have already proven their usability in gesture recognition [3, 4].
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A Bayesian Net represents the knowledge of an agent about his environment.
The definition of states and the (in-)dependencies among each other provides the
ground for probabilistic reasoning. If probabilistic reasoning over time is needed
the concept of Dynamic Bayesian Nets (DBNs) can be applied. DBNs are often
interpreted as a generalization of Hidden Markov Models (HMMS) and Kalman
filter networks. The latter also is sometimes referred as Linear Dynamic Systems
(LDSs). In designing a DBN to solve a particular task one needs to address
the following three issues, preferably in the stated sequence: 1. Topology and
conditional probabilities of the network. 2. Method of inference and 3. Learning
the parameters.

3.1 Hidden Markov Model (HMM Framework)

A Hidden Markov Model (HMM) is a DBN with a single discrete state variable
Xt and a single discrete evidence variable Et in each slice as shown in fig. 1.
With more than one discrete state variable per slice one can combine all the

Fig. 1. Typical HMM-Topology

state variables to a single state variable whose numbers are possible tuples of
values of the of the individual state variables. The basic properties of the HMM
framework:

– The time slices are represented by t
– The same subset of variables is observable in each time slice.
– Xt: Set of unobservable state variables at time t
– Et: Set of observable evidence variables at time t
– et: Observation at time t
– Fixed finite interval labeled by integers State sequence starts at t = 0
– Evidence starts arriving at t = 1
– Xa:b denotes the sequence of the set of variables X from slice a to b
– The system is modeled by a First-order Markov Process

Give these assumption we can state the complete joint distribution:

P(X0, X1, ..., Xt, E1, ..., Et) = P(X0)
t∏

i=1

P(Xi|Xi−1)P(Ei|Xi) (1)

Equation 1 is the central to our probabilistic reasoning because any probabilistic
query can be answered from the full joint distribution. Section 3.3 will present
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this inference more deeply. To express this more elegantly and to implement the
basic algorithms we will now adopt the use of matrix notations, taking advantage
of the restricted structure of HMMs.

Let the state variable Xt have values denoted by integers 1, ...S, where S is the
number of possible states. The transition model (see fig. 1) P(Xt+1|Xt) becomes
a S × S matrix T , where

Tij = P (Xt = j|Xt−1 = i)

That is Tij is the probability of a transition from state i to j.
The sensor model describes how the evidence variable (sensor) are affected

by the actual state. It can be expressed as a diagonal matrix Ot given by the
diagonal entries P (et|Xt = i) where et reflects the known value of the evidence
variable Et.

The primary question concerning the design of the topology is the number of
states. As we mentioned earlier a suitable model is that of gesture strokes. A
simple tree state HMM with state transitions to itself was suggested by [3] to
recognize a pointing gesture.

Fig. 2. Gesture phases: a) Pre-Stroke. b) Stroke. c) Post-Stroke. d) Marionette gesture
produced by operating a string.

3.2 Framework for the Marionette System

Trying to model all neural and muscular events that makes a human perform a
particular gesture still remains computationally expensive. Marionette systems
resemble the concept of human motion by controlling the articulation of rigid
parts through pulling and releasing strings. Some examples for the attention
puppetry receives from the research community are given in [12]. We use a
Hidden Markov Model with hidden states variables Xt to model the marionette.
The dimension of a particular state variable is equal to the number of strings
attached to the (virtual-)marionette. In the case of full body motion a model
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with 10 strings as shown in fig. 2 can be used. In the case of gesture recognition
we can simplify the model to have three strings, one for each hand and head.
Furthermore we have specified the values to be discrete and having the values
Pull, Hold or Release.

3.3 Inference and Decoding

Inference in temporal models covers filtering, prediction, smoothing and find-
ing the most likely explanation. The basic task for any probabilistic inference is
to compute the posterior probability distribution for a set of query variables
given some values for a set of evidence variables. Any conditional probabil-
ity can be computed by summing terms from the full joint distribution (see
equation 1). The full joint distribution specifies the probability of every atomic
event.

The forward algorithm can be used for filtering, that is computing the poste-
rior distribution over the current state, given all evidence to date. The process
of recursive estimation is to compute the result for t + 1 from the new evidence
et+1, given the result of filtering up to time t:

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)
∑

xt

P(Xt+1|xt)P (xt|e1:t) (2)

Using the matrix notation and expressing the filtered estimate P(Xt|e1:t) as a
message f1:t propagated forward along the sequence we can write the forward
equation as:

f1:t+1 = αOt+1T�f1:t (3)

Finding the most likely explanation, sometimes also called decoding, is the
task of, given a sequence of observations, finding the sequence of states that has
most likely generated those observations. The solution can be formulated in a
recursive manner shown in equation 4

max
x1···xt

P(x1, · · · ,xt,Xt+1|e1:t+1)

= αP(et+1|Xt+1)max
xt

(
P(Xt+1|xt max

x1···xt−1
P (x1, · · · ,xt−1,xt|e1:t)

) (4)

Equation 4 is identical to equation 2 and 3 except that the message f1:t is replaced
by the message:

m1:t = max
x1···xt−1

P (x1, · · · ,xt−1,xt|e1:t)

and the summation over xt is replaced by a maximization over xt.
Thinking about each sequence as a path through a graph whose nodes are

possible states at each time step. The equation expresses the recursive relation-
ship between the most likely path to each state xt+1 and the most likely path
to each state xt. The algorithm is know as the Viterbi algorithm.
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Fig. 3. Architecture of the GP-System

4 The Gesture Perception (GP)-System

In [12] the complete system architecture of the guide robot ”Nicole” was pre-
sented as well as the architecture of the GP-System. To give a brief overview
we will divide the system in three levels of gesture perception (see fig. 3). The
processing starts inside the Observation Level with the visual-inertial sensor
dealing with image capture and inertial data registration. The image data is
used by the Human (Motion) Tracking module to perform face detection, face
recognition, skin-color detection and object tracking. The Projection Model mod-
ule registers the 2D Image trajectory of hands and face in a 3D gesture plane.
The features extracted in the Observation Level will be used by the Recognition
Level. The module will recognize a gesture from the known vocabulary through
the transformation of the observed features to marionette states. The following
Interaction Level will initiate actions like speech output or motion commands
according to the recognized gesture.

5 Feature Extraction – The Human Tracking Module

The Human (Motion) Tracking Module has been described in [12]. In brief it
takes the images from the Visual-Inertial Sensor and creates three image tra-
jectories from the head and both hands. As shown in fig. 3 the module contains of
four major parts. The process starts with the detection if any human is present
in the scene. We use a face detection module based on haar-like features as
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described in [13], [14] and [15]. If a face is detected the systems checks if the
person belongs to the group of people (godfathers) from which Nicole will ac-
cept commands. This second part is dealing with face recognition and based on
eigen-objects and PCA as described in [16] and [17]. If the persons is identified as
a ”godfather” then in the third part the skin color detection and the tracking of
the hands will be activated. For the skin detection and segmentation we use the
CAMshift algorithm presented in [18]. To deal with hands and head occlusion we
predict the positions and velocities based on a Kalman-filter [19]. Figure 4 shows
the Human Motion Tracking Interface and the resulting trajectories performing
a pointing gesture.

Fig. 4. Human Motion Tracking: a) Interface, b) Image trajectories

6 Feature Registration – The Gesture Plane Projection

Taking the features directly from the image will produce trajectories that are
influenced by both the camera’s parameters and its orientation in space. The
necessity to tilt the camera for adjusting to the height of a person and not being
restricted to leveled ground is the reason to register the extracted features in a
frame of reference aligned with the gravity. We start by defining the reference
frame {WI} at the point of intersection of the vertical body plane πvert, the
(mid)sagittal plane πsag and the ground plane πgrd shown in Fig. 5 c). Here, we
assume that the ground plane πgrd and the horizontal plane πhoriz are identical.
In general we define πhoriz as always vertical to the gravity vector g the ground
plane might have a normal vector different from g.

Any generic 3-D feature point F = [X Y Z]� and its corresponding projec-
tion p = [u v]� on an image-plane can be mathematically related through the
projection matrix A using projective geometry and the concept of homogeneous
coordinates p = AF. Matrix A can be expressed by parameters of the projective
finite camera model, as stated in [20].

A = C
[
{C}R{WI} {C}−→t {WI}

]
(5)

Where C is the camera’s calibration matrix, more frequently known as the intrin-
sic parameters matrix, while the camera’s extrinsic parameters are represented
by the rotation orthogonal matrix R and the translation vector t that relates
the chosen {WI} to the camera frame.
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Fig. 5. a) Pointing gesture b) Gesture trajectory c) Different camera perspectives and
the Gesture plane

Forming a 3 × 3 matrix by separating the fourth column of matrix A3×4 it is
easy to show that using the row vectors a1, a2 and a3 present us with a solution
called the projection or projecting line, represented by equation (6) [21].

−→n = (a1 − ua3) × (a2 − va3) (6)

This relation indicates that all 3-D points on the projecting line correspond to the
same projection point on the image-plane. To establish an unique correspondence
between the 3D point and its projection on the image-plane we restrict the locus
of the 3-D points to lie on a plane πgestP̃ = 0. We call πgest which is parallel
to πvert the gesture plane. One can think of this as if the person would draw all
the gestures with his hands on a virtual blackboard (see fig. 5).

6.1 The Visual-Inertial Sensor

Just like humans [22, 23] use the vestibular system to benefit from the fusion
of vision and gravity our system will integrate camera and inertial sensory data
to solve the problem of perspective distortion. Recent work of Lobo and Dias
present the successful integration and calibration of visual and inertial data [24]
and the detection of vertical features [25]. When the system is not accelerating,
gravity provides a vertical reference for the camera system frame of reference
given by

n̂ =
a

‖a‖′ (7)

where a is the sensed acceleration, in this case the reactive (upward) force to
gravity.

The publicly available Matlab toolbox for calibration of camera and inertial
sensor data [26] provides us with the possibility to undistort our image trajectory
and project it on the vertical plane πvert. Figure 6 shows the result of a camera
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Fig. 6. Results of the calibration process: a) Calibration Set-up, b) Calibration Result
(Unit Sphere projection)

calibration process. The calibration target is a checkerboard placed static in the
scene while the camera-inertial system takes data from different perspectives.
After successful camera calibration we are able to correct the distortion of the
trajectory using the gravity normal.

7 Results and Discussion

Figure 7 shows the tracking results from the Human Motion Tracking Inter-
face for nine gestures from the three categories. For each gesture it shows a
representative frame from the image sequence, the image trajectory and its reg-
istration in the gesture plane the 3D trajectory was taken simultaneously with
a magnetic tracker (miniBird). This article presented a framework towards a
human-robot interaction based on gesture recognition. We presented a Hidden-
Markov-Model based framework for gesture recognition that incorporates a novel
concept, namely the marionette model. We showed experimental results for fea-
ture extraction from our Human Tracking Module and feature registration using
visual-inertial senor data.

Fig. 7. (a) to (d) Command Gestures. (e) to (f) Pointing Gestures. (g) to (i) Social
Gestures.
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8 Conclusions

The future work will be concerned with extension of the Dynamic Bayesian Net-
work by incorporating a Kalman filter. During a learning phase the system will
estimate the parameters of the DBN from an observed image sequence. The
probability of a recognized person will be included as another evidence for the
recognition process. Furthermore the want to analyze the ”expression” of a ges-
ture (e.g. ”a sudden movement without strength and particular direction”). We
will use studies on human motion known as Labananalysis which defines entities
called Effort parameters to measure the expressiveness and a notational system
called Labanotation. Again a bayesian approach will be used for implementa-
tion. Finally, we want to develop the capability to learn following a Learning by
Imitation approach.
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