
Cognitive Computation: a Bayesian Machine
Case Study

Marvin FAIX,
Emmanuel MAZER

LIG - Université de Grenoble, France
Email: marvin.faix@inria.fr
emmanuel.mazer@inria.fr

Raphaël LAURENT,
Mohamad OTHMAN ABDALLAH,

Ronan LE HY
ProbaYes, Grenoble, France

Email: raphael.laurent@probayes.com

Jorge LOBO
Institute of Systems and Robotics
University of Coimbra, Portugal

Email: jlobo@isr.uc.pt

Abstract—The work presented in this paper is part of the
BAMBI project, which aims at better understanding natural cog-
nition by designing non Von Neumann machines with biologicaly
plausible hardware. Probabilistic programming allows artificial
systems to better operate with uncertainty, and stochastic arith-
metic provides a way to carry out approximate computations with
few resources. As such, both are plausible models for natural
cognition. Our work on the automatic design of probabilistic
machines computing soft inferences with an arithmetic based
on stochastic bitstreams allowed us to develop the following
compilation toolchain: given a high level description of some
general problem (typically to infer some knowledge from a model
given some observations), formalized as a Bayesian Program,
our toolchain automatically builds a low level description of
an electronic circuit computing the corresponding probabilistic
inference. This circuit can then be implemented and tested on
reconfigurable logic. We designed as a validating example a circuit
description of a Bayesian filter solving the problem of Pseudo
Noise sequence acquisition in telecommunications.

I. INTRODUCTION

The present study is a subproject of BAMBI (Bottom-
up Approaches to Machines dedicated to Bayesian Inference
(www.bambi-fet.eu): a European collaborative research project
relying on the theory of Bayesian inference as a tool to
understand natural cognition and aiming at designing bio-
inspired computing devices. The main hypothesis underpinning
the project is that, since living beings are using energy efficient
information processing systems able to cope with uncertainty,
Bayesian models may account for some of their abilities at the
macroscopic level. For example, Bayesian models for language
learning, behavior prediction or decision making are numerous
in human studies [1]. Indeed, effective perception and decision
making need to take into account the intrinsic incompleteness
of any world representation. This can be done optimally with
Bayesian inference [2]. Complementary to these rather macro-
scopic approaches, the bottom-up approach adopted within the
framework of BAMBI is to study how probabilistic inference
can be made at the biochemical scale and how biochemical
cascades of cell signaling can perform the necessary proba-
bilistic computations [3]. The BAMBI project includes test-
ing these hypotheses on Chlamydomonas reinhardtii, a well-
studied mobile unicellular microalga. Should our hypothesis
hold, then we further conjecture that probabilities are coded
with binary telegraphic signals: this is supported by the fact
that the extremely fast conformation transitions of alosteric
molecules, which govern the exchange of information inside

the cell, can be modeled by Poisson processes.

Extending this bottom-up approach to artifacts, the goal of
the project is to design electronic machines based on similar
principles. Here are the objectives that we set for such a
machine: it needs to take into account the uncertainty of its
inputs, to be fault tolerant, and to meet low power needs.
The purpose of this paper is to present our initial solution:
we automatically generate electronic circuits to carry out
Bayesian inference, which are based on the temporal coding
of probability values as bitstreams, run without floating point
unit arithmetic, and are very lightened in terms of electronic
components. As an illustrating example, we selected the design
of a Bayesian filter which devises categories out of a noisy
temporal series.

The paper is organized as follows. After presenting similar
approaches in the literature, we show how Bayesian Programs
are used to specify inferences and how we compile them into
specifications for the appropriate circuit. We present a set
of logic operators to perform the arithmetic operations with
stochastic logic. Then we describe our toolchain that starts
with a Bayesian Program and generates a hardware description
program in VHDL (VHSIC Hardware Description Language,
where VHSIC stands for Very High Speed Integrated Cir-
cuit) describing the corresponding Bayesian inference machine
which has been implemented and tested on reconfigurable
logic hardware: FPGA (Field-Programmable Gate Array). We
illustrate the working of the obtained machine on a simple
inference example, which allows to highlight a fundamental
problem with the temporal coding of probabilities: the time
dilution of probabilities during the inference process. A solu-
tion to this problem is presented and illustrated through a more
complex example: the design of an electronic implementation
of a Bayesian Filter aimed at solving the problem of Pseudo
Noise sequence acquisition in telecommunications.

II. RELATED WORKS

Probabilistic inference and learning are now used in many
applications ranging from robotics [4][5][6] to cognitive mod-
eling [1] and machine learning [7]. Designing a general
purpose and high level language to program these applications
has been an objective for many research teams. One particular
aspect of this research is the design of probabilistic languages
where inference and learning are built within the interpretor
of the language itself: ProBT[8][9], Figaro[10], Blog[11] are a

www.bambi-fet.eu

few examples of such programming languages. One emerging
goal is to build dedicated hardware to interpret these lan-
guages and perform fast probabilistic inferences using energy
efficient hardware. For instance, the works of Vigoda [12],
Mansinghka[13] and Jonas [14] describe hardware architec-
tures dedicated to probabilistic inference.

Vigoda [12] uses continuous time analog circuits. Analog
values represent probability values and his architecture derives
from the message passing algorithm [15] to propagate uncer-
tainty and compute the probabilistic inferences. Unlike Jonas
[14] and Mansinghka[13], Vigoda’s system performs exact in-
ferences by analog means. Mansinghka was both interested in
the programming and in the design of probabilistic machines.
He first designed the probabilistic programming language
Church [16] and showed how to compile the specification
written in Church into an electronic circuit. Mansinghka [13]
followed by Jonas [14] performed approximate inference by
using samplers to represent probability distributions and by
using Metropolis like algorithms.

Contrary to these approaches, we choose to use a stochastic
arithmetic to perform the algebraic operations required by
probabilistic inference. This is motivated by our bio inspired
approach to use stochastic time coding sequences for repre-
senting probabilities.

Early in 1956, Von Neumann [17] had already considered
the design of a computer based on probabilistic arithmetic but
it is in 1967 that Gaines [18] popularized the term stochastic
computing. The simplicity of the involved logical arithmetic
operations (additions and multiplications) is one of the main
strength of this approach, but computation time and accuracy
of the results held back the development of advanced prob-
abilistic hardware. However, the use of probabilistic models
of computation is nowadays experiencing a renewed interest
from the scientific community. Indeed, a major advantage of
inherently probabilistic circuits is that they are more robust,
fault tolerant and that they can be used to compute any function
(see for instance [19][20]). A simple argument supports this:
with a standard representation of a probability value, if a
bit-flip occurs on the most significant bit, then the result
is very different from the original value. With a bitstream
representation, each bit has the same weight. This means that
a bit-flip is much less important for the result, and several
bit-flips may compensate one another, which makes bitstream
representations of probability values intrinsically more robust
to noise.

Besides, some designers are also using probabilities to
lower the voltage and thus the power supply of such circuits.
For example, the PCMOS [21] project uses a probabilistic
extension of the boolean logic to limit the global error due to
the probabilistic behaviour of individual logical components.

Our work shares some common objectives with the IBM
TrueNorth project [22] as both aim at designing non-von
Neumann bio-inspired energy efficient information process-
ing systems. TrueNorth proposes a neuromorphic architecture
where the building blocks are neurons which are implemented
in a rather classical way (they use fixed point arithmetic units
to compute a neuron’s output from its inputs with various
neural activation codes: binary, rate, population, and time-to-
spike). The approach of the BAMBI project differs from this

in at least two ways. First, we follow Jayne’s idea that the use
of probabilities is a natural candidate to handle the uncertainty
inherent to any subjective reasoning [2], which we do within a
well defined formalism [9]. Indeed, probabilities are central to
our work, and in this paper we describe the automatic design of
hardware realizing probabilistic computations with a stochastic
arithmetic based on a temporal coding of probabilities. Sec-
ond, our bio-inspiration comes from the nanoscopic scale (as
opposed to microscopic for neurons) where it has been shown
by studying intracellular messaging how simple biochemical
interactions underlie simple probabilistic inferences [3].

III. FROM BAYESIAN PROGRAMS TO HARDWARE
IMPLEMENTATIONS OF BAYESIAN MACHINES

A. Specifying a Bayesian Machine from a Bayesian Program

A Bayesian machine can be rigorously defined within
the Bayesian Programming formalism [9]. Such a machine
computes soft inferences by taking probability distributions as
inputs, which are called soft evidences, from which it computes
the output probability distribution. We have designed a com-
piler allowing to compute an electronic circuit implementation
of any such Bayesian machine from a specification written in
the language ProBT [8][9]. We give here an example of such
a definition, which will be used later in the paper.

We consider a joint probability distribution on a set of
discrete and finite variables: P (M ∧ D ∧ L). Where M,D
and L are themselves conjunctions of variables, for example
D = D1 ∧ . . . ∧ Dk. We define the soft evidences on the
variables Dk as the probability distribution P̃ (Dk). These
soft evidences will be the inputs of the Bayesian machine.
Given the soft evidences P̃ (Dk) and the joint distribution
P (M ∧D∧L), we ask the machine to compute the probability
distribution over M , which is done by Bayesian inference:

P ′(M) =
1

Z

∑

D1

P̃ (D1) . . .
∑

Dk

P̃ (Dk)
∑

L

P (M ∧D ∧ L) , (1)

where Z is a normalization constant:

Z =
∑

M

(∑

D1

P̃ (D1) . . .
∑

Dk

P̃ (Dk)
∑

L

P (M ∧D ∧ L)

)
. (2)

In other words, the machine computes a soft inference based
on the joint probability distribution P (M ∧D ∧ L).

The Bayesian machine is defined by writting specifications
of its joint probability distribution, inputs and output in the
ProBT language [8]. Figure 1 shows the simple specification
of our example using the Python bindings of ProBT1. This pro-
gram expresses explicit conditionnal independance hypotheses
allowing to simplify the computation of the joint probability
distribution (see figure 1, line 21):

P (M ∧D1 ∧D2) = P (M)P (D1|M)P (D2|M) .

It also specifies the output M and the inputs D1 and D2 of the
machine. No latent variables L are given in this example but
they can be handled too (see the filter example in section IV).

The last instruction of this program will produce an in-
ternal simplification of expression (1) which minimizes the

1A free version of ProBT is available at http://www.probayes.com/
fr/Bayesian-Programming-Book/downloads/.

http://www.probayes.com/fr/Bayesian-Programming-Book/downloads/
http://www.probayes.com/fr/Bayesian-Programming-Book/downloads/

1 # import the ProBT bindings
from pypl import *
define the variables
dim3 = plIntegerType(0,2)

5 D1 = plSymbol(’D1’,dim3)
D2 = plSymbol(’D2’,dim3)
M = plSymbol(’M’,dim3)
define the distribution on M

9 PM = plProbTable(M,[0.8,0.1,0.1])
define a conditional distribution on D1
PD1_k_M = plDistributionTable(D1,M)
PD1_k_M.push(plProbTable(D1,[0.5,0.2,0.3]),0)

13 PD1_k_M.push(plProbTable(D1,[0.5,0.3,0.2]),1)
PD1_k_M.push(plProbTable(D1,[0.4,0.3,0.3]),2)
define a conditional distribution on D2
PD2_k_M = plDistributionTable(D2,M)

17 PD2_k_M.push(plProbTable(D2,[0.2,0.6,0.2]),0)
PD2_k_M.push(plProbTable(D2,[0.6,0.3,0.1]),1)
PD2_k_M.push(plProbTable(D2,[0.3,0.6,0.1]),2)
define the joint distribution

21 model = plJointDistribution(PM*PD1_k_M*PD2_k_M)
define the soft evidence variables
model.set_soft_evidence_variables(D1^D2)
define the output

25 question = model.ask(M)

Fig. 1. Specification of a Bayesian Program using the python bindings for
ProBT. It is comprised of the variable definitions, the definition of the joint
probability distribution over all considered variables as a product of simpler
distributions (see line 21), the specification of values for the parameters of
these distributions, and a question asked to the model (see line 25), which
will be solved by Bayesian inference.

computational load by reducing the number of sums according
to the structure of the joint distribution. The algorithm used
to produce this simplification is the Successive Reductions
Algorithm (SRA) [8], which is an algorithm similar to the sum-
product [15] algorithm. For example, in the program above,
since the joint probability distribution is specified as

P (M ∧D1 ∧D2) = P (M)P (D1|M)P (D2|M) ,

the SRA will transform equation (1) into:

P ′(M) =
1

Z
P (M)(

∑

D1

P̃ (D1)P (D1|M))(
∑

D2

P̃ (D2)P (D2|M)) .

(3)

Figure 2 presents the high-level representation of the ar-
chitecture for the Bayesian Machine. It comprises the main
stochastic machine along with the True Random Generators
(TRNG) [23] generating the stochastic bitstreams encoding the
probability values of the constants considered in the problem.
While TRNGs normally produce uniform bitstreams, they are
biased so as to output the desired probability values. These
constants represent the knowledge encoded in the model.

B. Basic Stochastic Logic Arithmetic

It is a general result of Bayesian inference that any prob-
ability distribution can be computed from the decomposition
of the joint probability distribution (yielding results similar to
the example shown in equation (3)) and that this computation
only involves standard mathematical operators: multiplication,
addition and division. The ease of implementation of such
operators, with a representation of the probability values as
bitstreams, is precisely a key strength of using a probabilistic

Biased TRNGs

P (M) P (D1|M) P (D2|M)

1
Z
P (m0)(

∑
D1

P̃ (D1)P (D1|m0))(
∑

D2
P̃ (D2)P (D2|m0))

1
Z
P (m1)(

∑
D1

P̃ (D1)P (D1|m1))(
∑

D2
P̃ (D2)P (D2|m1))

1
Z
P (m2)(

∑
D1

P̃ (D1)P (D1|m2))(
∑

D2
P̃ (D2)P (D2|m2))

P ′(M |P̃ (D1)P̃ (D2))11000101100

11000101100

11000101100

P̃ (D1)

P̃ (D2)

Fig. 2. The probabilistic machine corresponding to the given program: its
inputs are the soft evidences (arrows incoming from the left) and its output
is the probability distribution over the variable of interest M . The probability
values of the internal parameters of the terms of the joint distribution are
set by a set of TRNGs (True Random Number Generators) and the symbolic
expression used to compute the inference is produced by the SRA algorithm.

arithmetic. In this section we show how these probabilistic
operators can be implemented so that their output bitstream
encodes the appropriate probability values.

1) Stochastic Bitstreams and Stochastic Buses: Stochastic
bitstreams may be used to code rational numbers in the interval
[0, 1]. If we observe a bitstream of length N and count the
number N1 of bits set to one, the bitstream will code for cj ∈
[0, 1] if N1

N → cj when N →∞.

A set of n stochastic bitstreams implicitly code for a
probability distribution over a discrete probabilistic variable X
by normalizing the values ci represented by each bitstream:
P (X = xi) = ci∑n

j=1
cj

. So, a probability distribution on a

variable X can be coded with a set of n = card(X) stochastic
bitstreams which form what we call a “probabilistic bus”.

Basic arithmetic operations on stochastic bitstreams can be
done using single logic gates [18] [24].

2) Stochastic Products: Computing a multiplication over
two probability values is easy: it only requires to use an “AND”
gate. Indeed, if two independent bitstreams coding for c1 and
c2 are the inputs of an “AND” gate then the output bitstream
encodes the value c1c2 [19].

3) Stochastic Addition with a Multiplexer: The average of
two stochastic bitstreams can be computed simply as their
multiplexing using a stochastic selector, if they are uncorre-
lated. If n independent bitstreams coding for c1 . . . cn are the
inputs of a multiplexer with a round counter selector, then the

output codes for
∑n

j=1
cj

n : a scaled sum that corresponds to
the average of the inputs. Still, if we use the multiplexer to
add two probability values we have to face the problem of
the time dilution of probabilities. Indeed, if we note b1 and
b2 the bitstream representations of p1 and p2, multiplexing
b1 and b2 produces the output s = p1+p2

2 , and, for n input
signals, s = p1+p2+...+pn

n . Dividing by n reduces the number
of ones in the resulting bitstream. This problem could become
increasingly important if the inference needs nested sums.
For example, if the inference cascades 4 sums with n1 = 5,
n2 = 10, n3 = 8 and n4 = 10 then the result will be divided
by 4000! So the resulting bitstream will have to be observed
for a long time before getting a good approximation of the

probability value encoded in the result. To solve this problem
(encountered while studying the simple application described
in section III-C) we designed another adder using a simple OR
gate combined with a counter.

4) Addition with an “OR” Gate and a Memory: As in
our approach we compute probability distributions, the result
of the summation never exceeds 1, by definition. Since a
probability value is defined as the number of 1 in its bit-
stream representation over the bitstream length, adding two
or several probabilities amounts to counting the number of 1
of each bitstream encoding the probability values. We design
a component specified by the truth table shown figure 3.

inputs output R = 0
00 0 0
01 1 0
10 1 0
11 1 1

inputs output R 6= 0
00 1 R− 1
01 1 R
10 1 R
11 1 R + 1

Fig. 3. The truth tables of a two input OR gate with memory (OR+). In both
tables, the rightmost column contains the updated value of the counter R. For
the left table, the previous state is R = 0 while for the right table, previously
R > 0.

The classical OR gate’s output is 1 if one of the input is
1. A problem arises when two inputs are simultaneously set
to 1. In this case a counter R is incremented. If all of the
inputs are 0, the output is 0 excepted if the counter is different
from 0, then we output a 1 and the counter is decremented.
In other words, we reintroduce the forgotten bits as soon as
it is possible. By adding a counter to a traditionnal OR gate,
we obtain our stochastic adder, which we name OR+, for OR
gate with memory.

C. Initial Evaluation of a simple Architecture

In this section we describe in more detail how equation (3)
is evaluated in terms of logical components and circuit im-
plementation. Each probability distribution of expression(3)
is coded with a probabilistic bus. We distinguish the soft
evidences, which are the inputs of the probabilistic machine,
from the probability distributions defining the joint distribution
over all variables. The inputs may change while the other
distributions are set by the programmer as internal param-
eters when specifying the joint distribution. Biased TRNGs
(True Random Number Generators) are used to produce the
probabilistic buses associated to these distributions (see fi-
gure 2). For example, in expression (3), P (D1|M = m) is
represented by a stochastic bus with three stochastic signals
c0 = k ∗ P (d01|m), c1 = k ∗ P (d11|m) and c2 = k ∗ P (d21|m),
and so, three biased TRNGs are used to produce the stochastic
bitstreams representing c0, c1 and c2.

The compilation itself is done by (i) using ProBT to
compute the formula (see expression (3)) corresponding to
the probabilistic question asked in the Bayesian Program (see
figure 1), and (ii) by parsing the obtained formula to generate a
circuit description performing the necessary sums and products
using standard logic. Since, by nature of Bayesian inference,
the resulting circuit architecture duplicates several times some
subblocks, for the sake of readability we show on figure 4
the subpart of the generated circuit which computes the sub-
expression

∑
D1 P̃ (D1)P (D1|M = m) of expression (3).

This figure is a graphical representation of the VHDL code

generated by the proposed toolchain. More precisely, figure 4
(bottom) shows the RTL (Register Transfer Level) description
generated by the synthesis tool, where it is possible to identify
the connections between the components, corresponding to the
logical circuit in figure 4 (up).

Fig. 4. Stochastic circuit computing 1
3

∑
D1

P̃ (D1)P (D1|m) and the
corresponding RTL (Register Transfer Level) description.

Since the structure of expression (3) is independent of any
particular value m of M , the circuit generated to compute
each output m of M has exactly the same structure. As a
consequence, the weights introduced by the multiplexers will
cancel out during normalisation and P’(M) can be correctly
computed from the outputs.

D. First Validating Results with a Simple Machine

The proposed toolchain is working and accepts any ProBT
program with discrete variables as entry. The toolchain gen-
erates a VHDL file which is the description of the stochas-
tic circuit and can be implemented on a FPGA (Field-
Programmable Gate Array; a FPGA is a piece of hardware
the logic of which can be configured, which we use so as
to implement our circuit). A Cyclone IV FPGA from Altera
has been targeted as supporting device. A machine has been
synthesized to demonstrate the applicability and scalability
of the proposed toolchain. Besides, ProBT is also used to
compute the exact result using standard arithmetic. This gives
a ground truth allowing to evaluate the results given by the
FPGA implementation of the synthesised VHDL program.
Here we describe preliminary results which were obtained
with software generated random bitstreams, which are less
temporally correlated than what current off the shelf hardware
TRNGs (True Random Number Generators) produce.

We simulate the computations carried out by the electronic
circuit resulting from the compilation of the Bayesian Program
described by figure 1. As probability values are represented
as bitstreams, the length of the streams, i.e. the number of
bits used to encode a probability value, obviously has a
direct impact on the precision of the encoded values and
consequently on the precision of the computations realized
by a given circuit. The goal of the following simulations is
twofold: (i) to validate the fact that the circuits generated by
our toolchain that compiles Bayesian Programs into hardware
representations correctly outputs electronic circuits computing
the appropriate results, and (ii) to quantify the impact of the
bitstream length on the precision of the overall computations.

To simulate the circuit computations we need to specify
two sets of probability values. First, the internal parameters of
the model: the parameters of the terms of the joint distribution
encoding the model knowledge relevant for the inference
computed by the considered circuit. These parameters are
hardcoded into the circuit once and for all. Second, the circuit
inputs: probability distributions encoding soft evidences, i.e.
probability distributions quantifying a relative confidence over
observations. These inputs are variables which may change
over time. All these parameters are set as is shown table I.

Internal parameters
name P (d0

1|m
0) P (d1

1|m
0) P (d2

1|m
0) P (d0

1|m
1) P (d1

1|m
1)

value 0.2 0.3 0.5 0.3 0.2

Internal parameters
name P (d2

1|m
1) P (d0

1|m
2) P (d1

1|m
2) P (d2

1|m
2)

value 0.5 0.4 0.3 0.3

Inputs
name P̃ (d0

1) P̃ (d1
1) P̃ (d2

1) P̃ (d0
2) P̃ (d1

2) P̃ (d2
2)

value 0.8 0.1 0.1 0.8 0.1 0.1

TABLE I. THE MODEL INTERNAL PARAMETERS AND INPUTS USED IN
OUR SIMULATIONS.

Having set these probability values, we simulate the
behavior of the circuit, which computes P ′(M) =
P (M | P̃ (D1) P̃ (D2)), according to the formula shown
equation (3). To compare with the theoretical values obtained
thanks to ProBT, we use the standard Root Mean Square Error
(RMSE) to measure the difference between the best guess
probability as computed by our circuit and its theoretical value.
Figure 5 shows how this error, computed on ten simulations
with different random seeds, evolves when the length of the
simulated bitstreams increases.

Figure 5 shows that the error globally decreases when
the bitstream size increases. This means that our simulated
circuit successfully computes the appropriate values. Still, this
progressive increase in precision of the computed result is
rather slow , and it is necessary to consider streams of several
thousands bits to have errors of less than 1%. Indeed, since
bitstreams of size N drawn to encode a probability value
p are Bernouilli sequences, their variance is σ2 = p(1−p)

N .
This means precision increases at the rate O(1/

√
N), which

is comparable to the data of figure 5.

Table II shows in more detail the outputs of the simulation
which allowed to plot figure 5.

50 200 800
3200

12800
51200

204800

Bitstream size

0.00

0.05

0.10

0.15

0.20

0.25

Er
ro

r (
RM

SE
)

Fig. 5. Evolution of the RMSE as a function of the bitstream length.

bitstream size 50 200 800 3200 12800 51200 204800 reference
P(Best) 0.801 0.723 0.724 0.715 0.714 0.710 0.711 0.711
RMSE 0.21 0.11 0.06 0.02 0.008 0.0034 0.0035 0

TABLE II. CONVERGENCE OF THE CIRCUIT SIMULATION OUTPUTS
TOWARDS THE THEORETICAL VALUE (RIGHTMOST COLUMN).

It is interesting to note three things. First, our error measure
is such that differences in opposed directions do not compen-
sate. As a consequence the average value of the best guess
probability seems to converge faster than the error. Second,
for bitstreams of size 204800, the error is larger than for
bitstreams of size 51200. This might be because we compute
averages on 10 simulations only, which introduces some kind
of noise around the theoretical values. For large bitstream
sizes, the error is low and only this noise is observed. And
third, for small bitstream sizes the error is rather big, but the
corresponding bias is in favor of the most probable answer.
This is because with small stream sizes lower probabilities
are underestimated (for instance, to code a probability value
of 0.1%, it is necessary to have a bitstream of size 1000 to
observe in average one non zero bit). Having this favorable bias
towards most likely outcomes with small bitstreams results in a
system which is “too sure of itself”: it makes faster decisions,
at the cost of low probability events underestimation.

IV. DESIGNING A STOCHASTIC BAYESIAN FILTER

In our previous example, the definition of a probabilistic
bus allowed us to compute the output distribution without
computing the normalization constant Z (see equation (2)).
In addition, we used a simple multiplexer to perform the
sums because the introduced scale factor cancels out during
a posteriori normalization. If cascaded this will lead to a
rapid temporal dilution of each bitstream defining the bus:
the proportion of 1 in the output bistreams will decrease,
which implies the streams need to be analyzed on a wider
time window to perform the normalization (some information
is lost otherwise). In the following sections we show how to
overcome these problems in the general case, and illustrate
our solution with the working example of the design of a
Bayesian filter for Pseudo Noise (PN) sequence acquisition.

First, we recall how PN sequences are produced with Linear
Feedback Shift Registers (LFSRs) and how two LFSRs may
be synchronized using a Bayesian filter. We propose a circuit
implementation of such a filter, including a part allowing
to compute Z and to normalize the resulting probability
distribution, and we simulate this circuit to quantify the speed
at which it can solve the Pseudo Noise acquisition task, for
different transmission error rates.

A. PN sequence acquisition LFSR

The 3G norm commonly used in our mobile phones is
using Pseudo Noise (PN) sequences to spread the transmitted
signal. LFSRs (Linear Feedback Shift Registers) are used to
produce these PN sequences. Before starting the communica-
tion one has to synchronize the LFSRs of both sides while
the transmitted sequence is corrupted by transmitting errors.
This phase is called the PN sequence acquisition [25]. For the
receiving part, the goal is to infer the state of the transmitting
LFSR from a sequence of corrupted bits.

B. A Linear Feedback Shift Register

Figure 6 shows two identical Fibonaci LFSRs with one tap
and four bins. Both implement the same purely deterministic
automaton. Given initial values in the registers Zi (different
from 0000, which is an absorbing state) they will both loop
over a finite sequence of states St = z1z2z3z4 which corre-
spond to the values in the registers. This sequence of states
is known as the PN (Pseudo Noise) sequence. The maximum
number of states the LFSRs can loop over is P = 2n−1, which
makes 15 states for n = 4. If the state St = z1z2z3z4 codes
for an even integer, the system outputs a 0, else it outputs a 1.
Once they are synchronized, the LFSRs can be used to spread
and de-spread any signal so that the transmitted zeros and
ones look like a random bitstream to an outside observer who
is ignorant of the structure of the LFSR used by the emitter.

+

+

+

+

Message CD−CDMA Message

MessageCD−CDMA Message

Transmiter

Reciever

Z1

Z4 Z3 Z2

Z4 Z3 Z2

Z1

Fig. 6. The same LFSR (here with four bins and one tap) is used to encode
the transmitted message and to decode the received message.

C. Mathematical Modeling of the LFSR

The emitting LFSR can be modeled as an automaton or as
a recursive Markov Chain. If we note S the LFSR state and
O the observation of the received bit, the LFSR is defined by
an initial state s0 and the joint probability distribution, which
at any time t is specified as

P (St−1 ∧ St ∧Ot) = P (St−1)P (St|St−1)P (Ot|St) .

Since the automaton is deterministic, P (St−1), P (St|St−1)
and P (Ot|St) are all Dirac distributions, and P (S0) = δs0 .
Getting the state of the transmitting LFSR from a set of
corrupted bits may be accomplished by the following soft
Bayesian filter:

P (ST |P̃T (OT)) = P (ST |P̃1(01) . . . P̃T (0T)) =

1

Z

∑

OT

(P̃T (OT)P (OT |ST))
∑

ST−1

(P ′(ST−1)P (ST |ST−1))

where T denotes the time step of the last observation, and with

P ′(St−1) = P (St−1|P̃t−1(Ot−1)) .

Using e to denote the transmission error rate we further specify
our filter:

P (St|St−1 = s) = δn(s),

P (Ot|St = s) = δOut(s),

P̃Out(s)(Ot) = [1− e, e] if Out(s) = 0 else [e, 1− e],
where n(s) is the successor of state s, δn(s) is a Dirac on
n(s), and Out(s) is the value produced by the transmitting
LFSR in state s. Besides, we set the prior P ′(S0) as a uniform
probability distribution on the initial state. This allows to give
a simpler description of the filter:

P (ST = s|P̃T (OT)) =
1

Z
P ′(a(s))POut(s)(OT) , (4)

where a(s) is the ancestor state of s, that is to say n(a(s)) = s.

D. Circuit Implementation of a Bayesian Filter for LFSR
Synchronization

Figure 7 shows a simplified view of a circuit implementing
a Bayesian filter solving the problem of LFSR synchronization.
The proposed architecture is comprised of two modules: the
Bayesian Machine itself which computes the probability for
the emitter to be in a given state and the Error Modeling
module which uses a constant error signal to produce the
soft evidences according to the received observations from the
transmitting LFSR. For each received bit of the PN sequence,
the Bayesian Machine computes the bitstreams coding for the
probability distribution on the states of the transmitter. Each
element P (St−1) of the output probabilistic bus is normalized
and stored in a FIFO (First In First Out) memory. Initially,
these FIFOs are filled with a random sequence so as to encode
a uniform probability distribution. Afterwards, each time they
receive a new bit, they output the bit that has been stored
the longuest. This compact architecture allows to implement a
filter with a very limited number of CMOS (Complementary
Metal Oxide Semiconductor) gates.

The loop structure of the filter makes it crucial to imple-
ment a way to normalize the inferred probability distribution

Input

t

FIFO

Ouput

Constant Error Signal

j

i1

0

0

1

k=i,j

Received PN Initialization Sequence

a(l)=k

Normalization

P (ST = si)|P̃ (0t)) : Out(Si) = 0

P (ST = si)|P̃ (0t)) : Out(Si) = 1

Bayesian MachineError Modeling

Fig. 7. The architecture of a circuit implementation of a Bayesian filter using
stochastic arithmetic for LFSR synchronization.

on possible states for the emitter (otherwise, since at each
iteration products are computed with probability values, which
are smaller than one, the result converges to a null distribution).
While the value of the normalization constant Z of equation (4)
is given by the formula Z =

∑
s P
′(a(s))POut(s)(OT), the

hard part is to compute the division by Z. For this purpose,
we show that a simple electronic component, the JK flip-flop,
allows to compute a bitstream encoding the probability value
PC = PA

PA+PB
from the two input probabilities PA and PB in

the way shown figure 8.

JK flip-flop truth table
J K Q
0 1 0
1 0 1
0 0 hold
1 1 reverse

Fig. 8. The JK flip-flop used as a stochastic divider to normalize probability
distributions. Hold and reverse respectively mean outputing the same value or
the opposite of the bit produced at the previous clock signal.

If we note PC the probability of any output bit to be 1, the
probability that the output stream switches from 1 to 0 at a
given time is PC((1− PA)PB + PAPB) = PCPB . Similarly,
the probability to observe a transition of the output stream from
0 to 1 is (1−PC)(PA(1−PB)+PAPB) = (1−PC)PA. The
principle of detailed balance states that both switches have the
same expected number of occurences, which can be written as
PCPB = (1−PC)PA, that is to say PC = PA

PA+PB
. While this

does not compute the fraction PA

PB
, it gives a simple way to

normalize a probability distribution over two possible values.

For our LFSR filter, we need to normalize the probability
distribution computed over the 15 possible states of the emitter.
For this purpose, we compute the normalized probability of
state si (see equation (4)) thanks to a JK flip-flop with input
signals PA = P ′(a(si))POut(si)(OT) and PB = Z − PA,
which allows to obtain PC = PA

Z . The normalization constant
Z =

∑
s P
′(a(s))POut(s)(OT) is computed thanks to the OR+

gate we defined in section III-B4. Since this sum involves the

term PA, the substraction of probability values PB = Z −PA

can be implemented by using a XOR gate: PB = Z ⊕PA. To
ensure there is no correlation of inputs PA and PB , we shift
the bitstream encoding the probability value PB of one bit.

Although we designed this normalization process while
working on the LFSR filter, it should be noted that what
we have developped here is a generic way to normalize any
stochastic buffer into a probability distribution.

E. Simulation Results

The Pseudo Noise sequence acquisition circuit (shown
figure 7) has been tested with simulation tools. This first
allowed to observe the effect of a fundamental limit of the flip-
flop we use for divisions: since the computation of each bit of
the output is local and involves at most one previous state, this
component is prone to errors caused by possible correlations
between the inputs, or by temporal autocorrelation of each
input. To avoid such errors, we propose to extend the flip-flop
components by adding a buffer memory. When the flip-flop
should return a value depending on the previous state (inputs
00 or 11 on figure 8), it randomly draws in this buffer instead,
which is a way of resampling the distribution computed so far.

We simulated the LFSR filter circuit to synchronize with
a sequence of 100 input observations, with a bitstream size of
10000 (figure 5 supports this choice) . The circuit computes
1500 divisions (to normalize each of the 15 possible states for
each input). This data is compared to the theoretical values,
and Table III shows a global error measure, the RMSE, as well
as the maximum error which is observed. The case where the

Memory
Size 1 2 4 8 16 32 64 128 256 512

Division
RMSE 0.062 0.058 0.052 0.044 0.034 0.024 0.016 0.012 0.014 0.024

Worst case
Error 0.298 0.287 0.273 0.240 0.201 0.148 0.097 0.066 0.044 0.089

TABLE III. RMSE AND WORST CASE ERROR OF THE JK FLIP-FLOP
DIVIDERS WHEN THE MEMORY BUFFER SIZE INCREASES.

memory size equals one corresponds to the regular JK flip-
flop, which remembers only one previous state, globally has
errors close to be acceptable, but in the worst case can be
off by as much as 30%. Increasing the memory size has the
effect of decreasing both the RMSE and the worst case error,
up to a point where it starts damaging again the precision of
the computations. This happens because the memory which is
used is initialized with random values uniformly chosen, 0 or
1, which introduces some noise at the begining of the compu-
tation (i.e. before the memory content is meaningful). While
with Table III we exhibit clear limitations of the accuracy
achieved by using JK flip-flops to compute bitstream divisions,
the approximation can be good enough for some specific
applications (such as error-correcting codes in factor graphs
[26], although the authors seem unaware that the JK flip-flop
may be unreliable when it comes to bitstream divisions).

Finally, we simulated the behavior of our LFSR circuit on
sequences of 200 observations, with different levels of trans-
mission error: each observation was flipped with a probability
varying between 0 and 30%. We used FIFO memories of size

10000 to store the bitstream representations of P (St−1). 2 At
each step, our circuit receives a bit sent by the emitter which is
corrupted with a probability varying between 0 and 30%, and
computes a probability distribution on the possible states of the
emitter (see figure 7). We define the state recognized by our
circuit as the state having the highest probability according
to this inferred distribution. Table IV shows an analysis of
the comparison of the sequence of recognized states with the
original sequence (i.e. before transmission errors).

Transmission
Error 0% 10% 20% 30%

Correctly
Recognized

States
198 188 184 177

Iterations
Before

Synchronization
2 57 59 64

TABLE IV. CIRCUIT PERFORMANCES VS. TRANSMISSION ERROR.

Our results show that, when there is no transmission error,
synchronization is very fast. Unsurprisingly, it takes more
iterations to correctly guess the transmitter state when the
transmission error increases. For transmission errors above
30%, our circuit still correctly recognizes some states, but
does not seem to converge to the correct state loop. This
is not a problem inherent to the LFSR filter (we carried
exact numerical simulations which converged correctly even
with high transmission errors) but can rather be explained
by the fact that the division computed by the JK flip-flops
we use is currently not stable: it sometimes introduces errors
resulting in a switch of probability peaks after normalization,
which may cause the whole system to desynchronize when the
transmission error probability is too high. Fortunately, we think
that this can be compensated by introducing a way to take into
account a larger time window instead of restricting ourselves
to the current order one Markov model, which decides only
from the current observation and the confidence in the previous
state. Indeed, the fact that even with 40% errors our circuit
correctly guesses a 45 state sequence shows that using more
temporal information will be useful.

V. CONCLUSION AND FUTURE WORKS

We described a compilation toolchain that starts from a
Bayesian Program and produces a circuit performing the speci-
fied inference without using a Von Neumann architecture nor
a floating point arithmetic unit. The machine uses stochastic
arithmetic to approximate the result of exact inference, and
behaves as a fault tolerant circuit which can run at low voltage
with low energy. A non trivial application of this architecture
to Bayesian filters allowed to design a chip able to acquire
the Pseudo Noise sequence from a time series of corrupted
bits. One originality of our approach is to explicitly model the
noise, contrary to more standard approaches where the noise
is an implicit part of the inputs.

Our tool chain actually compiles any Bayesian Program
with discrete variables and produces some hardware solely

2According to the data presented on figure 5, this should provide a rea-
sonnable accuracy. For scalability reasons, in future hardware implementations
these FIFO memories will be replaced by a counter combined with a random
generator to produce a bitstream encoding the appropriate probability value.

based on stochastic arithmetics. We believe stochastic binary
signals are better candidates for bio inspired machines than
analog signals to code for probabilities because they can
reliably convey information over much longer distances. We
presented two new building blocks for stochastic arithmetic.
First, OR+ allows to avoid the time dilution of probabilities
during summations. Second, we devised a convenient and com-
pact way to normalize any probability distribution thanks to a
JK flip-flop extended with a random buffer memory to solve
the problem of the possibly strong temporal autocorrelation of
the inputs.

While the first results of our overall approach presented in
this paper are rather encouraging, there are some difficulties
we will need to address in the future.

(i) For now all the presented circuits use a central clock:
this advocates against their bio inspired nature. One of our
goals is to switch from stochastic bitstreams to asynchronous
telegraphic signals where no central clock is required. This
move may not be so easy to achieve since we may have
to use non CMOS components such as Memristors to deal
with this type of signals. Asynchronous architectures seem
more appropriate to use these new components and to better
correspond to the brain computation way.

(ii) As it stands, our compilation toolchain will compile
any Bayesian Program with discrete variables. This means that
we have to address the problems related to the combinatorial
nature of Bayesian inference: graphical models are well suited
for a moderate number of variables but do not scale. While
the intrinsicly parallel nature of the circuits we generate
allows to win some execution time compared to software
implementations doing exact inference, it comes with a cost:
the time complexity of the sequential software implementation
directly results in a space complexity (in terms of the number
of necessary components, which directly impacts the required
silicium area and power supply) of the parallel hardware
implementation. Because of this, problems with a large number
of variables – or with a few discrete variables with many
different possible values – could turn out to be untractable
in practice. This is why in ongoing work we extended our
design to allow for approximate inferences. For this purpose
we can stick to the time coding of probabilities and perform
rejection sampling.

(iii) Finally, while in this paper we illustrate through
describing a specific application what probabilistic computing
units meant to replace the processing units (CPU, cores, GPUs)
of von Neuman machines could be like, a lot remains to
be said about what equivalents to the classic memory units,
storage space, Input/Output devices, and bus structures could
be like in a complete non von Neumann architecture. Still,
before a more general purpose Bayesian machine is mature,
our preliminary approach of designing Application Specific
Integrated Circuits (ASICs) performing exact inference on
filters with approximate numerical computations is also very
promising because, since Bayesian filters are widely used, it
would lead to many practical applications.

ACKNOWLEDGMENTS

This work was made possible thanks to two grants from
CNRS: Nano-Bayes and Defi-Bayes, and thanks to the EU

collaborative FET Project BAMBI FP7-ICT-2013-C, project
number 618024. We would also like to thank the anonymous
reviewers for their useful comments and specific suggestions.

REFERENCES

[1] J. B. Tenenbaum, C. Kemp, T. L. Griffiths, and N. D. Goodman, “How
to grow a mind: Statistics, structure, and abstraction,” Science, vol. 331,
no. 6022, pp. 1279–1285, 2011.

[2] E. T. Jaynes, Probability theory: the logic of science. Cambridge
university press, 2003.

[3] A. Houillon, P. Bessière, and J. Droulez, “The probabilistic cell: imple-
mentation of a probabilistic inference by the biochemical mechanisms
of phototransduction,” Acta biotheoretica, vol. 58, no. 2-3, pp. 103–120,
2010.

[4] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2005.

[5] P. Bessière, C. Laugier, and R. Siegwart, Probabilistic reasoning and
decision making in sensory-motor systems. Springer Science &
Business Media, 2008, vol. 46.

[6] J. F. Ferreira and J. Dias, Probabilistic approaches to robotic perception.
Springer, 2014.

[7] C. M. Bishop, Pattern recognition and machine learning. springer
New York, 2006, vol. 4, no. 4.

[8] K. Mekhnacha, J.-M. Ahuactzin, P. Bessière, E. Mazer, and L. Smail,
“Exact and approximate inference in ProBT,” Revue d’intelligence
artificielle, vol. 21, no. 3, pp. 295–331, 2007.

[9] P. Bessière, E. Mazer, J. M. Ahuactzin, and K. Mekhnacha, Bayesian
programming. CRC Press, 2013.

[10] A. Pfeffer, “Practical probabilistic programming,” in Inductive Logic
Programming. Springer, 2011, pp. 2–3.

[11] B. Milch, B. Marthi, S. Russell, D. Sontag, D. L. Ong, and A. Kolobov,
“BLOG: Probabilistic models with unknown objects,” Statistical rela-
tional learning, p. 373, 2007.

[12] B. Vigoda, “Analog logic: Continuous-time analog circuits for statis-
tical signal processing,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2003.

[13] V. K. Mansinghka, “Natively probabilistic computation,” Ph.D. disser-
tation, Massachusetts Institute of Technology, 2009.

[14] E. M. Jonas, “Stochastic architectures for probabilistic computation,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2014.

[15] J. Pearl, Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann Publishers Inc., 1988.

[16] N. Goodman, V. Mansinghka, D. Roy, K. Bonawitz, and J. Tenenbaum,
“Church: A language for generative models,” in Proceedings of the
24th Conference on Uncertainty in Artificial Intelligence (UAI), 2008,
pp. 220–229.

[17] J. Von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” Automata studies, vol. 34, pp.
43–98, 1956.

[18] B. Gaines, “Stochastic computing systems,” in Advances in information
systems science. Springer, 1969, vol. 2, pp. 37–172.

[19] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An
architecture for fault-tolerant computation with stochastic logic,” IEEE
Transactions on Computers, vol. 60, no. 1, pp. 93–105, 2011.

[20] P. Li, W. Qian, and D. J. Lilja, “A stochastic reconfigurable architecture
for fault-tolerant computation with sequential logic,” in 30th Interna-
tional Conference on Computer Design (ICCD). IEEE, 2012, pp. 303–
308.

[21] L. N. Chakrapani, B. E. Akgul, S. Cheemalavagu, P. Korkmaz, K. V.
Palem, and B. Seshasayee, “Ultra-efficient (embedded) SOC architec-
tures based on probabilistic CMOS (PCMOS) technology,” in Pro-
ceedings of the conference on Design, automation and test in Europe.
European Design and Automation Association, 2006, pp. 1110–1115.

[22] S. K. Esser, A. Andreopoulos, R. Appuswamy, P. Datta, D. Barch,
A. Amir, J. Arthur, A. Cassidy, M. Flickner, P. Merolla et al., “Cognitive
computing systems: Algorithms and applications for networks of neu-
rosynaptic cores,” in Neural Networks (IJCNN), The 2013 International
Joint Conference on. IEEE, 2013, pp. 1–10.

[23] A. Cherkaoui, V. Fischer, L. Fesquet, and A. Aubert, “A very high
speed true random number generator with entropy assessment,” in Cryp-
tographic Hardware and Embedded Systems-CHES 2013. Springer,
2013, pp. 179–196.

[24] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Transactions on Embedded computing systems (TECS), vol. 12, no. 2s,
p. 92, 2013.

[25] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread
spectrum communications handbook. McGraw-Hill New York, 1994,
vol. 2.

[26] S. S. Tehrani, S. Mannor, and W. J. Gross, “Survey of stochastic
computation on factor graphs,” in Multiple-Valued Logic, 2007. ISMVL
2007. 37th International Symposium on. IEEE, 2007, pp. 54–54.

	Introduction
	Related Works
	From Bayesian Programs to Hardware Implementations of Bayesian Machines
	Specifying a Bayesian Machine from a Bayesian Program
	Basic Stochastic Logic Arithmetic
	Stochastic Bitstreams and Stochastic Buses
	Stochastic Products
	Stochastic Addition with a Multiplexer
	Addition with an ``OR'' Gate and a Memory

	Initial Evaluation of a simple Architecture
	First Validating Results with a Simple Machine

	Designing a Stochastic Bayesian Filter
	PN sequence acquisition LFSR
	A Linear Feedback Shift Register
	Mathematical Modeling of the LFSR
	Circuit Implementation of a Bayesian Filter for LFSR Synchronization
	Simulation Results

	Conclusion and future works
	References

