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In this paper the problem of patrolling an environment with a dynamic team of robots is targeted. Lately, the interest
of the research community has been focused in the development of patrol strategies; however there is a deficit of
studies comparing such strategies, namely in terms of their performance and team scalability in different environments.
For this reason, an evaluation of five representative patrol approaches is presented in this article. Aiming to analyze
the performance, ability to scale and the behavior resulting from interactions between teammates, extensive realistic
simulation using ROS together with Stage was conducted. The metric used to compare the performance is the average
idleness of the topological environment (i.e. graph), that represents the area to patrol. The results presented help to identify
which strategies enable enhanced team scalability and which are the most suitable approaches given any environment,
supporting future research directions in the field.
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1. Introduction

In this work, the focus is laid on surveillance tasks using
multiple robots, which involve frequent visits to impor-
tant places of the environment. Consequently, the word
‘Patrolling’ is implicitly used in this sense.

The major motivation for studying this issue relates to its
spectrum of applicability in the context of security systems
and the potential to replace or assist human operators in dan-
gerous real-life scenarios, like mine clearing, rescue oper-
ations or surveillance, easing arduous and time-consuming
tasks and offering the possibility to relieve human beings,
enabling them to be occupied in nobler tasks like monitoring
the system from a safe location.

Cooperation among robots is one of the most decisive
issues in this context; since robots must efficiently work
together in order to improve the performance of the system
as a whole. In addition, multi-robot patrol is a challenging
problem, because agents must navigate autonomously, co-
ordinate their actions, be distributed in space and must be
independent of the number of robots and the environment’s
dimension.

This work presents a comparative study of five differ-
ent state-of-the-art patrolling strategies using distinct topo-
logical environments and different team sizes, in order to
analyze the performance and scalability of each approach.
The results herein presented extend previous work [1] by
adding an analysis of variance (ANOVA) and an analysis
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of the algorithms’ convergence time. Conclusions drawn
in this field of research may support the development of
future approaches not only in this domain but also in other
multi-robot applications.

The rest of this document is organized as follows. A brief
survey of the work previously done in the area is presented
in the next section. The problem is defined in the following
section and section 4 presents the patrolling strategies eval-
uated and compared in this work. The subsequent section
presents the motivation for the maps and simulator used. In
section 6, experimental results are presented and discussed.
Finally, the article ends with conclusions and future work
directions.

2. Related work

The existing algorithms in the literature for patrolling an en-
vironment with multiple mobile agents present many differ-
ences in terms of strategy, communication paradigm, coop-
eration scheme, performance evaluation, and other features.
They can be divided into pioneer methods;[2,3] graph the-
ory methods;[4–6] and alternative coordination methods.
[7–9]

Pioneer strategies include simple architectures with agents
with different capabilities that move in the environment
mostly looking for locations that have not been visited for
some time, aiming to maintain a high frequency of visits in
every place of the area.

© 2013 Taylor & Francis and The Robotics Society of Japan
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326 D. Portugal and R.P. Rocha

Graph theory strategies look for solutions of classical
problems like finding Hamilton cycles, graph partitioning
and others to assign efficient routes for the robot’s patrolling
missions. These strategies typically rely on a centralized
coordinator to calculate those routes.

Recently, many alternative coordination methods have
also been presented, aiming to solve the problem through
the usage of approaches that have presented good results
in multi-robot systems in general, like task allocation, rein-
forcement learning, negotiation mechanisms, and swarm-
based strategies.

A pioneer work was presented in [2], where several ar-
chitectures for multi-agent patrol were proposed. These ar-
chitectures have distinct agents’ behavior, perception, com-
munication paradigms, and decision-making. Additionally,
they have contributed with criteria to evaluate the perfor-
mance of the approaches based on the average and maxi-
mum idleness of the vertices of the graph that represents the
topological environment.

In [3], the architectures proposed by Machado were en-
hanced with advanced decision-making, based on both the
instantaneous idleness of vertices and the distance to them,
as well as with advanced path finding, which considers
distance (or cost) of the edges and the idleness of vertices in
the path towards a goal.Also, the tests were run on more and
distinct environment topologies, which was a strong limi-
tation of Machado’s work. Nonetheless, Almeida’s work
contains several simplifications that are overcome in this
article by using realistic simulations, as in [10], that consider
both the dynamic of robots and the actual time to measure
performance instead of using iterative simulation cycles.

Approaches based on graph theory and operational re-
search (O.R.) commonly address the patrolling problem by
computing minimal-cost cycles that visit all points in the
target area. The agents are employed uniformly along the
path and follow the same patrol route over and over again.
For example, [4] presented an area patrol algorithm based
on the computation of Hamilton cycles that guarantees that
each point in the target area is covered at the same optimal
frequency. On the other hand, [5] described a cyclic al-
gorithm based on heuristics that approximates a travelling
salesman problem (TSP) cycle on top of the topological
representation of the environment.

These strategies are robust, being independent of the
number of robots and are recognized by the good results
that they achieve in terms of visit frequency. However, they
have a deterministic nature, which means that an intelligent
intruder that apprehends the patrolling scheme may take
advantage of the idle time between passages of robots in
some points of the area.

In [6], the multilevel subgraph patrolling (MSP) Algo-
rithm is described. In this approach, balanced graph parti-
tioning is projected in order to assign different patrolling
regions (subgraphs) of the environment for each mobile
agent. The algorithm subsequently computes effective paths

for every robot using classical graph theory approaches.
Results confirmed the flexible and high-performance nature
of the approach, which benefits from being non-redundant
and not needing inter-agent communication.

Some alternative methods have been presented through-
out the years. In [7], patrolling is addressed in a task allocation
perspective, where each robot is assigned a different region
to visit. Robots send their current state to a centralized
system running on a remote computer, through wireless
communication, to compute the task strength and drive the
robot through propagated data.

Moreover, reinforcement learning was used in [8] to solve
the patrolling problem by automatically adapting the agents’
strategies to the topology of the environment. Additionally,
an approach based on a negotiation mechanism has also
been proposed in [9]. In this work, agents exchange vertices
of the environment graph to patrol, using an auction-based
system. The agents will naturally aim to obtain a set of
vertices in the same region of the graph. Despite the results
obtained, reinforcement learning and negotiation mecha-
nisms prove to be extremely complex when compared to
pioneer strategies, with nearly no communication ability,
which achieve similar results.[11]

In the literature, other alternative solutions based on Markov
decision processes,[12] game theory,[13] artificial forces,[14]
neural networks [15] and even swarm robotics [16] can be
found. For a more thorough survey of multi-robot patrolling
architectures, one should refer to [17].

3. Problem formulation

As mentioned before, it is common to represent the area to
patrol by an undirected connected graph G = (V, E) with
vi ∈V vertices and ei, j ∈E edges. Therefore, G corresponds
to the topological map for the patrolling mission and is
assumed to be known a priori. Also, in these maps, vertices
correspond to important places or landmarks, connected by
edges that represent the paths between them.

In order to address and compare the performance of dif-
ferent patrolling algorithms, it is important to establish an
evaluation metric.

The instantaneous idleness (I dltk ) of a vertex vi ∈ V in
time tk , with t = {0, ..., tk}, is defined as:

I dltk (vi ) = tk − tlast_visi t , (1)

where tlast_visi t corresponds to the last time instant when
the vertex vi was visited by any robot of the team. Conse-
quently, the average idleness (I dlm) of a vertex vi ∈ V in a
total time T can be defined as:

I dlm(vi ) =

T∑

k=0

I dltk (vi )

T
(2)
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Advanced Robotics 327

Figure 1. Properties of the two planning approaches to solve the patrolling problem with teams of multiple mobile robots.

Finally, in order to obtain a generalized measure, the average
idleness of the graph G (I dlG) is defined as:

I dlG =

|V |∑

i=0

I dlm(vi )

|V | , (3)

where |V | represents the cardinality of the set V.
Considering a patrolling path as an ordered array of ver-

tices of G, the multi-robot patrolling problem can thus be
described as the problem of finding a set of paths x which
visit all vertices vi ∈ V of the graph G, using an arbitrary
team of R robots, with the overall team goal of minimizing
I dlG :

f = argmin
x

I dlG (4)

By finding:

x = [x1, ..., xr , ..., xR] (5)

Such that:

xr = {vr,1, vr,2, ..., vr,N } (6)

vr,n ∈ V

1 ≤ r ≤ R, R ∈ N

1 ≤ n ≤ N , N ∈ N

Subject to:

∀vi ∈ V, ∃xr ∈ x : vi ∈ xr (7)

Note that xr represents the patrolling path of robot r that
can either be calculated a priori, which is typically done by
centralized algorithms, or online to consider and incorporate
the dynamics of the system in a given time step, which is
usual in distributed approaches, as shown in Figure 1.

4. Evaluated patrolling algorithms

Having analyzed the literature, five representative algo-
rithms were implemented. These algorithms were chosen
from among all previous research works based on the good
performance results that they have obtained and the dif-
ferent properties assumed like agent perception, decision-
making, and planning, as it is shown in Table 1. In this sec-
tion, those algorithms are examined in detail. No alternative
approaches were implemented in this work mainly due to
the fact that the complexity of their implementation does not

lead to better results when compared to simpler approaches,
as previously concluded by Almeida et al. [11].

Besides the analysis of the performance of the diverse
algorithms, the scalability of the approaches studied is also
addressed in this work. In the context of multi-robot sys-
tems, scalability is related to how well a given strategy
performs as the dimension of the team grows [18] and how
the individual productivity of each robot is influenced by the
increase of several number of agents in the team. Having
this in mind, the interference between robots is measured
in every experiment as the number of times that different
agents share nearby areas, having to avoid each other.

4.1. Conscientious reactive

Ranked one of the top algorithms in the study of Machado
et al. [2], Conscientious Reactive (CR) is a simple pioneer
approach, in which agents decide locally which vertex they
should move to in the next step, taking only into consider-
ation the instantaneous idleness of the open neighborhood
of the current vertex, NG(v)1, where the robot is located at
the moment. Algorithm 1 presents the pseudo-code of the
approach.

Algorithm 1: Conscientious Reactive
1 r← load(robot_id);
2 G← load(topological_map);
3 vr,n ← load(initial_vertex);
4 add(vr,n to xr);
5 init(Idltk [V ]);

6 while true do
7 vr,n+1← argmax(Idltk [NG (vr,n)]); /* Next vertex

is the neighbor of the current vertex with

highest idleness. */

8 move_robot(vr,n+1);
9 vr,n ← vr,n+1;

10 add(vr,n to xr);
11 update(Idltk [V ]);

4.2. Heuristic Conscientious Reactive

Heuristic Conscientious Reactive (HCR) is an algorithm
presented by Almeida in [3]. It is similar to CR with an im-
portant modification on the decision-making process, where
the authors calculate a decision value that considers not only
the instantaneous idleness of the neighbors of the current
vertex as well as the distance to them. Algorithm 2 presents
the pseudo-code of the approach.
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328 D. Portugal and R.P. Rocha

Table 1. Comparative table of the analyzed architectures.

Algorithm Complexity Perception Decision-making Planning

CR * Reactive Local idleness-based Online
HCR ** Reactive Local heuristic-based Online
HPCC *** Cognitive Global heuristic-based Online
CGG **** Cognitive Cycle computation Offline
MSP **** Cognitive O.R. inside each region Offline

Algorithm 2: Heuristic Conscientious Reactive
1 r← load(robot_id);
2 G← load(topological_map);
3 vr,n ← load(initial_vertex);
4 add(vr,n to xr);
5 init(Idltk [V ]);

6 while true do
7 HIdl← max(Idltk [NG (vr,n)]);
8 MaxDist← max(e_cost(vr,n,NG (vr,n)));
9 forall the vi ∈ NG (vr,n) do

10 NormIdl [vi ] ← I dltk [vi ]
HIdl ;

11 NormDist [vi ] ← MaxDist−e_cost(vr,n , vi)
MaxDist ;

12 Decision [vi ] ← NormIdl [vi ] + NormDist [vi ];
13 vr,n+1← argmax(Decision [NG (vr,n)]); /* Next

vertex is the neighbor of the current vertex with

highest heuristic decision value. */

14 move_robot(vr,n+1);
15 vr,n ← vr,n+1;
16 add(vr,n to xr);
17 update(Idltk [V ]);

4.3. Heuristic pathfinder conscientious cognitive

Unlike the two previous approaches, which use reactive
agents that move only to close by vertices, Heuristic Pathfinder
Conscientious Cognitive (HPCC) plans on the global graph
to decide which vertex to move to subsequently. HPCC
was also presented by Almeida [3] as a modified version
of an approach called ‘Conscientious Cognitive’previously
described in [2].

Agents use a similar decision-making process as in HCR.
However, instead of only moving to vertices in their neigh-
borhood, they can move to any vertex of the graph. In
addition, the algorithm takes into account the vertices on
the way from the current one to the calculated destination.
The chosen path depends on the instantaneous idleness and
the distance of the vertices along the way. This is possible by
computing new edge costs and running a Dijkstra shortest
path algorithm, as seen in line 21 of Algorithm 3, which
presents the pseudo-code of the approach.

4.4. Cyclic algorithm for generic graphs (CGG)

Previous studies like [2] and [5] identify cyclic strategies
based on the TSP as a method of guaranteeing low average
idleness values, as long as these cycles can be computed

Algorithm 3: Heuristic Pathfinder Conscientious
Cognitive

1 r← load(robot_id);
2 G← load(topological_map);
3 vr,n ← load(initial_vertex);
4 MaxCost← max(e_cost(ei, j ∈ E));
5 MinCost← min(e_cost(ei, j ∈ E));
6 add(vr,n to xr);
7 init(Idltk [V ]);

8 while true do

9 HIdl← max(Idltk [vi ∈ V]);
10 MaxDist← max(dijkstra(from vr,n to all vi ∈

V));
// Heuristic Decision:

11 forall the vi �= vr,n ∈ V do
12 dist← dijkstra(from vr,n to vi);

13 NormIdl [vi ] ← I dltk [vi ]
HIdl ;

14 NormDist [vi ] ← MaxDist−dist
MaxDist ;

15 Decision [vi ] ← NormIdl [vi ] + NormDist [vi ];
16 vr,n+1← argmax(Decision [vi �= vr,n ∈ V]);

// Path-Finding (Compute new edge
costs):

17 forall the ei, j ∈ E do

18 IdleCost← HIdl−I dltk [v j ]
HIdl ;

19 DistCost← e_cost(ei, j)−MinCost
MaxCost−MinCost ;

20 NewEdgeCost [i, j] ← IdleCost + DistCost;

21 path← dijkstra_path(from vr,n to vr,n+1);
// Using NewEdgeCosts.

22 move_robot(path);
23 add(path to xr); // Without 1st vertex

(vr,n).
24 vr,n ← vr,n+1;
25 update(Idltk [V ]);

for a given graph. However, no hints on the computation
of such cycles, as well as on how to proceed in graphs
with no cycles, are given. Solving TSP is NP-hard and
is typically calculated using complete graphs2. The prob-
lem becomes even more complex when using generic non-
complete graphs, like topological maps.

Consequently, inspired on the work of Elmaliach et al.,
[4] a Cyclic Algorithm was implemented and used in [6]. It
is essentially an offline graph theory-based method which
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Advanced Robotics 329

looks for Hamilton cycles or paths in the graph in order to
visit all vertices. Due to the NP-Completeness of finding an
Hamilton cycle, a fast heuristic algorithm proposed in [21]
was used. When no such cyles or paths exist, the method
looks for long paths and non-hamiltonian cycles as an alter-
native and computes detours to unvisited vertices, as seen
in the pseudo-code of Algorithm 4. In this work, each robot
is endowed with the ability of computing the final cycle.
Hence the algorithm is run in a totally distributed fashion
like the three previous ones.

Algorithm 4: Cyclic algorithm for generic graphs
1 build_xr (G) {
2 main_path← hamilton(G);
3 if main_path = ∅ then

4 cycle← non_hamilton_cycle(G) ;

5 if size(cycle) > V
2 then

6 main_path← cycle;
7 else
8 main_path← longest_path(G) ;
9 end
10 end
11 final_path←main_path + detours(all ei, j ∈ E) ;
12 if main_path = hamilton_path ∨ longest_path then

13 final_path← add_inverse_path() ;
14 end
15 return xr ;
16 }
17 r← load(robot_id);
18 G← load(topological_map);
19 xr ← build_xr(G);
20 vr,n ← load(initial_vertex);
21 k← 0 ;
22 while true do
23 vr,n+1← xr [k + 1] ;
24 move_robot(vr,n+1);
25 k ++ ;
26 if k = size(xr)−1 then k← 0;
27 end

4.5. Generalized MSP algorithm (MSP)

The MSP Algorithm [6] is an offline graph-theory based
method, which partitions the graph into regions, where agents
perform the patrol task. In the first phase of the algorithm,
the graph is partitioned by a centralized entity, which then
assigns regions to different robots. In a second phase, robots
patrol their independent areas in a cyclic way, using a similar
approach to the CGG method in their own subgraphs. The
word ‘Generalized’ was added since the algorithm has the
ability to partition the graph up to a given number of regions,
being limited to the point where the graph can no longer
be partitioned. Algorithm 5 presents the pseudo-code of
the approach. The performance of the algorithm strongly
depends on how balanced the partitioning of the graph is.

Algorithm 5: Generalized MSP.
1 r← load(robot_id);
2 SG← load(topological_region); // Assumes a

previous centralized partitioning
phase.

3 xr ← build_xr(SG); // Build path in the
assigned subgraph.

4 vr,n ← load(initial_vertex);
5 k← 0 ;
6 while true do

7 vr,n+1← xr [k + 1] ;
8 move_robot(vr,n+1);
9 k ++ ;
10 if k = size(xr)−1 then k← 0;

5. Setting up the experiments

The performance and scalability of the five algorithms were
compared using three topological maps chosen due to their
different connectivity and complexity. To address the con-
nectivity of the graph, a well-known metric of the graph was
analyzed: the Fiedler value or algebraic connectivity.[22] In
order to remove its dependency on the number of vertices
in the spectrum of the Laplacian matrix, the Normalized
Laplacian L [23] was adopted to obtain the Fiedler value
of each graph.

All eigenvalues of L are non-negative and λ0 = 0. For
non-complete connected graphs (as is our case), the Fiedler
Value λ1 is the smallest non-zero eigenvalue of L and:

0 < λ1 ≤ 1 (8)

Table 2 presents the connectivity properties of the graphs
chosen for the experiments. Beyond the Fiedler Value, the
Graph Density (D) was also calculated. This value repre-
sents a ratio between the number of edges and all possible
edges if it were a complete graph:

D = 2|E |
|V |(|V | − 1)

(9)

All three graphs and the respective environments are pre-
sented in Figure 2. In addition, it was necessary to resort to a
simulator since it would not be possible to obtain the extent
of results presented in the next section, within reasonable
time limits, if teams of real robots had been used. Therefore,
a recognized simulator with realistic modeling was chosen:
the Stage 2D multi-robot simulator.[24]

Stage considers the robot’s dynamics and, together with
ROS,[25] a framework for robot software development, was
chosen to implement the experiments. The graph informa-
tion of a given environment is loaded by every robot in
the beginning of each simulation, which then runs one of
the five algorithms described. Robots navigate safely in the
environment by heading towards their goals and avoiding
collisions with walls and other robots through the use of
ROS’s navigation stack [26] and a probabilistic localization
system, more specifically the adaptive Monte Carlo local-
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330 D. Portugal and R.P. Rocha

Figure 2. Environments used in the experiments with respective topological map.

Figure 3. General simulation results. In this chart, the best strategies for a given map connectivity and team size are shown. Note that the
figure presents some intersections of design solutions.

Table 2. Connectivity properties of the graphs used in the experiments.

Topological map Environment area |V | Graph density (D) Fiedler value (λ1)

A 1357.17 m2 66 0.0308 0.0080
B 1542.30 m2 32 0.0746 0.0317
C 665.64 m2 25 0.1333 0.1313

ization approach,[27] which uses a particle filter to track the
pose of a robot against a known map. Note that this dynamic
is implicit in all algorithms, when robots move. In addition,
robots are non-holonomic and have a maximum velocity of
0.2 m/s.

6. Results and discussion

The simulation process involved running the five described
patrolling strategies with six different team sizes (1, 2, 4, 6,
8, and 12 robots) in all three environments. Robots had the
same starting positions for all algorithms when using the
same team size and environment. Every trial was repeated
three times, in a total of 264 simulations3, which lasted

around 345 hours with a cluster of four processors that were
used due to the powerful computation demands of simula-
tions, mainly those with higher team sizes. Simulations were
when the value of the average graph idleness (I dlG) after
each patrolling cycle, i.e. every vertex visited, converges
with 2.5% of tolerance. This resulted into an average sim-
ulation time of 1h18 m, which led to accurate and similar
results between different trials; hence, there was no need
to repeat the trials several times as testified by the overall
average standard deviation of the results: σ = 4.42%.

The chart in Figure 3 represents environment connectiv-
ity vs. team size and depicts some general insights about
the most suited solutions in different regions of the de-
sign space, providing a graphical overview of the results
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(a)

(b)

(c)

Figure 4. Simulation results: I dlG performance curves. (a) Results for Environment A; (b) results for Environment B; (c) results for
Environment C.

obtained. It is possible to verify that offline planning strate-
gies (MSP and CGG) perform better in weakly connected
environments than in strongly connected ones. This occurs
because one can take better advantage of offline planning in
such environments, while there are more path alternatives
in strongly connected environments, where online planning
performs adequately.

Generally, MSPis the algorithm with the best I dlG values
for larger teams, up to the point where the algorithm can
no longer partition the graph. The method is not able to
partition the topologies B and C in the 12 regions case,
which happens due to limitations of the partition stage of the

algorithm which is based on a fast multi-level approach for
partitioning irregular graphs presented by Karypis and Ku-
mar [28]. Nevertheless, these good results can be explained
by low interference between agents when compared to other
strategies, because each robot operates in a specific section
of the environment. For smaller teams, the approach is not
usually worth to employ, because it is more complex than
simple reactive approaches and it does not lead to enhanced
performance, mostly when the partitioning in regions is not
as balanced as it would be desirable.

Moreover, CGG is the most regular algorithm, achiev-
ing fairly good results for all cases, especially in weakly
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332 D. Portugal and R.P. Rocha

(b)

(a)

Figure 5. Speedup and interference in environment A.

connected environments or using larger teams, similarly to
the MSP. However, it does not scale as well as the MSP as
seen in Figure 4(a); e.g. note the 12 robots case.

On the other hand, HPCC proves to be an algorithm with
good performance mostly for smaller teams, independently
of the graph connectivity, given that, although it plans its
decisions online, the entire graph is considered (unlike HCR
and CR). Also, for the same reason, its performance drops
for larger teams, because all robots wander and plan in the
whole environment, which raises the probability of encoun-
ters between them. Results also show that this approach
is the one that converges sooner to an I dlG value, as the
number of robots is increased, which indicates reduced scal-
ability.

Moving on to reactive algorithms, it is interesting to
observe that HCR does not present evident improvements
when compared to CR. According to its authors, HCR can
eventually be tuned to give different weights to the vertices’
distance and the instantaneous idleness of neighbors during
decision-making. In this work, the same weight for both
parameters of the decision process was used and it was
verified that for weakly connected environments, HCR was
the algorithm with the worst performance (Figure 4(a) and
Table 3). This happens because robots tend to stay longer
in regions with close vertices, causing high interference
between robots, which compete to reach those vertices,
reducing overall performance dramatically. As for the CR
algorithm, it scales better than HCR and HPCC, only stay-
ing behind the MSP and CGG for large teams. Reactive
algorithms have good performance especially in strongly
connected environments, as seen in Figure 4(c) and Table 5,
where agents have alternatives to decide at the very moment,

which vertex to move next to, taking into consideration the
state of the system. Nevertheless, even in less connected en-
vironments, at some point when increasing the team size, the
CR algorithm obtains better performance than the HPCC,
since it scales better than the latter one.

Tables 3–5 show in detail a summary of all numerical
results obtained in the simulation experiments. These were
used to build the curves in Figure 4 completely clarifying
and assisting the comparison between approaches, which
is not always evident when the curves are too close. Each
I dlG value in the table is an average of three trials with the
given algorithm, team size and map.

Additionally, as expected, all algorithms display
increasing performance only until reaching a certain group
size, around which the group productivity stagnates and
even drops with the addition of robots; e.g. HCR in
environment B as illustrated by Figure 4. In theory,
productivity should grow during size scale-up; however,
spatial limitations increase the interference between robots
causing the decrease of performance. For example, calcu-
lating Balch’s speedup measure [29] for increasing team
sizes:

S[i] =
P[1]

i

P[i] (10)

where P[i] is the performance for i robots, it is straight-
forward to conclude that such systems rapidly enter in sub-
linear performance (S[i] < 1), as shown in Figure 5(a) for
environment A. On the other hand, in Figure 5(b) the inter-
ference, measured in the same environment, is presented.
Interference is calculated as the number of times that robots
had to avoid each other in order not to collide. Online
planning strategies were the ones which presented more
interference. It can be seen that speedup and interference are
negatively correlated. For larger team sizes, instead of coop-
erating, robots tend to compete to firstly reach a given vertex
than their teammates. Designing strategies which account
for the teammates’ goal can be beneficial for multi-robot
patrolling, since they can take advantage of cooperation
over competition between agents.

It is also interesting to see that Figure 4 and Tables 3–4
show that, even though map B has a larger area to patrol
when compared to map A, all algorithms obtain lower I dlG

values for the same number of robots in environment B,
due to its greater connectivity. These results prove that graph
connectivity is a very important parameter to consider when
employing a patrolling algorithm in a given environment.
Expectedly, the performance of the team is also greatly
affected by graph dimension. However, when independent
of the connectivity, graph size is seen as a scale factor when
considering fixed team sizes.

Furthermore, the median graph idleness value corresponds
typically to around 85% of the average graph idleness, mean-
ing that the frequency distribution is usually positively
skewed (this is true in 96% of the trials). CR is the algorithm
which has closest values between I dlG and the median,
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Table 3. Numerical results for map A.

Team CR HCR HPCC CGG MSP
size I dlG I dlG I dlG I dlG I dlG

1 1734.09 1962.42 1740.37 1717.36 1704.36
2 843.93 1146.27 791.20 845.49 930.04
4 433.38 652.84 434.11 451.70 476.92
6 367.11 506.90 377.73 348.46 381.97
8 271.70 442.39 361.62 288.72 253.19
12 287.14 412.65 352.79 265.47 183.74

Table 4. Numerical results for map B.

Team CR HCR HPCC CGG MSP
size I dlG I dlG I dlG I dlG I dlG

1 1315.79 1283.59 1235.67 1347.30 1401.80
2 675.44 654.61 670.44 675.64 749.42
4 363.46 373.45 298.77 335.45 375.15
6 238.57 273.60 254.96 234.18 248.92
8 198.90 217.38 225.44 172.39 185.28
12 172.4 255.62 212.3 143.94 -

Table 5. Numerical results for map C.

Team CR HCR HPCC CGG MSP
size I dlG I dlG I dlG I dlG I dlG

1 715.30 714.23 737.93 767.25 766.41
2 353.06 351.15 358.45 385.09 423.60
4 193.30 186.59 188.03 200.53 209.82
6 141.68 138.64 135.74 142.94 148.09
8 104.00 108.45 118.75 113.71 95.22
12 101.82 105.64 118.36 94.35 -

Figure 6. Average convergence time for each algorithm with different team size.

which shows that the algorithm normally does not let points
in the environment stay idle for too long, balancing more

its visits to the graph’s vertices when compared to other
approaches.
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Table 6. ANOVA table.

Source Sum Sq. d.f. Mean. Sq. F Prob>F

Algorithm 64953.125 4 16238.281 14.603 0
Team size 12763618.172 5 2552723.634 2295.671 0
Connectivity 2574860.148 2 1287430.074 1157.789 0
Algorithm*team size 36814.014 20 1840.701 1.655 0.0891
Algorithm*connectivity 120574.630 8 15071.829 13.554 0
Team size*connectivity 1279680.351 10 127968.035 115.082 0
Error 42254.968 38 1111.973 - -
Total 17234127.010 87 - - -

The maximum idleness (most unvisited vertex of each
graph) was also calculated. It is typically around 2.7 times
larger than the average graph idleness. This ratio grows
consistently with team size for all algorithms, being lower
(around 2 times in average) for small team sizes and in-
creasing for higher team sizes. As expected, CR due to
its balanced property is the approach with a lower overall
ratio of around 2.25 and surprisingly, if we consider the
little difference between the two approaches, HCR is the
algorithm with a higher ratio of around 3.25. The other three
approaches have a ratio of around 2.6–2.7.

In terms of time taken to conclude the patrol task, it can
be seen that CR usually needs less time to converge than the
remaining approaches, as shown in Figure 6. This happens
due to its property of constantly visiting places that have
been idle for a long time, regardless of the distance to them.
Consequently, it maintains a similar visit rate to all places.
Despite this interesting aspect, it does not lead to better per-
formance, when compared to other approaches. In fact, there
is no apparent relation between performance and conver-
gence time. Differences between the approaches are more
marked with low number of robots as well as with different
environment connectivity. Nevertheless, global trends can
be observed. For instants, convergence time generally raises
when team size increases from 8 to 12 robots. In such
cluttered situations, robots spend inestimable time avoiding
teammates, which highly affects convergence time.

In order to verify the significance of the problem’s pa-
rameters tested in the experiments, three-way ANOVA [30]
was applied, measuring quantitatively the group’s variable
effect. The parameters addressed were: algorithm, map con-
nectivity and team size. Linear models were considered,
assuming that the probability distribution of the response is
normal, mutually independent and homoscedastic (i.e. the
variance of the data inside the groups is equivalent). The test
made use of the F-statistics distribution with 95% of con-
fidence bounds and first-order interaction effects between
pairs of factors, as seen in Table 6.

The only factor that presents no relevant significance
is the algorithm*team size interaction, seeing as the null
hypothesis was accepted. In fact, a clear indication of the
low significance of this interaction is given by the I dlG

values of Tables 3–5, which do not differ much when each

of the associated columns are compared as a whole. In
addition, analyzing the individual factors, it can be seen that
the influence of team size and connectivity in the results is
greater than in the algorithm case. As a consequence, the
interaction factor between team size and connectivity is the
most significant interaction. These results are the natural
evidence that performance relies heavily on the number
of members in the team and the environment to patrol.
Therefore, research should be guided towards approaches
that ensure scalability and are appropriate, or perhaps can
adapt, to all kinds of environment.

7. Conclusion and future work

In this work, a study of the scalability and performance of
five different multi-robot patrolling strategies was
presented. This study is unprecedented in this field because
it overcomes many limitations and simplifications of pre-
vious works by using generic environments with different
topological connectivity properties and weighted edges; re-
alistic simulations that consider the robots’ dynamics; and
is based on the actual time in its performance metric instead
of atomic iterations or simulation cycles. It was shown that
different types of algorithms perform differently according
to the environment and the number of robots running the
patrol task. Consequently, the choice of a patrolling strategy
for teams of multiple robots should take into consideration
these two important parameters. Moreover, to improve the
team’s performance, scalable methods should be developed
to minimize interference between robots.

In the future, we intend to deepen the study on the scal-
ability properties of multi-robot patrolling algorithms by
presenting an estimation method to dimension a team of
robots in such missions according to the environment to
patrol. Additionally, we intend to develop new scalable
approaches for multi-robot patrol and test it in mobile robots
and real scenarios.
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Notes
1. The open neighborhood of a vertex v in a graph G is the

induced subgraph of G consisting ofv and all vertices adjacent
to it, as well as all connecting edges between them.[19]

2. I.e. graphs in which every pair of distinct vertices is connected
by a unique edge.[20]

3. The ROS simulation code is available at: http://www.ros.org/
wiki/patrolling_sim

Notes on contributors
David Portugal is a PhD student and researcher
at the Institute of Systems and Robotics (ISR),
University of Coimbra, Portugal. He is under
the supervision of Prof. Rui P. Rocha, being
sponsored by a PhD scholarship from the
Portuguese Foundation for Technology and
Sciences. He holds an MSc. degree in Electrical
Engineering and Computers obtained in 2009.
Currently, he is collaborating as a researcher

in the nationally funded Project CHOPIN, which deals with
cooperation between human and robotics teams in catastrophic
incidents. His research interests include cooperative robotics,
multi-agent systems and optimization.

Rui P. Rocha is an assistant professor with
the Department of Electrical Engineering
and a senior researcher at the Institute of
Systems and Robotics (ISR), both at the
University of Coimbra, Portugal. He received
the Engineering degree, the MSc degree, and
the PhD degree in Electrical and Computer
Engineering from University of Porto in 1996,
1999 and 2006, respectively. His main research

topics are cooperative robotics, multi-robot systems, distributed
robotics, cybernetic transportation systems, and 3D map building.
He has been involved in several FP6 and FP7 European funded
projects developed in consortium for the past few years and is
currently the PI of a nationally funded research project about
cooperation between human teams and robotics teams.

References
[1] Portugal D, Rocha RP. On the performance and scalability

of multi-robot patrolling algorithms. In: Proceedings of the
2011 IEEE International Symposium on Safety, Security,
and Rescue Robotics (SSRR’2011); 2011 Nov 1–5; Kyoto
(Japan). p. 50–55.

[2] Machado A, Ramalho G, Zucker J, Drogoul A. Multi-
agent patrolling: an empirical analysis of alternative
Architectures. In: Multi-Agent-Based Simulation, 3rd
International Workshop; 2002 July 15–16; Bologna (Italy).
p. 155–170.

[3] Almeida A. Patrulhamento Multiagente em Grafos com
Pesos [M.Sc. Thesis]. Recife: Centro de Informática, Univ.
Federal de Pernambuco; 2003. (In Portuguese).

[4] Elmaliach Y, Agmon N, Kaminka G. Multi-robot area
patrol under frequency constraints. In: Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA’2007). 2007 April; Italy. p. 385–390.

[5] Chevaleyre Y. Theoretical analysis of the multi-agent
patrolling problem. In: Proceedings of the Intelligent
Agent Technology: IAT’04, IEEE/WIC/ACM International
Conference. 2004 Sep 20–24; Beijing (China). p. 302–308.

[6] Portugal D, Rocha R. MSP algorithm: multi-robot
patrolling based on territory allocation using balanced graph

partitioning. In: Proceedings of 25th ACM Symposium
on Applied Computing (SAC’2010), Special Track on
Intelligent Robotic Systems; 2010 March 22–26; Sierre
(Switzerland). p. 1271–1276.

[7] Sempé F, Drogoul A. Adaptive patrol for a group of
robots. In: Proceedings of the International Conference on
Intelligent Robots and Systems (IROS’2003); Oct 2003; Las
Vegas (NV).

[8] Santana H. Ramalho G, Corruble V, Ratitch B. Multi-agent
patrolling with reinforcement learning. In: Proceedings of
the Third Int. Joint Conference on Autonomous Agents
and Multiagent Systems. Vol. 3; New York, NY; 2004.
p. 1122–1129.

[9] Hwang K, Lin J, Huang H. Cooperative patrol planning
of multi-robot systems by a competitive auction system.
In: Proceedings of the ICROS-SICE International Joint
Conference; 2009 Aug 18–21; Fukuoka, (Japan).

[10] Iocchi L, Marchetti L, Nardi D. Multi-robot patrolling
with coordinated behaviours in realistic environments. In
Proceedings of the International Conference on Intelligent
Robots and Systems (IROS’2011); 2011 Sep 25–30; San
Francisco, CA. p. 2796–2801.

[11] Almeida A, Ramalho G, Sanana H, Tedesco P, Menezes
T, Corruble V, Chaveleyre Y. Recent advances on multi-
agent patrolling. In: Brazilian Symposium on Artificial
Intelligence (SBIA’2004). Vol. 3171; Sep 29 –Oct 1 2004;
São Luís (Brazil). p. 474–483.

[12] Marier J, Besse C, Chaib-draa B. Solving the continuous
time multiagent patrol problem. In: Proceedings of the 2010
IEEE International Conference on Robotics and Automation
(ICRA’2010); 2010 May 3–8; Anchorage, AK.

[13] Basilico N, Gatti N, Rossi T, Ceppi S, Amigoni F. Extending
algorithms for mobile robot patrolling in the presence of
adversaries to more realistic settings. In: Proceedings of
the 2009 IEEE/WIC/ACM International Joint Conference
on Web Intelligence and Intelligent Agent Technology (WI-
IAT’09). Vol. 2; 2009 Sep Milan (Italy). p. 15–18.

[14] Sampaio P, Ramalho G, Tedesco P. The gravitational strategy
for the timed patrolling. In: Proceedings of the, 22nd
IEEE International Conference on Tools with Artificial
Intelligence (ICTAI’10); 2010 Oct 27–29; Arras (France).
p. 113–120.

[15] Guo Y, Parker L, Madhavan R. Collaborative robots
for infrastructure security applications. Studies in Com-
putational Intelligence (SCI). Vol. 50, 185200. Berlin:
Springer-Verlag; 2007.

[16] Chu H, Glad A, Simonin O, Sempé F, Drogoul A, Charpillet
F. Swarm approaches for the patrolling problem, information
propagation vs. pheromone evaporation. In: Proceedings of
the International Conference on Tools with Art. Intelligence.
Vol. 1; France; 2007. p. 442–449.

[17] Portugal D, Rocha R. A survey on multi-robot patrolling al-
gorithms. In: Proceedings of the 2nd Doctoral Conference on
Computing, Electrical and Industrial Systems (DoCEIS’11);
2011 Feb 21–23; Costa da Caparica, Lisbon, Portugal.

[18] Balch T. Behavioral diversity in learning robot teams
[PhD Thesis]. College of Computing Georgia Institute of
Technology; Dec 1998.

[19] Diestel R. Graph theory. 3rd ed. Graduate texts in
mathematics. Vol. 173. Heidelberg: Springer-Verlag; 2005.

[20] Gries D, Schneider F. A logical approach to discrete math.
Springer-Verlag; 1993. p. 436.

[21] Angluin D, Valiant L. Fast probabilistic algorithms for
Hamiltonian circuits and matchings. J. Comp. Sys. Sci.
1979;18:155–193.

D
ow

nl
oa

de
d 

by
 [

b-
on

: B
ib

lio
te

ca
 d

o 
co

nh
ec

im
en

to
 o

nl
in

e 
IP

C
],

 [
D

av
id

 P
or

tu
ga

l]
 a

t 0
7:

41
 1

5 
M

ar
ch

 2
01

3 



336 D. Portugal and R.P. Rocha

[22] Fiedler M. Algebraic connectivity of Graphs. Czech. Math.
J. 1973:23.

[23] Chung F. Spectral graph theory. AMS, Providence, RI:
CBMS Lecture Notes; 1997.

[24] Gerkey B, Vaughan R, Howard A. The player/stage project:
tools for multi-robot and distributed sensor systems. In:
Proceedings of the Intelligent Conference on Advanced
Robotics (ICAR’2003); 2003 July; Coimbra (Portugal); p.
317–323.

[25] Quigley M, Gerkey B, Conley K, Faust J, Foote T,
Leibs J, Berger E, Wheeler R, Ng A. ROS: an open-
source robot operating system. In: Proceedings of the 2009
IEEE International Conference on Robotics and Automation
(ICRA’2009), Workshop On Open Source Software. 2009
May 12–17; Kobe (Japan).

[26] Marder-Eppstein E, Berger E, Foote T, Gerkey B, Konolige
K. The office marathon: robust navigation in an indoor office
environment. In: Proceedings of the 2010 IEEE International
Conference on Robotics andAutomation (ICRA’2010). 2010
May 3–8; Anchorage, AK. p. 300–307.

[27] Thrun S, Fox D, Burgard W, Dellaert F. Robust monte
carlo localization for mobile robots. Artificial Intell. (AI).
2001;128:99–141.

[28] Karypis G, Kumar V. A fast and high quality multilevel
scheme for partitioning irregular graphs. Society for
Industrial and Applied Mathematics (SIAM) J. Sci. Comput.
1998; 20:359–392.

[29] Balch T, Arkin R. Communication in reactive multiagent
robotic systems. Auton. Robots. 1994;1:27–52.

[30] Scheffé H. The analysis of variance. New York, NY: John
Wiley & Sons; 1959.

D
ow

nl
oa

de
d 

by
 [

b-
on

: B
ib

lio
te

ca
 d

o 
co

nh
ec

im
en

to
 o

nl
in

e 
IP

C
],

 [
D

av
id

 P
or

tu
ga

l]
 a

t 0
7:

41
 1

5 
M

ar
ch

 2
01

3 


