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ABSTRACT
In this text, we use a Bayesian framework for active mul-
timodal perception of 3D structure and motion — which,
while not strictly neuromimetic, finds its roots in the role of
the dorsal perceptual pathway of the human brain — to im-
plement a strategy of active exploration based on entropy.
The computational models described in this text support a
robotic implementation of multimodal active perception to
be used in real-world applications, such as human-machine
interaction or mobile robot navigation.
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1 Introduction

Perception has as of recently been regarded as a com-
putational process of unconscious, probabilistic inference.
Aided by developments in statistics and artificial intelli-
gence, researchers have begun to apply the concepts of
probability theory rigorously to problems in biological per-
ception and action [1]. One striking observation from this
work is the myriad ways in which human observers behave
as near-optimal Bayesian observers. Several authors even
argue that the brain codes even complex patterns of sensory
uncertainty in its internal representations and computations
— see for example [1, 2].

Active perception has been an object of study in
robotics for decades now, specially active vision, which was
first introduced by [3] and later explored by [4]. Many per-
ceptual tasks tend to be simpler if the observer is active and
controls its sensors [4]. Active perception is thus an intel-
ligent data acquisition process driven by the measured, par-
tially interpreted scene parameters and their errors from the
scene. The active approach has the important advantage of
making most ill-posed perception tasks tractable [4].

Active multisensory perception using spatial maps
has, however, been the object of study since only much re-
cently — an example of this research would be the work of
[5] in visuoauditory-driven gaze shift generation.

The availability of a probabilistic framework to imple-
ment spatial mapping of the environment allows the use of
the concept of information entropy, which can be used to
promote an exploratory behaviour of areas of the environ-
ment corresponding to cells on the volumetric map associ-
ated to high uncertainty.

Our work will contribute in providing a rather com-
plete framework for active multimodal perception — in-
troducing a novel approach which, while not strictly neu-
romimetic, finds its roots in the role of the dorsal percep-
tual pathway of the human brain and its egocentric trait
— which will support the construction of a simultaneously
flexible and powerful robotic implementation to be used in
real-world applications, such as human-machine interaction
or mobile robot navigation. A realtime implementation of
all the processes of the framework has been developed, cap-
italising on the potential for parallel computing of most of
its algorithms.

Its main strength lies on the fact that it offers a frame-
work which is naturally fitting for acting upon the environ-
ment and also for the integration of readings from multiple
sensors, since both processes inherently depend on egocen-
tric reference frames.

2 The Integrated Multimodal Perception Ex-
perimental Platform

2.1 Platform description

To support our research work, an artificial multimodal per-
ception system (IMPEP — Integrated Multimodal Percep-
tion Experimental Platform) has been constructed at the
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Figure 1: View of the current version of the Integrated Multimodal
Perception Experimental Platform (IMPEP), on the left. The ac-
tive perception head mounting hardware and motors were designed
by the Perception on Purpose (POP - EC project number FP6-IST-
2004-027268) team of the ISR/FCT-UC, and the sensor systems
mounted at the Mobile Robotics Laboratory of the same institute,
within the scope of the Bayesian Approach to Cognitive Systems
project (BACS - EC project number FP6-IST-027140). On the
right, the IMPEP perceptual geometry is shown: {E} is the main
reference frame for the IMPEP robotic head, representing the ego-
centric coordinate system;{Cl,r} are the stereovision (respectively
left and right) camera referentials; {Ml,r} are the binaural system
(respectively left and right) microphone referentials; and finally
{I} is the inertial measuring unit’s coordinate system.

ISR/FCT-UC consisting of a stereovision, binaural and in-
ertial measuring unit (IMU) setup mounted on a motorised
head, with gaze control capabilities for image stabilisation
and perceptual attention purposes — see Fig. 1. This solu-
tion will enable the implementation of an active perception
system with great potential in applications as diverse as so-
cial robots or even robotic navigation.

The stereovision system is implemented using a pair of
Guppy IEEE 1394 digital cameras from Allied Vision Tech-
nologies (http://www.alliedvisiontec.com),
the binaural setup using two AKG Acoustics C417 lin-
ear microphones (http://www.akg.com/) and an
FA-66 Firewire Audio Capture interface from Edirol
(http://www.edirol.com/), and the miniature iner-
tial sensor, Xsens MTi (http://www.xsens.com/),
provides digital output of 3D acceleration, 3D rate of turn
(rate gyro) and 3D earth-magnetic field data for the Inertial
Measurement Unit (IMU).

2.2 Sensory processing

As mentioned before, several authors argue that current ev-
idence strongly suggests that the brain codes even complex
patterns of sensory uncertainty in its internal representations
and computations. One such representation is believed to be
neural population coding (e.g., average firing rate) — see for
example [1, 2].

For stereovision sensing, our motivations suggest a
tentative data structure analogous to neuronal population ac-
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Figure 2: Cyclopean geometry for stereovision. The use of cyclo-
pean geometry (pictured on the left for an assumed frontoparallel
configuration) allows direct use of the egocentric reference frame
for depth maps taken from the disparity maps yielded by the stere-

ovision system (of which an example is shown on the right).
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Figure 3: The IMPEP Bayesian sensor systems.

tivity patterns to represent uncertainty in the form of proba-
bility distributions [2]. Thus, a spatially organised 2D grid
may have each cell (corresponding to a virtual photorecep-
tor in the cyclopean view — see Fig. 2) associated to a “pop-
ulation code” extending to additional dimensions, yielding
a set of probability values encoding a N -dimensional prob-
ability distribution function or pdf. This information is con-
sequently used as soft evidence by a Bayesian sensor model
previously presented in [6, 7] (Fig. 3).

The Bayesian binaural system, which was fully de-
scribed in [8, 9], is composed of three distinct and con-
secutive processors (Fig. 3): the monaural cochlear unit,
which processes the pair of monaural signals {x1, x2} com-
ing from the binaural audio transducer system by simulat-
ing the human cochlea, so as to achieve a tonotopic repre-
sentation (i.e. a frequency band decomposition) of the left
and right audio streams; the binaural unit, which correlates
these signals and consequently estimates the binaural cues
and segments each sound-source; and, finally, the Bayesian
3D sound-source localisation unit, which applies a Bayesian
sensor model so as to perform localisation of sound-sources
in 3D space.

Finally, a Bayesian inertial module was devised, as
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Figure 4: The Bayesian Volumetric Map.

fully described in [10], to simulate human’s vestibular sens-
ing.

3 Active Exploration Using Bayesian Models
for Multimodal Perception of 3D Structure
and Motion

3.1 Multimodal Sensor Fusion Using Log-Spherical
Bayesian Volumetric Maps

A spatial representation framework for multimodal percep-
tion of 3D structure and motion, the Bayesian Volumetric
Map (BVM), was presented in [6, 7, 8, 9], characterised by
an egocentric, log-spherical spatial configuration to which
the Bayesian Occupancy Filter (BOF), as formalised by Tay
et al. [11], has been adapted. It effectively provides a
computational means of storing and updating a perceptual
spatial map in a short-term working memory data-structure,
representing both 3D structure and motion without the need
for any object segmentation process (see Fig. 4). In this
model, cells of a partitioning grid on the BVM log-spherical
space Y are indexed through C ∈ C ⊂ Y , where C repre-
sents the subset of positions in Y corresponding to the “far
corners” of each cell C, OC is a binary variable represent-
ing the state of occupancy of cell C (as in the commonly
used occupancy grids — see [12]), and VC is a finite vector
of random variables that represent the state of all local mo-
tion possibilities used by the prediction step of the Bayesian
filter associated to the BVM for cell C, assuming a constant
velocity hypothesis, as depicted on Fig. 4.

The BVM is extendible in such a way that other prop-
erties characterised by additional random variables and cor-
responding probabilities might be represented, other than
the already implemented occupancy and local motion prop-
erties, by augmenting the hierarchy of operators through
Bayesian subprogramming [13].

3.2 Active Exploration Using the Bayesian Volumetric
Map

Information in the BVM is stored as the probability of each
cell being in a certain state, defined as P (VcOc|z c). The
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Figure 5: Active multimodal perception using entropy-based ex-
ploration. Gaze control module is described on Fig. 6.
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Figure 6: System block diagram for the implementation of gaze
control and image stabilisation — for more information see [10].

state of each cell thus belongs to the state-space O × V .
The joint entropy of the random variables VC and OC that
compose the state of each BVM cell [C = c] is defined as
follows:

H(c) ≡ H(Vc, Oc) = −
∑
oc∈O
vc∈V

P (vc oc|z c) logP (vc oc|z c)

(1)
The joint entropy value H(c) is a sample of a contin-

uous joint entropy field H : Y → R, taken at log-spherical
positions [C = c] ∈ C ⊂ Y . Let cα− denote the contiguous
cell to C along the negative direction of the generic log-
spherical axis α, and consider the edge of cells to be of unit
length in log-spherical space, without any loss of generality.
A reasonable first order approximation to the joint entropy
gradient at [C = c] would be

−→
∇H(c) ≈ [H(c)−H(cρ−), H(c)−H(cθ−), H(c)−H(cφ−)]T

(2)
with magnitude ‖

−→
∇H(c)‖.

A great advantage of the BVM over Cartesian imple-
mentations of occupancy maps such as the one presented on
[14] is the fact that the log-spherical configuration avoids
the need for time-consuming ray-casting techniques when
computing a gaze direction for active exploration, since the
log-spherical space is already defined based on directions
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(θ, φ). Hence, the active exploration algorithm is simplified
to the completion of the following steps:

1. Find the last non-occluded, close-to-empty (i.e.
P ([OC = 1]|[C = c]) < .5) cell for the whole span of
directions (θmax, φmax) in the BVM — these are con-
sidered to be the so-called frontier cells as defined on
[14]; the set of all frontier cells will be denoted here as
F ⊂ C.

2. Compute the joint entropy gradient for
each of the frontier cells and select cs =
arg maxc∈F

[
(1− P ([OC = 1]|[C = c]))‖

−→
∇H(c)‖

]
as the best candidate cell to direct gaze to. In case
there is more than one global maximum, choose
the cell corresponding to the direction closest to the
current heading (i.e. (θmax, φmax) = (0, 0), so as to
ensure minimum gaze shift rotation effort.

3. Compute gaze direction as being (θC , φC), where θC
and φC are the angles that bisect cell [C = cs] (i.e.
which pass through the geometric centre of cell cs in
Cartesian space).

The full BVM entropy-based active perception system
is described by the block diagram presented in Fig. 5 (see
also Fig. 6).

4 System Implementation and Calibration

4.1 System implementation

The BVM-IMPEP framework, of which an implementation
diagram is presented on Fig. 7, was implemented as follows:

• Vision sensor system: With the OpenCV toolbox
and David Gallup’s implementation of a basic binoc-
ular stereo algorithm on GPU using CUDA (please
refer to http://www.cs.unc.edu/~gallup/
stereo-demo for more information). The algorithm
reportedly runs at 40 Hz on 640×480 images at 50 dis-
parities, computing left and right disparity maps and
performing left-right consistency validation (which in
our adaptation is used to produce the stereovision con-
fidence maps).

• Binaural sensor system: Using an adaptation of the
realtime software kindly made available by the Speech
and Hearing Group at the University of Shefield [15] to
implement binaural cue analysis as described in [8, 9].

• Bayesian Volumetric Map, Bayesian sensor mod-
els and active exploration: using our proprietary,
parallel processing, GPU implementation developed
with NVIDIA’s general purpose parallel computing

architecture CUDA http://www.nvidia.com/
object/cuda_home.html).

4.2 System calibration

4.2.1 Vision system calibration

Accurate camera calibration can greatly simplify solutions
to many important vision problems such as the stereo vision
problem, the three-dimensional visual tracking problem, the
mobile-robot visual guidance problem, the 3D reconstruc-
tion problem, the 3D visual information registration prob-
lem, etc. For example, it is well known that a well-calibrated
stereo vision system would not only dramatically reduce the
complexity of the stereo correspondence problem but also
significantly reduce the 3D estimation error [16].

Camera calibration can be performed using a standard
stereovision calibration software to estimate left and right
camera intrisic parameters (i.e. focal length and distortion
parameters for undistorting images for processing) and ex-
trinsic parameters (i.e. transformation between camera lo-
cal coordinate systems — in the case of an ideal frontopar-
allel setup, the estimation of baseline b) that allow the ap-
plication of the reprojection equation:


1 0 0 0
0 1 0 0
0 0 0 f
0 0 1

b 0



ul − δ̂

2
vl
δ̂
1

 =


WX
WY
WZ
W

 (3)

where ul is the horizontal coordinate and vl is the vertical
coordinate of a point on the left camera, and δ̂ is the dispar-
ity estimate for that point, all of which in pixels, f and b are
the estimated focal length and baseline, respectively, both of
which in metric distance, and X , Y and Z are 3D point co-
ordinates respective to the egocentric/cyclopean referential
system {E}.

Using reprojection error measurements given by the
calibration procedure, parameter σmin as defined in [6] is
taken as being equal to the maximum error exhibited by the
stereovision system.

Finally, to determine (θi,k, φi,k) and ρ̂i,k(δ̂) (i.e. to
perform the cartesian-to-spherical transformation) for each
projection line (i, k) to use with the vision sensor model
given in [6], the following relations are built from equa-
tion (3),


θi,k = 2 arctan

(
X
2f

)
φi,k = 2 arctan

(
Y
2f

)
ρ̂i,k(δ̂) =

√
X2(δ̂) + Y 2(δ̂) + Z2(δ̂)

(4)
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Figure 7: Implementation diagram for the BVM-IMPEP multimodal perception framework.

Given θi,k and φi,k, it becomes possible at any mo-
ment to compute depth from a given disparity estimate by
substitution of the two first expressions onto the last in
Equation 4, yielding

ρ̂i,k(δ̂) = f

√
4
(

tan2 θi,k
2

+ tan2 φi,k
2

)
+
(
b

δ̂

)2

(5)

4.2.2 Binaural system calibration

As described in [9], calibration of the binaural system in-
volves the characterisation of the families of normal distri-
butions P (τ |SC OC θmax) and P (∆L(fkc )|τ SC OC C) ≈
P (∆L(fkc )|SC OC C) through descriptive statistical learn-
ing of their central tendency and statistical variability, where
SC is an intermediate binary variable signalling the occupa-
tion of a cell with a sound-source (i.e. the occupancy of a
cell does not reflect if the object that occupies it is a sound-
source) that cancels out through marginalisation during in-
ference, τ (ITD — interaural time difference) and ∆L (ILD
— interaural level difference) are the binaural cues as de-
fined in [8, 9], and fkc is the central frequency of each band
k of the tonotopic representation. This is done in an equiva-
lent manner as with commonly used head-related transfer
function (HRTF) calibration processes (see, for example,
[17]) and is described in the following paragraphs.

A set Mc of n-dimensional measurement vectors such
as defined in [9] is collected per cell c ∈ C. The full set
of collected measurement vectors for all cells in auditory
sensor spaceY is expressed asM =

⋃
Mc. DenotingMc̄ =

M \Mc as the set of measurements for all cells other than
c, the statistical characterisation process of each family of
distributions is effected for each cell c through

X1

Z1

Y

θ

φ

ρ

x

y

z{ Mr }
{ Ml }

x

y

z

Azimuth  ⇒ θ = [ 0 , Δθ , ... , (Nθ-1) Δθ ]

Elevation ⇒ φ = [ - (Nφ-1) Δφ/2 , … , (Nφ-1) Δφ/2 ]           

{E }

CC MMM   ∪=

Measurements for all cells

Measurements 
for all other cells 

except C

Measurements 
for each cell C

N N ××1s Broad band white1s Broad band white--noisenoise

Figure 8: Experimental setup for the binaural system calibration
procedure.

P (τ |[Sc = 1]Oc θmax) ≡ N (τ, µτ (Mc), στ (Mc)) (6a)
P (τ |[Sc = 0]Oc θmax) ≡ N (τ, µτ (Mc̄), στ (Mc̄)) (6b)

P (∆L(fkc )|[Sc = 1]Oc c) ≡
N (∆L(fkc ), µ∆L(fk

c )(Mc), σ∆L(fk
c )(Mc))

(6c)

P (∆L(fkc )|[Sc = 0]Oc c) ≡
N (∆L(fkc ), µ∆L(fk

c )(Mc̄), σ∆L(fk
c )(Mc̄))

(6d)

Auditory calibration is performed by presenting a
broadband audio stimulus through a loudspeaker positioned
in well-known spatial coordinates corresponding to the ge-
ometric centre of each cell c ∈ C so as to sample space
according to the auditory sensor space Y .

The acquisition method may be simplified by a factor
of 4 by taking into account the spatial redundancies of audi-
tory sensing, namely the symmetry enforced by the back-to-
front ambiguity and the left-to-right antisymmetry for both
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ITDs and ILDs, to reduce calibration space to the front-left
quadrant.

A further simplification of the procedure consists in
positioning the loudspeaker, for each of the Nd considered
distances from the binaural system, precisely in front of the
active perception head (i.e. (θ, φ) = (0, 0)) and to rotate the
active head so that the whole range of azimuths and eleva-
tions of the auditory sensor space is covered. This replaces
the several minutes taken to reposition the loudspeaker by
hand (now only happening Nd times) by a few seconds of
head motions for each cell. The full procedure is depicted
in Fig. 8.

4.2.3 Visuoinertial calibration

Visuoinertial calibration can be performed using the In-
erVis toolbox (http://www.deec.uc.pt/~jlobo/
InerVis_WebIndex/InerVis_Toolbox.html)
[18]. The toolbox estimates the rotation quaternion between
the Inertial Measurement Unit and a chosen camera, requir-
ing a set of static observations of a standard checkerboard
visual calibration target and of sensed gravity.

5 Results and Conclusion

The realtime implementation of all the processes of the
framework was subjected to performance testing for each
individual module. Processing times and rates for the sen-
sory systems are as follows:

• Stereovision unit 15 Hz.

• Binaural processing unit Realtime processing for
44 KHz, 16-bit audio, with 16 frequency channels and
50 ms buffer for cue computation.

• Inertial processing unit 10 Hz.

The processing times for each individual module for a
BVM space of size 360 × 90 × 10 (azimuth × elevation ×
log-distance), with 500 runs of a BVM filter time-step in the
processing of real-world scenarios, are the following:

• Bayesian vision sensor model — Approximately
50 ms processing time average for 640× 480 images.

• Bayesian audition sensor model — Approximately
10 ms processing time average.

• Bayesian vision and binaural sensor models run-
ning in parallel CUDA threads — Approximately
50 ms processing time average for conditions described
above.

• Bayesian volumetric map filter —- Approximately
55 ms processing time average.
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Figure 9: Activity diagram for an inference time-step at time t.

• Entropy and gaze shift computation — Approxi-
mately 20 ms processing time average.

The activity diagram for the BVM Bayesian frame-
work is presented on Fig. 9, depicting an inference step cor-
responding to time t and respective timeline.

As can be seen, the full active exploration system runs
at about 6 Hz. This is ensured by forcing the main BVM
thread to pause for each time-step when no visual measure-
ment is available (i.e. during 40 ms for N = 10,∆φ = 2o

— see Fig. 9). This guarantees that BVM time-steps are
regularly spaced, which is a very important requirement
for correct implementation of prediction/dynamics, and also
ensures that processing and memory resources are freed and
unlocked regularly.

These performance ratings show that gaze shift reac-
tion times to stimuli in full-fledged, multimodal operation
are consistent with realtime standards.

The results of processing a scenario testing different
aspects of the full system are presented on Fig. 10. A scene
consisting of two male speakers talking to each other in a
cluttered lab is observed by the IMPEP active perception
system and processed online by the BVM Bayesian filter,
using entropy-based active exploration as described earlier,
in order to scan the surrounding environment.
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(a) Left camera snapshots corresponding to chronologically ordered time-instants. Two male speakers are maintaining a dialog, at −22o and 14o azimuth
respectively relatively to the Z axis, which defines the frontal heading respective to the IMPEP “neck”. As can be seen on the first frame, both speakers are

initially outside the stereovision region-of-interest for processing, being consecutively scanned as a result of active exploration-driven gaze-shifts.

(b) BVM results (frontal views, with Z pointing outward) corresponding to each of the snapshots in (a). The blue arrow depicted in each map denotes the
current gaze orientation. Interpretation, from left to right (chronological evolution): 1) initial non-informative map; 2) sound coming from the speaker
on the right triggers an estimate for occupancy from the binaural sensor model, and a consecutive exploratory gaze shift; 3) a few frames from the
stereovision system trigger further evidence accumulation for occupancy by the vision sensor model at the gaze direction site, fusing readings from both
sensory systems — higher spatial resolution from vision carves out the right speaker’s sillouette from the first rough estimate from audition —, while
sound coming from the speaker on the left triggers an estimate for occupancy from the binaural sensor model, and a consecutive exploratory gaze shift in
the speaker’s direction; 4) a few frames from the stereovision system trigger further evidence accumulation for occupancy by the vision sensor model at
the gaze direction site, fusing readings from both sensory systems — again, higher spatial resolution from vision carves out the left speaker’s sillouette

from the first rough estimate from audition.

Figure 10: Results for the realtime prototype for multimodal perception of 3D structure and motion using the BVM. A scene consisting of two
male speakers talking to each other in a cluttered lab is observed by the IMPEP active perception system and processed online by the BVM
Bayesian filter, using the active exploration heuristics described in the main text, in order to scan the surrounding environment. The parameters
for the BVM are as follows: N = 10, ρMin = 1000 mm and ρMax = 2500 mm, θ ∈ [−180o, 180o], with ∆θ = 1o, and φ ∈ [−90o, 90o], with
∆φ = 2o, corresponding to 10× 360× 90 = 648, 000 cells, approximately delimiting the so-called “personal space” (the zone immediately

surrounding the observer’s head, generally within arm’s reach and slightly beyond, within 2 m range [19]).

The active exploration algorithm successfully drives
the IMPEP-BVM framework to explore areas of the envi-
ronment mapped with high uncertainty in realtime, with an
intelligent heuristic that minimises the effects of local min-
ima by attending to the closest regions of high entropy first.

Further details on ongoing work using these mod-
els can be found at http://paloma.isr.uc.pt/
~jfilipe/BayesianMultimodalPerception.

6 Future Work

Extensions to the BVM operators are currently being im-
plemented, so as to include other perceptual properties for
each cell, an example of which would be sensory saliency,

as presented by [20], an important feature of active percep-
tion in animals (also known as “automatic orienting”). Hu-
man studies using paradigms devised for the development
of Bayesian models of active perception that are extensions
of the BVM framework will also be performed soon, in or-
der to train the artificial active perception framework. The
framework will then be used in realistic scenarios, such as
robotic navigation and human-robot interaction.
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