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Abstract: This paper addresses the geometric modelling
aspects related with the use of a pair of video cameras
. mounted on a six degrees-of-freedom manipulator in an
hand-eye configuration. The information obtained by these
sensors shall be used to generate the depth map of the
environment where the manipulator works. The procedure
to determining the image formation parameters is known
by camera calibration and a method to optimize these
calibration parameters is presented in the paper. After
present the calibration technique used, we develop a
calibration  matrix  invariant to  movement.The
optimization process is applied to this matrix to obtain a
better performance in the numerical data. This
optimization process is the base for a recalibration
procedure that exploits the capability of positioning of the
cameras in different positions within the workspace of the
'bot. The first optimization process used is a recursive
m of the least-squares method and the second is the
salman filter. Experimental results obtained, shows that
the recalibration technique gives some improvement in the
numerical data and stabilizes the calibration matrix along
the different positions of the vision system within the
robot workspace.

L. Introduction

To use a vision system in a robotic system is necessary to
know the transformation between the camera space - 2D
coordinates of the image - and the robot space - 3D
coordinates of the world. If the robotic system is a
manipulator and the vision system is attached to the last
link, this transformation is normally known as hand-eye
transformation. For the use of vision systems in robotics is
fundamental to know this transformation. The evaluation
of it implies to solve the problem of camera calibration.
The problem of camera calibration has been studied since
the beginning of the research on computer vision and is
"¢ process of determining the parameters of the model of
age formation. The solution for this problem passes for
establish the relationship between 3D world coordinates
and their corresponding 2D image coordinates obtained by
sampling the video signal the TV cameras used by visual
system. This relationship is normally expressed by
equations that relates the image coordinates (xpy) with
the three-dimensional world coordinates (x,, ¥, z,)-
Using the pin-hole model for image formation the
calibration process can be divided in two stages: first, the
calibration of the intrinsic parameters and second, the
calibration of the extrinsic parameters of the camera. The
intrinsic parameters describe the geometry of the image
formation and the extrinsic parameters describes the 3D
position and orientation of the camera frame relative to a
world coordinate system. Once these relationships are
known, the three-dimensional information can be inferred
from two-dimensional information using computer vision
techniques like stereo, motion or focus.
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Normally the calibration algorithms proposed in the
literature are for cameras in fixed positions. These
calibration methods can classified into five categories [1Z]:
(1) techniques that involves non-linear optimization; (2)
techniques that uses perspective model for image
formation but use linear approximation for equation
solving; (3) the method of two planes; (4) techniques based
in some geometrical characteristics; (5) the method
proposed by Tsai. Several new calibration techniques are
recently referred [13,14,8] and proposed [5]. In [6] and [5],
is suggested some improvement on the fixed position
calibration techniques for eye-on-hand configurations, by
optimization with Kalman filtering. An algorithm o
calibrate dynamically an eye-on-hand system is presented
in [9]. In this paper is developed a movement invariant
transformation and also a method to improve the
numerical results of this transformation by recursive
least-squares or Kalman filtering and based on the
method proposed by Tsai.

In the next section the image formation process is revised
and the equations that describes and models the physical
process is established. Section three, explains how that
the parameters of the model are determined and in section
four, the invariant form of camera calibration is
developed. Using this invariant form the recalibation
process is explained and, in section five, some
experimental results are presented and analyzed.

2. Camera Mode]

The main problem in camera calibration is to find out,
with a reasonable accuracy, the relative transformation
between the 2D images and the reforential of the threes-
dimensional world. In our case one pair of cameras in a
stereo configuration is placed on the last link of the
manipulator with a referential associated to it and known
as {TOOL}. Two references called {CAM_LEFT} and
{CAM_RIGHTY} are placed in each camera and two more,
{BASE} and {W} are created to represent the referential
of the manipulator and the referential of the world
respectively.

We begin by analyzing the left and right images of a grid
of points whose coordinates in {W} are known. By using
the correspondence between the points in the 3D scene
and the corresponding points in the 2D image we can
write a set of equations that models the image formation

phenomena. The model used is based in perspective
projection and assumes that the lens distortion is radial.

This approach follows the same principle presented by
Tsai [12] for the image formation, and uses the same
relations between the different stages of the image
formation.
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Figure 2 - The image formation model

P=(Xw.Yw,Zw)

Since the model used for each camera is equal, the study
for the left and right cameras is equal and they can be
represented by oné common referential named {CAM]}.
Taking & point p in the three-dimensional space, that
point it is represented in the referential {W} by (x,, ., z.)
and by (x, y, z) in referential {CAM}. The origin of the
referential {CAM} is coincident with the center of the
lens. The image plane is parallel with the plane-xy of the
{CAM]} referential with an f coordinate corresponding to
the focal length along the axis-z. In that image plane, &
oint p of the real world is represented by its projection
4w ¥,) with the lens distortion neglected. Taking the
distortion created by the lens as being radial, the
projection changes from (x,, y,) to coordinates (x,, y ). In
. this way, the transformation between the referential {W}
and the 3D referential {CAM]} is given by:

X

(2.1

xw
yYi= Rot [yw] + Trans
Z z,

where (%, y, ) and (x,, y,, z,) are the coordinates of the
.point p expressed in {CAM} and {W} respectively. The
matrix Rot is one matrix (3x3) representing the rotation
between the references {CAM} and {W} and Trans the
(3x1) vector representing the translation between the
same references. The relation between the points in the
world and its own projections in the ideal image are given
by the peraspective transformation:

xu=f§
22
yu"'ff (2.2)

The relation between points in the ideal image to the
related points in the real image is given by

D

xu= xd 'é'

D

Yu=Ya 3

where D is the radial distortion factor that depends of the
distortion coefficient k; ([12] and [8] ):

(2.3)

D= with R f=x 4y

—2
1+k1 Rd :

The relation of the real-image coordinates (x,, y,) to
computer-image coordinates (x, y/ is given by:

x,=81,+¢c, @4
{yl=syyl+c.v ' )

where ,
S, S, - are the scale factors for the x and y axes,

respectively. .
(c., ¢) - are the computer-image coordinate for the
origin in the image

The parameters (S, S, ¢, ¢, f, k) are called the intrinsic

parameters and Rot and Trans the extringic parameters
that we need to evaluate for the left and right cameras.

2. Determinatjon of the model parameters

The intrinsic and extrinsic parameters can be evaluated
by the process presented in [12] using the model for image
formation described. In that process the determination of
the parameters is only for a camera in static position and
is based in two stages: the first, to compute the extrinsic
parameters corresponding to the 3D orientation Rot and
the x and y components of Trans; the second, to compute
the intrinsic parameters ( f, kJand the z component of

Trans.

The process begins by grabbing an image into the
computer frame memory and using a scene with a set of
points where their three-dimensional coordinates are
known. After binarize the image, the correspondence
between points in the image and their three-dimensional
coordinates is done. This set of correspondent points is the
input for our calibration algorithm where the parameters
evaluation of the intrinsic and extrinsic parameters are
evaluated.

4. Invariant form and recalibration

If the right and left cameras are calibrated in a predefined
position using the process above and after the
manipulator tool is moved the extrinsic parameters Rot
and Trans are not more valid. Normally the intrinsic
parameters should not change if we do not use auto-focus



or controlled zoom. In the practice some small differences
in the values are observed mainly due to non-linearities of
the lens and the different illumination condition at
different points of view.

The extrinsic parameters obtained by the calibration

process are represented by the transformation “I'.,, which
give the relation between the references of the right and
left images and the 3D referential {W}. By another way, is
possible to know with relative accuracy, the tool
coordinates Ty, using the programming facilities of the
manipulator. Using this transformation we can determine
ToouT,.. using the equation:

TOL oam = (meot)' ‘wrcm 4.1)

This transformation have the propriety of to be invariant
to manipulator's tool movement. Using this propriety we
can implement an algorithm to optimize the numerical
values of the extrinsic and intrinsic parameters obtained
by the calibration process for a static position, extended it
to dynamical use.

Manipulating the equations (2.1), (2.2), (2.3) and (2.4) we
<an obtain explicit relations between extrinsic and
intrinsic parameters for the cameras using the relation
between 2D points in the computer image and the 3D
points related to the system {CAM}, given by

x c zk; xk;

F.Sé;z' ,?;:z- -5:"(‘/)"' et-2xr0,)- :s—y;' Gf+et-2ypc)=x

y of, xk; xky 4.2)
R e A

and for the relation between 3D points expressed in
referential {CAM) and the same points expressed in
referential {TOOL},

x p'r+T;
fz"fp"'r,+7',
r_ PrtTy
fz"fp"r,+T,

(4.3

“he vector (T, Ty, T) represents the origin coordinates of

the referential {CAM} expressed in referential {TOOL}
and r, is the line i of the Rot matrix which describes the
orientation of {CAM]} relatively to the manipulator's tool.

After manipulating the equations (4.2) and (4.3) relating
the image and three-dimensional points, it is
straightforward to obtain an expression from which we
can apply recursive methods for the estimation of the
cameras' parameters using the information acquired from
different positions of the stereo system. This procedure
gives us a dynamic form to optimize (or filter) the
parameters of the cameras, The mathematical tools used
to implement such estimation are based on the covariance
form of the recursive least-squares method and the
Kalman filtering [10].

Beginning by the equation (4.3) and manipulating it
algebraically we obtain the matrix form:

Am=b («t.4)

where m is the vector of unknowns. For example the
relation between the elements of m and the intrinsic
parameters for the center of the image are given by:

m, m,
c’ === c’... —
m, m,

Doing the same for equation (4.3), we obtain two matrix
equations

r
p* 0,, ap f _[aT‘-Tx] ) _
[om.n pT BpPT :: “|8T.-T, => Bn=c(4.5)
and
T,
10 a ol pTr,-aptr
T, P11 s - .
[" -1 f’HT’ [P"‘,-ﬂp"r,] > Dt=e(£.6)
z,

with p=(x,, ¥, 2.J), o= 2-, B:f , ¥, the line { of the Rot
matrix, and (T,, T,, T,) the elements of the Trans vector.

The vectors n and t are the unknowns representing the
extrinsic parameters.

Using the equations (4.4),(4.5) and (4.6) is easy to apply a
recursive method of estimation the parameters. For each
iteration of the recalibration recursive process, two stages
are used: first, the recalibration of the intrinsic
parameters using (4.4), and second, the recalibration of
the extrinsic parameters using (4.5) and (4.6).

ecursive Least-Squares

According to [10], if a system can be represented by a
linear equation:

Z =H,X 4.7
where H and Z are matrices or vectors of the 2 measures
read respectively in the input and output signals of the
system, and X is the vector of the system unknown
parameters, a recursive solution to obtain X by least-
squares can be expressed by:

xkd= xx + Kwhl[ Z,- (Hg)T Xk] 4.8)

where Z,, and H,,, are matrices obtained using the last
(k+1) measure.

The Kw, , coeflicient is obtained by
Kw,, =P, Hr, [(H, P, H,, +1]" (4.9)

which can be understood as a gain for the (k+l) iteration
and where the factor P, is given by



P=[I-Kw, (H,)] P, (4.10)
The application of this method to the equations (4.4), (4.5)

-and (4.6) is direct. The initial conditions for X, are given
by & first calibration made for one position and the initial
values for P, are given by:

Pl =H, H)

where k=0 signifies that no recalibrations were made.
Kajman Filter

The Kalman filter is an optimal procedure to optimize
measures made in a continuously changing environment
as the calibration of dynamic vision system.

Assume that X, , is the signal state to be estimated at time
k+1l and our system can be expressed by the state
matrices

v, is N(O,R,)

zFHx Xx'“’n )
w, is N(0,Q)

X,=0,%,+0,

where v, and w, are uncorrelated Gaussian white noise
sequences with null mean and covariance matrices R, and

Q, respectively.

The recursive equations of the Kalman filter which give a
new estimate (X,R, ) of X and the covariance of the error

based on the preceding values (X, R, , ) are the following

X=X +Kw, (Z-H. X, )
EKw, =P, HtT[ HP, H™R]
P, =(I-Kw, H,)P,,

4.11)

These equations and the equations presented above for
least-squares have same structure with a difference on the
evaluation of the gain which ponders continuously the
noise on the data using the covariance matrix. This
recursive process is initialized by Xg and by Rg which are
the "a priori" estimate of X and the covariance matrix
associated with the error in the estimate. ‘

Adapting these methods te the special conditions of (4.4),
(4.5) and (4.6), the calculations for both methods, have the
following development: _

=P, =>Kw, => Xhl =P, -
Experimental Result

The experimental setup used was based in a integrated
and evolutive system in which the addition of new sensors
and actuators is possible in a modular fashion. The control
system exhibits an hierarchical structure following a
distributed processing model [1]. To establish the
communications between the Supervisor Computer and
the manipulator controller, a package of software
implementing the DDCMP protocol was made [3]. The

vision system is fastened to the last link of the
manipulator by a special tool designed for that purpose

and uses two CCD cameras. The two video signals are
sampled and stored in memory using an AT-bus freme

grabber and the images are sampled by 512x512 pirels.
The software for the calibration process was developed in
C end runs on the Supervisor Computer. All additional
image processing necessary in the process use routines
from a software library developed in our laboratory [2].

To evaluate the effect of the recalibration process we be gin
by taking different images of the calibration grid using
different points of view. The three-dimensional points are
then transformed to the referential {TOOL} and the
correspondence between the images points and the three-
dimensional world is established.

This set is the input data for both recalibration processes -
recursive least-squares and Kalman filter - as we can see
in figures below, Using as first approximation the result
obtained by Tsai method for & static position, the
difference between the application of the two processes it
is not significant after the 10th point. The significant
difference between the two methods is the speed of
convergence, which it is bigger for Kalman filter.
Nevertheless, this implies more unstable results as show
for C, and C, diagrams.
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The estimation process involves the caleulation of the
dynamic gain Kw and the figure 4 exemplifies the
evolution of it with the number of points used.
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Figure 4- The diagrams represénts the evolution of Kw with the
number of points used. We can see that after some quantity of points
the solution stabilizes for both the methods

When we use this recursive methods it is important to
know if the process converges. One method is to trace the
elements of the error-covariance matrix P associated with
" as show by the figure below.
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8, Conclusions

In this paper, the calibration of a stereo pair of cameras
attached to the end-effector of a six degree-of-freedom
manipulator was addressed. In particular a recalibration
process based on a recursive least-squares estimation was
proposed. This work represents an initial stage of a wider
robotics research project having in view the integration of
different visual techniques for building local and global
descriptions of the 3D world and evaluation of visual-
based path control strategies.

The method used for the calibration [12] is based on a
priori knowledge of two intrinsic parameters which can be
obtained by the distance between sensors in y and x
directions of the sensor plate on CCD cameras., Normally
these values are supplied by the manufacturer but the
experience teach us that the values are not accurate
enough. The experiments shows that the algorithm
proposed by Tsai is very sensitive to the numerical value
of these parameters. This problem is the objection to this



approach (see also [11]) and the results obtained are not
better that obtained by another methods [4,7]. This
handicap can be overtake by the recalibration process.
The experiences made, shows that both the methods -
recursive least-squares and Kalman filtering - are valid to
use with recalibration. For better performance the choice
should be the Kalman filter. As general result, the
recalibration process give a very stabilized solution for the
calibration matrix within the manipulator's workspace.
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