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Abstract— This article presents an innovative probabilistic
approach for building volumetric maps of unknown environments
with autonomous mobile robots, which is based on information
theory. Each mobile robot uses an entropy gradient-based
exploration strategy, with the aim of maximizing information gain
when building and improving a 3-D map upon measurements
yielded by an on-board stereo-vision sensor. The proposed
framework was validated through experiments with a real
mobile robot equipped with stereo-vision, in order to be further
used on cooperative volumetric mapping with teams of mobile
robots.

Index Terms— 3-D volumetric mapping, entropy, probabilistic
maps, mapping and exploration, stereo-vision sensors.

I. INTRODUCTION

Building a volumetric map of an unknown environment is
one of the application fields of autonomous mobile robots.
Robotic mapping addresses the problem of acquiring spatial
models of physical environments using mobile robots and
range sensors, such as cameras or laser range finders [1]. As
sensors have always limited range, are subject to occlusions
and yield measurements with noise, mobile robots have to
navigate through the environment and build the map iteratively.
Robots can be used for building fastidious maps of indoor
environments [2], but they are particularly useful on mapping
missions of hazardous environments for human beings, such
as underground mines [3] or nuclear facilities [4].

Grid-based maps [5], [6] are widely used to intuitively
represent distributed spatial information, such as occupancy
or, closely related, traversability. In [5], Moravec et al. built
2-D occupancy grids by using a robot with sonars. In [7],
they extended the occupancy grid technique for environment
mapping of 3-D grids using stereo-vision. In [2], the notion
of occupancy grid was refined to model the cell’s occupancy
as a continuous value between 0 and 1, denoted as coverage.
They used 2-D coverage maps to perform indoor exploration
tasks with a robot equipped with sonars. In this article, we
propose grid-based 3-D coverage maps with two important
improvements: a more compact representation of each cell’s
state than using histograms [2]; and an efficient Bayesian
update procedure. We present a straightforward method to
update the map upon new data yielded by range sensors.

When a robot or a team of robots explore an unknown
environment to build a map, the objective is to acquire as much
new information as possible with every sensing cycle, so as to
minimize the time needed to completely explore it. Bourgault
et al. [8] used occupancy grids to address the single robot
exploration problem as a balance of alternative motion actions
from the point of view of information gain, localization quality
and navigation cost. Yamauchi et al. proposed frontier-based
exploration [9] whereby robots are driven towards boundaries
between open space and unexplored regions. Burgard et al.
used the frontier-cell concept to develop a technique for
coordinating a team of robots when building 2-D occupancy
grid [10]. In a seminal work [11], they used entropy minimiza-
tion to actively localize a robot by minimizing the expected
future uncertainty. Extensive research has been devoted to
SLAM (e.g. [3], [12]), which provides an integrated solution
of localization and mapping for applications where a global
positioning system is not available. In this article, we does not
address SLAM and assume that robots are externally localized.
Our approach to multi-robot exploration is closely related
with frontier-based exploration [9], [10], with two important
contributions. Firstly, we use entropy to explicitly represent
uncertainty in the 3-D map, as a means to define a formal
information-theoretic background to reason about the mapping
and exploration process. Secondly, we propose an entropy
gradient-based exploration strategy that drives the robot to
frontier cells and maximizes information gain.

Section 2 defines probabilistic 3-D maps and presents
how to update a map upon new sensory information from
range sensors, based on a Gaussian sensor model. Section
3 defines map’s entropy and presents the entropy gradient-
based exploration strategy. Section 4 presents experimental
results obtained with a real robot equipped with stereo-vision,
and demonstrates the validity of the proposed framework. The
article ends with conclusions and future work.

II. PROBABILISTIC VOLUMETRIC MAPS

This section proposes probabilistic maps as a means to
represent how uncertain the robots’ knowledge about the envi-
ronment is. The proposed framework can be used to model any
phenomena spatially distributed but, since we have validated it



using stereo-vision sensors providing distance measurements1,
hereafter a map is denoted as a coverage map, which is a 3-D
representation of the environment occupancy with obstacles.

A. Volumetric model

One of the most popular space representation models are
occupancy grids [5], [6], which are discretised random fields
where the probability of occupancy of each independent cell
is maintained. Our definition of probabilistic map was firstly
introduced in [2], wherein the notion of occupancy grid was
refined in order to avoid a strictly binary representation of
each cell’s occupancy (free or occupied), through the notions
of coverage and coverage map. The coverage of a cell is the
portion of the the cell that is covered by obstacles (a value
between 0 and 1). A coverage map stores for each cell a prob-
abilistic belief about its coverage. Our main contribution is a
more compact representation of the voxel’s belief than using
histograms [2], and an efficient Bayesian update procedure.

Our volumetric model assumes that we define a 3-D grid Y ,
which divides the robotic team workspace into equally sized
voxels (cubes) with edge ε ∈ R and volume ε3. Fig. 1 shows
a geometric representation of our model. Any edge of any
voxel is assumed to be aligned with one of the axes of a
global coordinates frame {W}. The portion of the volume
of a voxel l ∈ Y that is covered (occupied) by obstacles is
modeled through the continuous random variable Cl, taking
values cl in the interval 0 ≤ cl ≤ 1, and having p(cl) as its
probability density function (pdf). The objective of building a
map is to obtain for each voxel l ∈ Y an estimate as accurate
as possible about its coverage Cl. Let

Mk = (xk,Vk) : k ∈ N, (1)

be the k-th batch of measurements, being xk the sensor’s
position from where measurements are obtained and Vk the
set of measurements belonging to the batch, provided by the
robot’s sensor at t = tk, tk ∈ R, k ∈ N. Let also

Mk = {Mi : i ∈ N, i ≤ k} (2)

be a sequence of k batches of measurements, gathered in the
time interval t0 ≤ t ≤ tk, being t0 the initial time before any
batch of measurements. Before any batch of measurements, i.e.
for k = 0, the sequence of batches is the empty set M0 = ∅.
The knowledge about the voxel’s coverage Cl, after k batches
of measurements, is modeled through the pdf

p(cl | Mk), 0 ≤ cl ≤ 1. (3)

We define the 3-D probabilistic map, after k batches of
measurements, as the set of random variables

C = {Cl : l ∈ Y}, (4)

containing a coverage random variable for each voxel l of
the grid Y . These random variables are described statistically
through the set of coverage probability density functions (pdf):

P(C | Mk) = {p(cl | Mk) : l ∈ Y}. (5)

1The framework can also be used with other range sensors, such as laser
range, sonar, etc., including combinations of different range sensors.
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Fig. 1. 3-D grid map: (a) the grid divides the workspace into equally sized
voxels, whose edges are aligned with one of the axes of the world coordinates
frame {W}; (b) the coverage Cl of each voxel l ∈ Y with edge ε, given
the sequence of batches of measurements Mk , is modeled through a pdf
p(cl | Mk). The example is the Gaussian pdf N(µl = 0.4, σl = 0.1).

The coverage of each individual voxel is assumed to be
independent from the other voxels’ coverage and thus C is
a set of statistically independent random variables.

B. Measurements influencing the voxel’s coverage belief

A range sensor typically provides batches of distance mea-
surements from each point where it is located. Consider a
batch of measurements Mk = (xk,Vk), being xk ∈ R

3

the sensor’s position from where measurements are obtained
(shared by all measurements in the batch), and a set

Vk = {−→v k,i ∈ R
3 : i ∈ N, i ≤ mk} (6)

of mk applied vectors (measurements) connecting xk to the
set of points {xk+−→v k,i : i ∈ N, i ≤ mk} where obstacles are
detected. For each measurement −→v k,i ∈ Vk, obtained from the
sensor’s location xk , we need to determine the set of voxels
Zk,i ⊂ Y whose coverage is influenced by that measurement.

Consider an applied vector −→u ∈ R
3 applied at point a,

connecting point a to point a+−→u . The set of voxels Z(−→u ,a)
traversed by −→u can be determined by sampling the vector so
that at least one sample per traversed voxel is gathered in
a set of w 3-D points Q(−→u , a). To guarantee this minimum
sampling, vector −→u is divided into segments with maximum
length equal to the voxel’s edge ε. Let v : R

3 → Y be a
function that computes what grid’s voxel a given point belongs
to. The set of voxels traversed by vector −→u applied in a is

Z(−→u , a) = {v(qi) : qi ∈ Q(−→u , a)} ⊂ Y. (7)

Thus, given a measurement −→v k,i, which is an applied vector
in point xk, the respective set of influenced voxels is

Zk,i = Z(−→v k,i,xk) ∪ {l′}. (8)

It includes the set Z(−→v k,i,xk) of voxels traversed by −→v k,i

plus the voxel l′ that is immediately behind the obstacle and
is more likely to be fully occupied.



Let w(l) ∈ R
3 denote the center coordinates of a voxel l ∈

Y . Let the tuple Dl
j = (dj , d

l
j) be an individual measurement

influencing the coverage estimate of l, being dj = ‖−→v k,i‖
the distance between the sensor and the detected obstacle, and
dl

j = ‖(w(l) − xk)‖ the distance between the sensor and the
voxel’s center. The set of nk(l) measurements influencing the
coverage estimate of l, after k batches of measurements, is

Dl
k = {Dl

j : j ∈ N, j ≤ nk(l)} = {Dl
1, . . . , D

l
nk(l)}, (9)

having cardinality

nk(l) <
k∑

a=1

ma, nk(l) ∈ N0, (10)

because not all measurements yielded by the sensor necessarily
influence the voxel’s coverage. For this reason, we have

p(cl | Mk) = p(cl | Dl
k), ∀l∈Y, k∈N0 . (11)

C. Sensor model

The pdf p(cl | Dl
j) represents a sensor model whereby

measurements Dl
j = (dj , d

l
j) are converted in estimates of

coverage values Cl = cl of a voxel l. We generally don’t know
the exact model of the distribution p(cl | Dl

j). However, since
localization errors and sensor errors can be usually assumed
to follow a Gaussian model, we represent the voxel’s coverage
belief through a Gaussian model

p(cl | Dl
j) = N(µ(dj , d

l
j), σ(dj , d

l
j), cl). (12)

The Gaussian’s mean is given by

µ(dj , d
l
j) =




0, (dl
j − dj) ≤ − ε

2

1
2 +

dl
j−dj

ε , |dl
j − dj | < ε

2

1, (dl
j − dj) ≥ ε

2

. (13)

This equation distinguishes three situations: in the first case,
the measured distance does not end in the voxel l, with dl

j <
dj , and thus it is more likely that the voxel is fully empty (null
coverage); in the second case, the measured distance ends in
l and its coverage is inverse proportional to the amount of
the voxel covered by dj (a value between 0 and 1); in the
third case, which is only applicable to the voxel l′ in equation
(8), the measured distance does not end in the voxel l, with
dl

j > dj , and thus it is more likely that the voxel is fully
occupied. The standard deviation is given by

σ(dj , d
l
j) =




σs(dj)
ε , |dl

j − dj | ≤ ε
2

σs(dj)
ε exp

(
− |dl

j−dj|− ε
2

τ

)
, otherwise

,

(14)
wherein σs(dj) = σmin + ζ.dj , which is a typical behavior
of range sensors because accuracy decreases with distance.
Equation (14) states that σ(dj , d

l
j) is maximum near the

detected obstacle and that, given a damping ratio τ , it decays
with |dl

j −dj | for voxels farther from the obstacle, which have
intuitively less uncertain coverage estimates. Accordingly with
equation (3), the Gaussian sensor model has to be truncated so
that the cumulative probability over the coverage domain sums

Fig. 2. Example of a sensor model’s probability density function: dj =
0.8 m, σmin = 16 mm, ζ = 1 × 10−2, τ = 2 m, ε = 0.2 m.

up to one, i.e. P (0 ≤ Cl ≤ 1) = 1. In [2], it is proposed a
sensor model based on a mixture of a Gaussian and an uniform
distribution, wherein the latter distribution adds some white
noise to ensure a correct normalization when truncating the
Gaussian to the range [0, 1]. We claim that a better way of
normalizing a normal distribution truncated to that interval is
to multiply the pdf by a normalization factor

γ(µ, σ) =
(∫ 1

0

N(µ, σ, x).dx
)−1

, (15)

which preserves the normal distribution instead of summing
white noise. As we shall see later, preserving the normal
distribution makes the coverage update upon new measures
quite simple. Fig. 2 shows an example of the sensor model.

D. Updating the map

Given the 3-D map described by equation (5), updating
it upon a new batch Mk = (xk,Vk) means updating the
coverage pdf (3) of voxels l ∈ Zk,i ⊂ Y , which are
influenced by the new measurements. The previous set of
influencing measurements for those voxels is joined with the
new nk(l) ≤ mk + nk−1(l) influencing measurements as
Dl

k = Dl
k−1 ∪ {Dl

j : nk−1(l) + 1 ≤ j ≤ nk(l)}. We are
going to state how to specify the initial voxel’s coverage belief
p(cl | Dl

0) = p(cl | M0) and how to update the map upon
new coverage estimates.

1) Initial map: The initial belief p(cl | Dl
0) = p(cl | M0)

represents prior knowledge about the voxel’s coverage, before
any batch of measurements. Unless there is a previous map of
the environment being mapped, it is usually chosen to be the
less informative, i.e. a pdf with maximum uncertainty.

Entropy is a general measure for the uncertainty of a belief
[11], [2]. Although it is defined for either discrete and con-
tinuous random variables, the discrete definition is generally
preferable because it is an absolute measure of uncertainty and
is always non-negative. Being X a discrete random variable
over a discrete sample space S with probability distribution
p(x) = P (X = x), entropy is defined as:

H(X) = −
∑
x∈S

p(x) log p(x). (16)



Note that H(X) ≥ 0, being assumed the continuity convention
0 log 0 = 0. The logarithm’s base determines the information
unit whereby entropy is measured. Hereafter, we use the base
2 for the logarithm and, in this case, entropy is measured in
bits.

In order to use the discrete definition of entropy, we use
a quantized version of the coverage pdf to compute discrete
entropy. Thus, we discretise the coverage continuous random
variable Cl, l ∈ Y , with a discrete random variable C�

l

having b possible outcomes c�l ∈ {1, . . . , b} and a relative
frequency histogram p(c�l ). Using the entropy definition given
by equation (16), the voxel’s discrete entropy is

H(Cl) ≡
b∑

i=1

p(c�l = i) log p(c�l = i). (17)

Hereafter, we always use b = 128 bins in the computation of
equation (17), which means that 0 ≤ H(Cl) < 7 bits.

It can be shown that the normal distribution is the maximum
entropy pdf given the first two moments. A convenient initial
belief p(cl | Dl

0) is thus a normal distribution with σ → +∞,
i.e. an uniform distribution. In practice, this means choosing a
Gaussian with σ much larger (e.g. ten times greater) than the
sensor standard deviation given by equation (14).

2) Updating the coverage belief of a voxel: Consider a
given voxel l ∈ Y , the set Dl

n−1 containing n − 1 mea-
surements influencing its coverage, and its current coverage
probabilistic belief p(cl | Dl

n−1). Given a new influencing
measurement Dl

n and a new coverage estimate p(cl | Dl
n),

given by equation (12), the new voxel’s belief is

p(cl | Dl
n) =

p(Dl
n | cl).p(cl)
p(Dl

n)
= β1.p(cl).p(Dl

n | cl) (18)

= β1.p(cl).
n∏

j=1

p(Dl
j | cl) (19)

= β1.p(cl).
n∏

j=1

p(cl | Dl
j).p(D

l
j)

p(cl)
(20)

= β1.β2.

n∏
j=1

p(cl | Dl
j) = β1.β2.p(cl | Dl

n).p(cl | Dl
n−1).

(21)

Applying Bayes rule, we obtain (18). Then, if we assume that
consecutive measurements are independent given the voxel’s
coverage, we obtain (19). Applying again Bayes rule, we
obtain (20). If we assume that p(Dl

j) is constant with j, we
finally obtain (21). The constants β1 and β2 ensure that the
left-hand side sums up to one over all cl. Note that for n = 1
equation (21) uses the initial belief p(cl | Dl

0), D
l
0 = ∅.

Consider a set of nk−1(l) measurements Dl
k−1 =

{Dl
1, . . . , D

l
nk−1(l)

}, influencing the coverage estimate of a
voxel l ∈ Y until the (k−1)-th batch of measurements, and the
respective voxel’s belief p(cl | Dl

k−1). When the sensor pro-
vides the k-th batch of measurements Mk, some measurements
are eventually appended to the set Dl

k−1, which yields a new
set of measurements Dl

k = Dl
k−1 ∪ {Dl

nk−1(l)+1, . . . , D
l
nk(l)}

having cardinality nk(l) > nk−1(l). Using recursively equa-
tion (21), the voxel’s coverage belief after the k-th batch of
measurements can be computed as

p(cl | Dl
k) = β3.

[ nk(l)∏
j=nk−1(l)+1

p(cl | Dl
j)

]
.p(cl | Dl

k−1), (22)

wherein β3 is a normalization constant.
3) Special case of updating Gaussians: At the beginning

of the mapping process, each voxel has a Gaussian coverage
belief, typically having high entropy. As our sensor model
(12) is also Gaussian, when the first influencing measurement
Dl

1 comes, equation (21) involves the multiplication of two
Gaussians. It can be easily shown that given two Gaussians
p(cl | Dl

n−1) = N(µ1, σ1) and p(cl | Dl
n) = N(µ2, σ2), their

product yields a Gaussian multiplied by a constant:

p(cl | Dl
n−1).p(cl | Dl

n) =
1
β
.N(µ, σ), (23)

µ =
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

, (24)

σ =
σ1σ2√
σ2

1 + σ2
2

, (25)

β =
√

2π(σ2
1 + σ2

2) exp

[
(µ1 − µ2)2

2(σ2
1 + σ2

2)

]
. (26)

Comparing equations (21) and (23) we conclude that: up-
dating the coverage belief of a voxel between consecutive
influencing measurements is as simple as computing the
parameters of a new Gaussian through equations (24) and (25);
and the normalization constant is β1.β2 = β, with β given by
equation (26). This simplicity of computation is a consequence
of the Gaussian nature of sensor model and our careful choice
of an initial coverage belief. While in [2] the coverage belief
of a cell was represented through histograms with b bins (b is
typically more than 10), in our case we represent the voxel’s
coverage belief as a Gaussian, which is fully characterized
by just two parameters: µl and σl. Thus, in the map (5) we
have to store only two values for each voxel, which is a much
more compact representation than a histogram. Moreover, our
voxel’s update procedure is very efficient and we can still build
histograms upon the pdf with an arbitrary number of bins.

III. ENTROPY GRADIENT-BASED EXPLORATION STRATEGY

In an exploration mission, the objective is to acquire as
much new information about the environment as possible
with every sensing cycle. When a robot has to select a new
viewpoint for acquiring data through its sensor, we claim that
the robot’s sensor should be directed to regions having higher
magnitudes of entropy gradient and low expected coverage,
in the neighborhood of the robot. This strategy drives the
robot’s sensor to frontier voxels between more explored and
less explored regions, so as to maximize the information gain
of new acquired data.

Although our method can be applied to a 6 DOF robot,
we’ve been mainly interested on using it on ground mobile



robots with 3 DOF, whose sensor’s motion is instantaneously
restricted to a plane Γ parallel to the robot’s motion plane (e.g.
the floor plane). For this reason, voxels near to that plane are
preferable to be explored. Consider the current robot’s pose
Y = (x,a), being x its current position and a = {θ, φ, ψ}
its orientation. Given a robot’s coordinates frame {R}, which
is obtained from the global (absolute) coordinates frame {W}
after translation and rotation, the robot’s motion plane Γ is
defined by two orthogonal axes: a longitudinal axis p̂′ =
[1, 0, 0]T , which is the unitary vector along xx axis, and a
transverse axis q̂′ = [0, 1, 0]T , which is the unitary vector
along yy axis; for example, for an UAV, p̂ would be the axis
between tail and head, and q̂ would be the axis connecting the
wings. It can be shown that the robot’s axes can be expressed
in the global coordinates frame {W} as

p̂ = [cos θ. cosφ, sin θ. cosφ, − sinφ]T , (27)

q̂ =


 cos θ. sinφ. sinψ − sin θ. cosψ

sin θ. sinφ. sinψ + cos θ. cosψ
cosφ. sinψ


 . (28)

The angles θ, φ and ψ are the yaw angle, the pitch angle and
the roll angle, respectively, and are assumed to be positive in
the counterclockwise direction. Note that axis p̂ can also be
viewed as the robot’s sensor gaze direction. Any vector −→u can
be projected on the robot’s motion plane Γ as

proj
Γ

−→u = (−→u · p̂)p̂ + (−→u · q̂)q̂, (29)

wherein (·) denotes the internal product of two vectors.
Let denote the applied vector connecting the robot’s sensor

position x ∈ R
3 to the center of voxel l as −→u (x, l) = w(l)−

x. Given a neighborhood around the current robot’s sensor
position with radius ξ, its new position is selected as the center
of a voxel belonging to the set of voxels

NΓ(x, ξ) = {l ∈ Y, ‖−→u (x, l)‖ ≤ ξ, l = v(proj
Γ

w(l))}.
(30)

Let define the map’s entropy after the k-th batch of mea-
surements as

H(C | Mk) =
∑
l∈Y

H(Cl | Mk). (31)

This is a measure of the map’s uncertainty, wherein H(Cl |
Mk) denotes the discrete entropy of each voxel l at t = tk.
The 3-D grid Y discretises the 3-D space R

3 at discrete points
w(l), l ∈ Y , equally spaced by ε (the voxel’s edge). The
3-D map enables us to associate with each of these points
an entropy H(l) = H(Cl) given by equation (17), therefore
we might say that a continuous entropy field H : R

3 → R

is sampled along the centers of the voxels belonging to the
grid Y . The exploration strategy that we propose claims that
the robot’s sensor should be directed to regions in the neigh-
borhood of the robot, having higher magnitudes of entropy
gradient

−→∇H , and that are more likely unoccupied. Let lΘ−
denote the contiguous voxel to l in the negative direction of

axis Θ. A reasonable (first order) approximation to the entropy
gradient at the center of a voxel l is

−→∇H(l) ≈ 1
ε
[H(l)−H(lx−), H(l)−H(ly−), H(l)−H(lz−)]T .

(32)
The projection of the voxel’s entropy gradient on the robot’s
sensor motion plane Γ is

−→∇HΓ(l) = proj
Γ

−→∇H(l), (33)

with magnitude
∥∥∥−→∇HΓ(l)

∥∥∥. If the center of a voxel l ∈
NΓ(x, ξ) is selected to be the next robot’s selected position
xs, our method claims that the robot should select the gaze
direction a(l) defined by the unitary vector

p̂(l) =
−→∇HΓ(l)∥∥∥−→∇HΓ(l)

∥∥∥ ,
−→∇HΓ(l) �= −→

0 . (34)

Accordingly with our exploration strategy, being E(Cl) the
expected coverage of a voxel l ∈ Y , and given the set of voxels
NΓ(x, ξ) in the robot’s neighborhood, the robot’s sensor is
directed to the voxel

ls = argmax
l∈NΓ(x,ξ)

(∥∥∥−→∇HΓ(l)
∥∥∥.[1 − E(Cl)]

)
, (35)

with a gaze on arrival defined by the unitary vector p̂(ls). If
the gradient-based criteria is not conclusive, the robot should
wander randomly until that condition is not verified.

IV. EXPERIMENTS WITH A REAL ROBOT

The 3-D mapping framework presented in previous sections
was used for carrying out experiments with a real mobile
robot in our lab. The experiments were performed until the
map’s entropy, computed through equation (31), was reduced
below a given predefined threshold Hth. This stopping criteria
has an important associated performance measure for the 3-D
mapping mission, which is the time instant tkmax when it is
achieved. This time instant verifies the proposition

H(C | Mkmax) ≤ Hth ∧∀k<kmax , H(C | Mk) > Hth, (36)

which states that the kmax-th batch of measurements is the first
one for which the map’s entropy falls below the threshold.

The mobile robot (see Fig. 3-a) is a Scout robot equipped
with sonars, stereo-vision and wireless communication. Sonars
are used for detecting obstacles when moving the platform,
and for preventing the robot to acquire stereo image pairs
below a given distance threshold to obstacles. The stereo-
vision sensor (see bottom of Fig. 3-a) is a small, compact,
low-cost analog stereo rig, with resolution 160x120 pixels.
For computing range data from stereo images, we use the
Small-Vision System (SVS) v2.3c, a stereo engine from SRI
International (see Fig. 3-b for an example of a depth map
yielded by the SVS engine). After calibrating the stereo-
vision sensor, we determined the sensor model parameters:
σmin = −0.06 mm, ζ = 3.75 × 10−3 and τ = 2 m.
The robot is localized through a RGB camera covering the



robot’s workspace within our lab. The colored markers on
the top of the robot’s platform are used for determining the
robot’s pose in the global reference frame {W} through a
color segmentation algorithm, which runs in a remote PC.

(b) (a) 

Fig. 3. Example of a depth map yielded by stereo-vision sensors: (a) the
Scout robot (top) and its stereo-vision sensor (bottom); (b) an example of a
stereo image pair (top) and the respective disparity map (bottom, left) and
depth map (bottom, right).

Our robot was used to build a 3-D map of a volume in
our lab., covering approximately 12.2 m3 with a resolution
ε = 0.1 m. The initial map had entropy H(Cl | M′) =
11.167 × 104 bits, wherein every voxels l ∈ Y had the
maximum entropy (7 bits, for b = 128). We used the stopping
criteria Hth = 3 × 104 bits. Fig. 4-a shows the map at
three different instant times, showing that the map improved
gradually as long as the map’s entropy decreased until the
final (best) 3-D map (bottom of the figure). The robot needed
tkmax = 9289 s to accomplish the mission without any human
intervention, and had to travel a distance of about 72 m. A
significant part of the final map’s entropy (44%) is due to
unexplored voxels located behind the walls, which the robot
would never be able to sense. If we discount this entropy
bias, the final map yields an entropy decrease of 84% when
compared with the initial map. Fig. 4-b presents the final map
from different viewpoints.

V. CONCLUSION

Most of the previous research on building maps has been
restricted to models without an explicit representation of
the map’s uncertainty. This article presented innovative work
related with developing a probabilistic model for 3-D mapping,
which uses information theory to formally represent uncer-
tainty. We presented a straightforward method to build a 3-D
grid map, a sensor model for a range sensor providing distance
information, a Bayesian inference procedure to update the cov-
erage belief of each cell, and an entropy gradient-based survey
strategy. Experimental results obtained with a real robot and
stereo-vision successfully validated the proposed framework.
We are currently extending it to perform volumetric mapping
with teams of robots (more than one), as a means to drastically
reduce the mission time through cooperation and coordination.
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