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We present as a contribution to the field of human-machine interaction a system that analyzes human
movements online, based on the concept of Laban Movement Analysis (LMA). The implementation uses
a Bayesian model for learning and classification, while the results are presented for the application to
gesture recognition. Nowadays technology offers an incredible number of applications to be used in
human-machine interaction. Still, it is difficult to find implemented cognitive processes that benefit
from those possibilities. Future approaches must offer to the user an effortless and intuitive way of
interaction. We present the Laban Movement Analysis as a concept to identify useful features of human
movements to classify human actions. The movements are extracted using both, vision and magnetic
tracker. The descriptor opens possibilities towards expressiveness and emotional content. To solve the
problem of classification we use the Bayesian framework as it offers an intuitive approach to learning
and classification. It also provides the possibility to anticipate the performed action given the observed
features. We present results of our system through its embodiment in the social robot ’Nicole’ in the
context of a person performing gestures and 'Nicole’ reacting by means of audio output and robot
movement.
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Nowadays, robotics has reached a technological
level that provides a huge number of input and
output modalities. Apart from industrial robots,
also social robots have emerged from the univer-
sities to companies as products to be sold. The

commercial success of social robots implies that 'E;':grm
the available technology can be both, reliable and k

cost efficient. Surprisingly, higher level cognitive
systems that could benefit from the technological
advances in the context of human-robot interac- ] ) o
tion are still rare. Future approaches must offer ~ nieff and Lewis 1980) as a way to describe inten-
an effortless and intuitive way of interacting with ~ tional content and expressiveness of a human body
a robot to its human counterpart. One can think  movement. ‘Two major components of LMA (i.e.

Figure 1: Nicole in position to interact.

of the problem as a scenario where a robot is ob- Space and Effort) are described in detail. We show
serving the movement of a human and is acting the technical realization of LMA for the cognitive
according to the extracted information (see fig. 1). ~ System of the embodied agent which is based on a

To achieve this interaction we need to extract the  Probabilistic (Bayesian) framework and a system

information contained in the observed movement  for tracking of human movements. The system uses
and relate a appropriate robot action to it. both a magnetic tracker and a visual tracker. The

visual tracker extracts the movement-features of a
human actor from a series of images taken by a sin-
gle camera. The hands and the face of the actor are
detected and tracked automatically without using
a special device (markers) (Rett and Dias 2006).

Our ultimate goal is to provide the robot with
a cognitive system that mimics human perception
in terms of anticipation and empathy. Towards the
latter requirement this article will present the con-
cept of Laban Movement Analysis (LMA) (Barte-



This work presents the Bayesian approach to LMA
through the problem of learning and classification,
also treating the system’s online characteristic of
anticipation. The probabilistic model anticipates
the gesture given the observed features using the
Bayesian framework. The system has been imple-
mented in our social robot, 'Nicole’ to test several
human-robot interaction scenarios (e.g. playing).

If the perceptual system of a robot is based
on vision, interaction will involve wvisual human
motion analysis. The ability to recognize humans
and their activities by vision is key for a ma-
chine to interact intelligently and effortlessly with
a human-inhabited environment (Gavrila 1999).
Several surveys on visual analysis of human move-
ment have already presented a general framework
to tackle this problem (Aggarwal and Cai 1999),
(Gavrila 1999), (Pentland 2000) and (Moeslund
and Granum 2001) usually emphasizing the three
main problems: 1. Feature Extraction, 2. Feature
Correspondence and 3. High Level Processing. One
area of high level analysis is that of gesture recog-
nition applied to control some sort of devices. In
(Pavlovic 1999) DBNs were used to recognize a
set of eleven hand gestures to manipulate a vir-
tual display shown on a projection screen . Surveys
specialized on gesture interfaces along the last ten
years reflect the development and achievements
(Pavlovic, Sharma, and Huang 1997), (Moeslund
and Norgard 2003). The most recent survey (Moes-
lund, Hilton, and Kruger 2006) is once more in-
cluded in the broader context of human motion
analysis emphasizing, once more the dependencies
between low level features and high level analysis.

Section 2 presents the concept of LMA and its
two major components (i.e. Spaceand Effort). Sec-
tion 3 presents the system for tracking of hu-
man movements. Section 4 describes the Bayesian
framework that is used to learn and classify human
movements and presents the. Section 5 presents
the results. Section 6 closes with a discussion and
an outlook for future works.

2 Laban Movement Analysis (LMA)

Laban Movement Analysis (LMA) is a method for
observing, describing, notating, and interpreting
human movement. It was developed by a German
named Rudolf Laban (1879 1958), who is widely
regarded as a pioneer of European modern dance
and theorist of movement education (Zhao 2002).
While being widely applied to studies of dance and
application to physical and mental therapy (Barte-
nieff and Lewis 1980), it has found little appli-
cation in the engineering domain. Most notably
the group of Norman Badler, who recently pro-
posed a computational model of gesture acquisi-

Sudden

Strong

A ship

Body Effort

kinematic non-kinematic

Indirect Direct

Space

Weight

Sustained

Figure 2: Major components of LMA with the bipolar
Effort factors as a 4-D space

tion and synthesis to learn motion qualities from
live performance (Zhao and Badler 2005). Also re-
cently, researchers from neuroscience stated that
LMA is quite useful to describe certain effects on
the movements of animals and humans. In (Foroud
and Whishaw 2006) LMA was adapted to capture
the kinematic and non-kinematic aspects of move-
ment in a reach-for-food task by human patients
whose movements had been affected by stroke.

The theory of LMA treats five major compo-
nents shown in fig. 2 of which we adopted three.
Space treats the spatial extent of the mover’s Kine-
sphere (often interpreted as reach-space) and what
form is being revealed by the spatial pathways
of the movement. Effort deals with the dynamic
qualities of the movement and the inner attitude
towards using energy. Like suggested in (Foroud
and Whishaw 2006) we have grouped Body and
Space as kinematic features describing changes in
the spatial-temporal body relations, while Shape
and Effort are part of the non-kinematic features
contributing to the qualitative aspects of the move-
ment.

2.1 Space

The Space component addresses what form is be-
ing revealed by the spatial pathways of the move-
ment. The actor is actually ”carving shapes in
space” (Bartenieff and Lewis 1980). Space spec-
ifies different entities to express movements in a
frame of reference determined by the body of the
actor. Thus, all of the presented measures are
relative to the anthropometry of the actor. The
concepts differ in the complexity of expressive-
ness and dimensionality but are all of them re-
producible in the 3-D Cartesian system. The most
important ones shown in fig. 3 are: 1) The Lev-
els of Space - referring to the height of a posi-
tion, 2) The Basic Directions - 26 target points
where the movement is aiming at, 3) The Three
Azes - Vertical, horizontal and sagittal axis, 4)
The Three Planes - Door Plane m,, Table plane
m, and the Wheel Plane g each one lying in
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Figure 3: The concepts of a) Levels of Space, Basic Di-
rections, Three Axes, and b) Three Planes and Icosa-
hedron

two of the axes, and 5) The Icosahedron - used
as Kinespheric Scaffolding. The Kinesphere de-
scribes the space of farthest reaches in which the
movements take place. Levels and Directions can
also be found as symbols in modern-day Labano-
tation (Bartenieff and Lewis 1980). Labanotation
direction symbols encode a position-based con-
cept of space. Recently, Longstaff (Longstaff 2001)
has translated an earlier concept of Laban which
is based on lines of motion rather than points
in space into modern-day Labanotation. Longstaff
coined the expression Vector Symbols to empha-
size that they are not attached to a certain point
in space. The 38 Vector Symbols are organized
according to Prototypes and Deflections. The 14
Prototypes divide the Cartesian coordinate system
into movements along only one dimension (Pure
Dimensional Movements) and movements along
lines that are equally stressed in all three dimen-
sions (Pure Diagonal Movements) as shown in fig.
3 a). Longstaff suggests that the Prototypes give
idealized concepts for labeling and remembering
spatial orientations. The Vector Symbols are rem-
iniscent of a popular concept from neuroscience,
named preferred directions, which are the direc-
tions that trigger the strongest response from mo-
tion encoding cells in visual area MT of a monkey
(Pouget, Dayan, and Zemel 2000).

2.2  Effort

The Effort component consists of four motion fac-
tors: Space, Weight, Time, and Flow. As each fac-
tor is bipolar and can have values between two
extremities one can think of the Effort component
as a 4-D space as shown in fig. 2. A movement
(M) can be described by its location in the Ef-
fort-space. Exemplary movements where a certain
Effort-value is predominant are given in table 1. It
is important to remember, that a movement blends
during each phase all four Effort-value. Most of the
human movements have two or three Effort-values
prominently high. In fact it, seems difficult even
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Figure 4: The components and the frames of reference
for tracking human movements.

for a trained Laban performer (i.e. Laban notator)
to perform single-quality movements (Zhao 2002).

3 Tracking of human movements

For the tracking of human movements we use sen-
sory data from a camera, which is mounted on
our social robot, Nicole and a magnetic tracker as
shown in fig. 4. From the camera we collect 2-D
position data of the hands and head with 15Hz.
The magnetic tracker produces 3-D position and
orientation data with 50Hz for each sensor. The
number of sensors and their location depends on
the performed action (e.g three sensors on hands
and head for gestures). We have created a database
of human movements, called HID-Human Interac-
tion Database which is publicly accessible through
the internet (Rett, Boussier, Sousa, Neves, Faria,
and Dias 2007). HID is organized in three cate-
gories of movements: 1. Gestures (e.g waving bye-
bye), 2. Expressive movements in terms of LMA as
presented in tab. 1 (e.g. performing a punch) and
3. Manipulatory movements performing reaching,
grasping and placing of objects (e.g. drinking from
a cup). Figure 4 indicates some of the frames of
references involved: The camera referential C' in
which the image is defined, the inertial referen-
tial I allowing us to register the image data in the
vertical and the robot referential R which defines
the position and orientation of the visual system
relative to some world coordinate system W. In
the current situation the frame of reference of the

Effort Movement

Space Direct Pointing gesture

- Indirect Waving away bugs

Weight Strong Punching,

- Light Dabbing paint on a canvas
Time Sudden  Swatting a fly

- Sustained Stretching to yawn

Flow Bound Moving in slow motion

- Free Waving wildly

Table 1: Effort qualities and exemplary movements
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Figure 5: Tracking of hands movement. a) Sample im-
ages b) Data from the magnetic tracker c) ... and the
vision tracker

world W coincides with the on of the magnetic
tracker M and the one we contribute to the hu-
man H.

3.1 Tracking using 6-DoF magnetic tracker

Using a 6-DoF magnetic tracker provides 3-D po-
sition data with a sufficiently high accuracy and
speed. We use a Polhemus Liberty system with
sensors attached to several body parts and ob-
jects. From the tracker data set of features is cal-
culated and related to the Laban Movement Pa-
rameters (LMP). Figure 5 a) shows some sample
images from the expressive movement ” Stretching
to yawn” and in fig. 5 b) the trajectories for both
hands. The tracker data is used to learn the de-
pendencies of the features from the LMPs. Sub-
sets (e.g. 2-D vertical plane) are used to test the
expressiveness in lower dimensionality like vision.

3.2 Tracking using vision

Using cameras as the basic input modality for a
robot provides the highest degree of freedom to
the human actor but also poses the biggest chal-
lenge to the functionality of detecting and tracking
of human movements. To collect the data we use
the gesture perception system (GP-System) (Rett
and Dias 2005) of our social robot Nicole. The
system performs skin-color detection and object
tracking based on the CAMshift algorithm pre-
sented in (Bradski 1998). From the position data
the displacement vectors dP between each frame
are calculated. The spatial concept of Laban’s Vec-
tor Symbols is implemented by defining a finite
number of discrete values for the direction and

calculating what we call Vector Atoms or simply
Atoms A.
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Figure 6: a) Bayesian Net for the gesture model b)
Learned Table P(A|GI_avg) for gesture 'Bye-Bye’.

4 Bayesian Framework for Movement Classifica-
tion

The classification of human movements is done
with a probabilistic model using a Bayesian frame-
work. The Bayesian framework offers a broad
range of possible models (HMMs etc.) and has
proven successful in building computational the-
ories for perception and sensorimotor control of
the human brain (Knill and Pouget 2004). These
models have already shown their usability in ges-
ture recognition (Starner 1995; Pavlovic 1999).

The model for Laban Space uses as input (evi-
dences) the Atoms A. Our solution assumes that
the probability distribution for all possible values
of atom A given all possible gestures G and frames
I ;which is P(A|G, I) can be determined. As both,
the gestures and the frame index are discrete val-
ues we can express P(A|G, ) in form of a condi-
tional probability table. The probabilities can be
learned from training data using a certain num-
ber of atom-sequences for each gesture. A simple
approach is the one known as Histogram-learning.
It counts the number of different atom-values that
appear for a gestures along the frames. To over-
come the problem of assigning zero probabilities
to events that have not yet been observed an en-
hanced version often uses learning of a family of
Laplace-distributions. Currently we are using a ta-
ble that is of size 18 x 31 x 6, that is 18 discrete
values for the atom (9 for each hand), 31 frames
and 6 gestures. Figure 6 shows a fraction of the
table which is the 9 atoms of the right hand for
the first 11 frames and the Bye-Bye gesture.

It represents the 'fingerprint’ of the gesture pro-
totype for waving Bye-Bye. Knowing the gesture
we assume this sequence of distributions of the ran-
dom variable atom to extracted. The table repre-
sents an intuitive way to distinguish two gestures
from each other.

Applying Bayes rule we can compute the prob-
ability distribution for the gestures G given the
frame I and the atom A expressed as P(G|I, A),
which is the question the classification as based



upon. P(G) represents the prior probabilities for
the gestures. Assuming the the observed atoms are
independently and identically distributed (i.i.d.)
we can compute the probability that a certain
gesture has caused the whole sequence of atoms
P(ai.n|g,i1.,) by the product of the probabilities
for each frame. Where a;.,, represents the sequence
of n observed values for atom and ¢ a certain ges-
ture from all gestures G. The jth frame of a se-
quence of n frames is represented by ¢;. We are
able to express the probability of a gesture g that
might have caused the observed sequence of atoms
a1., in a recursive way. Assuming that each frame
a new observed atom arrives we can state and ex-
pressing the real-time behavior by using the index
t. We model the variance and mean speed of a per-
formance by a Gaussian distribution N (i_obs, o)
expressed the probability that an observed frame
i—obs maps to an average frame iavgP(i,bs|i,vg).

Our Bayesian model is shown in equation 1. We
see that the probability distribution of the gestures
G at time t + 1 knowing the observed atoms a
until t 4+ 1 is equal to the probability distribution
of GG at time t times the probabilities of the current
observed atom given the gestures G and frame 7 at
t + 1. The probability distribution of G for ¢t = 0
is the prior.

P(Gt+1 ’i1:t+17 al:t+1)

= P(G;) P(i-0bsii1|i-avgi1)P(a1|G, i)
(1)

We can likewise express our model in a Bayesian
Net shown in fig. 6. It shows the dependencies of
the above mentioned variables including the dis-
placement dP from the previous section. The rule
for classification is based on the highest probabil-
ity value above a minimum threshold, also known
as maximum a posteriori estimation (MAP).

5 Results and Discussion

For this experiment we have used 15 video se-
quences from each human actor for each of 6 dis-
tinct gestures as shown in table 2. Figure 7 illus-
trates how the gesture-hypothesizes, evolve as new
evidences (atoms) arrive taken from the perfor-
mance of a Bye-Bye gesture. After twelve frames

No. Gesture Hands  Level
1 Sagittal Waving  Two High
2 Waving to Left Two  Medium
3  Waving to Right Two  Medium
4  Waving Bye-Bye  One High
5 Pointing One High
6 Draw Circle One  Medium

Table 2: Characteristics of out gesture-set

the probabilities have converged to the correct
gesture-hypothesis (No. 4). After four frames the
probabilities of the two-hand gesture-hypothesis
have reached nearly zero. (No. 1, 2, and 3). Until
the sixth frame the probabilities of both High-Level
gestures grow (No. 4 and 5) indicating what is
called pre-stroke phase in gesture analysis (Rossini
2003). Conversely the probability of the Medium-
Level gesture (No. 6) drops slowly towards zero.
After the sixth frame the oscillating left-right
movement (and its associated atoms) makes the
probability of the Bye-Bye-gesture hypothesis rise
and the Pointing-NW-gesture hypothesis drop. A
similar behavior was revealed when the remaining
five gestures were performed. An unknown gesture,
i.e. an unknown sequence of atoms produced more
than one gesture-hypothesizes with a significant
probability.
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Figure 7: Probability evolution for a Bye-Bye gesture
input.

For the Bye-Bye gesture (see fig. 6) we can see,
that during the first frames the most likely atom to
be expected is the one that goes Up-Right (UR).
This is similar for the Pointing gesture (see fig. 8)
reflecting the already mentioned Pre-Stroke phase.
The number of atoms during Pre-Stroke also re-
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Figure 8: Learned Table P(A|GI_avg) for gesture
"Pointing NW’.

flect the Levels of Space in which the following
Stroke (Rossini 2003) will take place. In our ex-
ample we can distinguish the two gestures during



Stroke as the Bye-Bye gesture has a roughly equal
distribution along the line of oscillation (e.g. left-
right), while the Pointing gesture produces mainly
zero-motion atoms (O).

6 Conclusions and Future Works

This work presented the application of the Space
component of Laban Movement Analysis (LMA)
to the Human-Robot Interface of the social robot,
Nicole. It showed that trajectories of human move-
ments can be learned and recognized using the con-
cept of Vector Symbols. This work demonstrates
that the Bayesian approach for movement classifi-
cation provides a robust and reliable way to clas-
sify gestures in real-time. Using naive Bayesian
classification we are able to anticipate a gesture
from its beginning and can take decisions long be-
fore the performance has ended. We have shown
that through Bayesian Learning the system mem-
orizes learned data in an intuitive way which gives
the possibility to draw conclusions directly from
the look-up tables. In several trials the system was
successfully performing Human-Robot Interaction
with guests and visitors.

The next step will be the application of the Ef-
fort and Shape component of the LMA to Nicole.
Incorporating the dynamic qualities we hope to
classify also the emotional expression of a human
movement. For the future we aim to continue to
develop a social platform where the impact of im-
itation between a human and a machine can be
observed.
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