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Abstract—Probabilistic inference allows artificial systems to
cope with uncertainty, but it can be computationally demanding.
Inspired by biological neural systems, stochastic arithmetic mod-
ules on reconfigurable hardware can provide massively parallel
systems with limited resources. This work presents a framework
to automatically implement Bayesian Machines to perform com-
putations using stochastic bitstreams.

I. INTRODUCTION

Biological neural systems excel in robustness and power-
efficient operation, despite relying on low-precision, unreliable
and massively parallel neural elements. However, they have
highly reconfigurable and plastic connections, capable of self-
organising driven by a template based architecture [1].

Probabilistic modelling approaches allow artificial systems
to cope with the uncertainty and incompleteness inherent to
the knowledge regarding a particular phenomenon, much as
the human brain does. Moreover, these models can be designed
and even implemented in a hierarchical fashion [2], [3].

The Bayesian programming paradigm [3] allows the spec-
ification of Bayesian models in broad sense. Using the ProBT
API [4], questions can then be “asked” to the model about the
phenomenon, generating specific Bayesian Machines (BMs)
implementing the computation specification corresponding to
the desired probabilistic inference process. However, for many
practical applications for which inference is needed, Von
Neumann machines present performance, power and area bot-
tlenecks, making them costly and inefficient. To overcome that,
stochastic arithmetic has emerged as an alternative providing
approximate computations requiring less hardware and energy,
towards a neuromorphic solution with simpler but massively
parallel components [5], trading off precision for computation
time. Previous research has addressed the use of stochastic
arithmetic units in neuromorphic systems [6], [7], image
processing [8] and inference [9].

Combining the trade-offs of stochastic computing, be-
tween precision and computation time, with the regularity of
probabilistic computations and the fine-grain parallelism from
reconfigurable logic hardware (FPGAs), we have developed a
framework to explore the design space and implement such
Bayesian Machines (Fig. 1). In this paper, we will show how
it can be used to translate a probabilistic formulation into a
specification of a circuit to be implemented on an FPGA. In
the following sections, we describe the fundamentals of the
developed framework and its evaluation.

BM Specification Circuit Evaluation
Simulation —> & Analysi
Stochastic Arith Lib & Synthesis nalysis

Fig. 1. Flow of the proposed framework to synthesise and evaluate
probabilistic computations on FPGAs using stochastic computing.

II. FROM A QUESTION TO A BAYESIAN MODEL TO A
CIRCUIT

A BM uses probability distributions to perform inference:
its inputs consist of distributions that represent soft evidence
concerning random variables corresponding to observations,
which are then processed in a chain of computations that
include distributions encoding information about the modelled
phenomenon, and which outputs soft evidence concerning the
unknown random variables of interest.

Consider a case-study example of a BM generated from
a joint probability distribution on a set of discrete and finite
variables: P(M A D A L), where M, D and L are themselves
conjunctions of variables, e.g. D = D A...ADjy. Additionally,
consider that soft evidence is defined for variables Dy as
probability distributions P(Dy), to be used as inputs for the
BM, and that we wish to infer P’(M). Let us now imagine
that the model is specified using the Bayesian Programming
paradigm. ProBT can then be used to produce an internal
simplification of a question to a model which minimises the
computational load by reducing the number of sums according
to the structure of the joint distribution. The algorithm used
by ProBT to produce this simplification is the SRA [4], an
algorithm similar to the sum-product algorithm. For example,
assuming the joint distribution is described as P(M A Dy A
Dy) = P(M)P(D;y | M)P(Dy | M), the SRA will transform
the question to the Bayesian model into:

PI(M) = PO PIDDP(Dy | M)(S2 P(D)P(Ds | M) ()
D1 Dy

Since discrete variables are being used, and given that the
aforementioned computation relies on a regular set of sums
and multiplications, this can be efficiently implemented by
exploiting the parallelism offered by the FPGA. Figure 2 shows
the RTL for the synthesised VHDL given the specification for
the aforementioned problem.

III. STOCHASTIC ARITHMETIC UNITS ON FPGAS

Previous work on stochastic computing involving bit
streams has been presented in [10] and [11]. Based on these
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Fig. 2. Block Diagram of the Bayesian Machine, instantiating stochastic
adders and multipliers.
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Fig. 3. Block Diagram of the stochastic multiplier (top) and adder (bottom)
with 3 inputs.

architectures, and in the fact that the aforementioned proba-
bilistic problems are based on addition and multiplication, the
proposed framework creates the set of stochastic arithmetic
units required by the problem under consideration. They are
then instantiated by the Bayesian Machine design.

The implementation of the stochastic arithmetic units tar-
geting FPGAs, offers implementation of computations on bit
streams, requiring less resources. Furthermore, they also allow
to parallelize computations, which contributes to decrease the
computing time, and increase the efficiency of total number
of computations per device per second. Figure 3 shows the
block diagram, or RTL, for a 3-input stochastic multiplier and
adder. The stochastic multiplication corresponds to the AND
of all stochastic inputs. Addition is obtained via a MUX of the
stochastic inputs, selected using a cyclic counter.

The proposed framework includes a test platform to test
any BM generated by it, using the stochastic arithmetic units.
This platform generates all the stimulus signals required by
the circuit under test, and produces conversion of the results
to be read. This test platform is described in VHDL, and is
synthesized to configure a Cyclone IV FPGA, from Altera,
present on the DE2-115 board, from Terasic. It can be easily
adapted to any other reconfigurable platforms.

Figure 4 depicts the block diagram of the test circuit, used
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Fig. 4. Top level architecture of the circuit design to test the Bayesian
Machines, including the supporting units.
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to test the BMs. The units for the generation of the stochastic
inputs (bin2sto) from binary values stored in memory. The
result converter (sto2bin) and its storage. The Finite State
Machine (FSM) controls the test process.

IV. CONCLUSIONS AND FUTURE WORK

This contribution presents a generic framework to imple-
ment and test Bayesian Machines to compute questions to
Bayesian models. Future work involves analysis and modelling
of the results through mathematical expressions as well as
performing a complementary study on the tradeoffs between
the size of the bitstream, errors, processing time and resources.
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