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Abstract— In this text, an unconventional paradigm for
robotic multisensory perception and action will be presented in
the form of a generalisation of a framework devised in previous
work by the authors, the Bayesian Volumetric Map (BVM). The
BVM, a log-spherical inference grid providing an egocentric
and probabilistic representation of spatial information, was
designed to bridge multisensory perception and actuation by
means of a unified framework. The underlying paradigm
represents a fundamental departure from traditional outlooks
on robotic perception and spatial reasoning, in that it embodies
a non-Cartesian and egocentric approach as opposed to the
conventional Cartesian and allocentric perspective.

I. INTRODUCTION

Sensor data are derived from physical entities, each of
which placed in precise locations in the observer’s surround-
ings. The most important and immediate associations that hu-
mans and other animals make when trying to make sense of
the incoming sensory data are precisely spatial associations,
since these generally have imminent significance.

On the other hand, humans and robots alike have to
deal with the unavoidable reality of sensory uncertainty.
Consider the following scenario – a stationary or moving
observer is presented with a dynamic 3D scene containing
several stationary and moving entities, probably generating
some kind of sound: how does this observer solve the
symbol grounding problem [1], while taking into account the
ambiguities and conflicts inherent to the perceptual process?

Natural evolution is currently believed to have imprinted
an integrated solution to these problems in the human brain:

1) Several authors (for example [2], [3]) have presented
evidence that the human perceptual system is supported
by two processing streams: a fast lane, that seems to
be associated to phylogenetically older brain sites, such
as those composing the visual dorsal stream, which are
committed to producing a quick egocentric description
of the environment in terms of where objects are placed
to support immediate action, postponing recognition
for later processing stages; and a slow lane, includ-
ing sites such as those composing the visual ventral
stream, which implement object recognition within an
allocentric frame of reference∗. Additionally, direction
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and distance in egocentric representations in fast pro-
cessing streams are believed to be separately specified
by the brain [4]. Considering distance in particular,
just-discriminable depth thresholds have been usually
plotted as a function of the log of distance from the
observer, with analogy to contrast sensitivity functions
based on Weber’s fraction [5].

2) Numerous other authors have presented research sup-
porting that the human brain, in particular in what
concerns perception, implements what seems to be a
probabilistic approach from the neural to the functional
level – see [6] for a detailed discussion on this matter.

In this paper, an unconventional bioinspired paradigm for
robotic multisensory perception and action based on the
aforementioned premises will be presented in the form of
a generalisation of a framework devised in previous work
[7], [8], [9], the Bayesian Volumetric Map (BVM). The
BVM, a log-spherical inference grid providing an egocentric
and probabilistic representation of spatial information, was
designed to bridge multisensory perception and actuation by
means of a unified framework.

II. THE BAYESIAN VOLUMETRIC MAP

A. Dense representation model of space using an egocentric,
log-spherical tesselation

The tesselation of the BVM is primarily defined by its
range of azimuth and elevation angles, and by its maximum
reach in distance ρMax, which in turn determines its log-
distance base through b = a

loga(ρMax−ρMin)
N , ∀a ∈ R, where

ρMin defines the egocentric gap, for a given number of
partitions N , chosen according to application requirements.
The BVM space is therefore effectively defined by

Y ≡ ] logb ρMin; logb ρMax]× ]θMin; θMax]× ]φMin;φMax] (1)

In practice, the BVM is parametrised so as to cover the full
angular range for azimuth and elevation. This configuration
virtually delimits a horopter for sensor fusion around the
egocentric origin {E}.

Each BVM cell is defined by two limiting log-distances,
logb ρmin and logb ρmax, two limiting azimuth angles, θmin
and θmax, and two limiting elevation angles, φmin and φmax,
through:

Y ⊃ C ≡ ] logb ρmin; logb ρmax]× ]θmin; θmax]× ]φmin;φmax] (2)



log

Fig. 1. The Bayesian Volumetric Map (BVM) referred to the egocentric
coordinate frame of a robotic active perception system [7]. Hardware and
motors were mounted within the scope of the Perception on Purpose (EC
project number FP6-IST-2004-027268) project, and sensors were installed
within the scope of the Bayesian Approach to Cognitive Systems project
(EC project number FP6-IST-027140).

where constant values for log-distance base b, and angular
ranges ∆θ = θmax − θmin and ∆φ = φmax − φmin, cho-
sen according to application resolution requirements, ensure
BVM grid regularity. Finally, each BVM cell is formally
indexed by the coordinates of its far corner, defined as
C = (logb ρmax, θmax, φmax).

The BVM spatial representation model is shown in Fig. 1
within the egocentric context of the IMPEP (Integrated
Multimodal Perception Experimental Platform), an active
robotic head fitted with multisensory capabilities, namely
a stereovision and binaural setup, used to experimentally
validate the framework in previous publications.

B. Inference grid model – the Bayesian Occupancy Filter

Perhaps the most successful probabilistic approach for
metric mapping has been the occupancy map or grid, first
introduced by Moravec and Elfes in their seminal work [10].
The state of each cell C in the grid maps is originally defined
by the authors as given by its occupancy, represented by
the binary random variable OC – there is either an object
partially or completely present within the spatial boundaries
of each cell, in which case the cell is said to be occupied,
a state denoted as [OC = 1], or the cell is empty, a
state denoted as [OC = 0]. If, instead of just occupancy,
more properties are added to the state, thereby forming a
random vector, the occupancy grid generalises to the notion
of inference grid.

Tay et al. [11] devised a version of an important extension
to the occupancy grid approach by applying a Bayesian
filter to capture the dynamics of object motion within the
environment being represented – the Bayesian Occupancy
Filter (BOF). These authors relaxed the common restriction
that objects remain static through time by introducing an
extra variable, VC , to the inference framework, encoding
the probability of (local) motion of an object occupying a
neighbouring cell in instant t − 1 to a particular reference
cell C in the current time instant t, thus propagating the
occupancy state from the former to the latter during that time

Fig. 2. Bayesian Occupancy Filter (BOF) diagram for the estimation of
the current cell state [7]. In this diagram, Z denotes a sensor measurement
(a single measurement is represented for simpler reading, with no loss of
generality), and OC and VC represent the occupancy and local motion states
of cell C (which, besides indexing a cell on the BVM, is also used as a
random variable within the model), respectively.

interval. VC therefore denotes the dynamics of the occupancy
of cell C, assuming a constant velocity model associated to
a quantified degree of plausibility – it is a vector signalling
local motion to this cell from its antecedents, discretised into
N + 1 possible cases for velocities ∈ V ≡ {v0, · · · , vN},
with v0 signalling that the most probable antecedent is C
itself, i.e. no motion between two consecutive time instants.
The authors managed to do this without compromising
the feasibility of exact inference inherent to the original
occupancy grid concept. The BOF model, supported by the
log-spherical configuration introduced earlier, represents the
basis of the BVM framework.

A diagram of the BOF in the context of the BVM is
presented on Fig. 2, including a general overview of the main
variables used by the framework – for more details on the
formal derivation of this model, please refer to [8].

III. BUILDING UP THE FRAMEWORK HIERARCHY

A. Developing perceptual models

Developing perceptual models for the BOF-BVM frame-
work involves defining observation models of the form

P (Zi | OC VC C) ≡
∑

GC∈GC

P (Zi | GC OC VC C), (3)

where GC ∈ GC ≡ ON−1 represents the state of all
cells in a subset comprising N cells of Y (including C),
excepting the state the cell of C itself. Random variable
Zi denotes an M -dimensional sensor reading from an arbi-
trary sensor, with a measurable space or support defined as
{“No Detection”}∪Z . Observation models must be defined
under the assumption that all Zi within a set of K (i ∈
1 . . .K) measurements taken at time t are conditionally
independent. These observation models can then be used as
probabilistic “subroutines” or “plug-ins” for the BOF-BVM
framework, and their respective estimates and uncertainty
combined explicitly and adequately.

Most models one might expect being used with the BOF-
BVM framework would be occupancy observation models,



which would specialise to P (Zi | OC C). There are two
particular forms of observation models within this subset we
suggest have particular importance and will cover most (if
not all) types of sensors to be used in a robotic perception
scenario: the beam model and the egocentric-related prob-
abilistic transfer function. The former, conceptually intro-
duced in [12], is generally used for projection-based sensors
or arrays of sensors, such as sonars, laser range-finders or
cameras, for which the notions of transparency/opacity and
occlusion are paramount in providing information on “empti-
ness” (i.e. [OC = 0]) – an example of such an observation
model can be found for a stereovision setup in [7]. The
latter is an adaptation of the head-related transfer function
(HRTF) concept commonly used to model auditory responses
to audible stimuli – a maximum likelihood estimation method
is applied to determine the free parameters of the observation
model for each cell by occupying it with an object capable
of generating a signal that can be read by the sensor – an
example of such a model can also be found in [7] for a
binaural setup. Additionally, observation models on motion
can also be used with the BOF-BVM framework, which
would then specialise to P (Zi | VC C) – these would be,
in fact, local independent motion estimation models.

The BOF-BVM is supposed to be used as the kernel of
the hierarchical model supported by the log-spherical repre-
sentation. However, the modeller is encouraged to extend the
framework and use it to perform inference through random
variables representing other perceptual properties besides the
occupancy state and its propagation.

B. Going beyond detection and the “fast lane” – proto-
objects

As with the human perceptual system, although postponed
at first, data association in the form of object recognition may
subsequently be performed supported by algorithms cluster-
ing neighbouring cells, such as presented in [11]. These,
in turn, provide a rough object detection and discrimination
process, allowing the formation of volatile perceptual units
called proto-objects – see [13], [14].

Proto-object representations can then be used to infer
percepts that relate to object identification/recognition (as in
the human visual ventral pathway, relating to the “what”
problem).

C. Developing models for actuation
Models for actuation may be hierarchically be superim-

posed on the perception framework, and goal-related proper-
ties may be assigned to random variables in order to prioritise
action – an example of this approach using the BOF-BVM
framework can be found in [8].

In the general case, however, a transformation between the
common BVM representation and effector space will be nec-
essary. This can be naturally performed using probabilistic
approaches – refer to [15] for an example.

IV. DISCUSSION

In this text, an unconventional paradigm for robotic multi-
sensory perception and action was presented in the form of a

generalisation of the Bayesian Volumetric Map framework.
Its egocentric approach deals with the geometry of fusion
in a natural fashion, in particular for the common case of
energy projection-based sensors (either in a passive or active
sense); on the other hand, spatial reasoning for actuation
benefits from a direct way to infer useful information such
as distance-to- or time-to-impact. Additionally, the proposed
spatial configuration confers two important advantages: (i)
a robustness advantage, since the spherical coordinate sys-
tem avoids unnecessary ray tracing and therefore prevents
undesired Moiré effects (in other words, aliasing); and (ii)
an efficiency advantage, since log-partitioning of distance
allows for the use of a lower tesselation resolution without
compromising any detail of nearer objects. Therefore, this
paper’s contribution is to make this framework accessible
to robotic perception system designers who would wish
to make use of its advantages. Proof-of-concept of this
paradigm has been presented in [7], its usefulness in bridging
perception and action demonstrated in [8], and its potential
for implementation using real-time exact inference through
parallel programming shown in [9].
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