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ABSTRACT
Cloud computing is a paradigm shift in computation that
has been gaining traction over the recent years, which is
supported by the increasing ubiquity of a reliable wireless
connection to the Internet. Cloud robotics, which aims at
bringing this principle to the field of Mobile Robotics, allows
robots accessing seemingly unlimited external computation,
thus being able to free onboard computation power and per-
form more complex tasks or tasks that were not able to run
otherwise.

This paper describes the migration of two multi-robot
tasks previously implemented and tested in ROS by our
research group – multi-robot SLAM and multi-robot pa-
trolling – to a cloud robotics-based implementation using the
Rapyuta framework [12], with the aim of studying the trade-
off between robots’ computation load decrease and band-
width usage increase. With this purpose, both simulations
and experiments with real robots were conducted.

CCS Concepts
•Computer systems organization → Cloud comput-
ing;
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1. INTRODUCTION
Research and development over the years has sprouted a

vast array of tasks able to be executed by robots. Some
of these tasks though have to be carried out by a team of
robots rather than a single one.

Although the advantages of having a team of robots are
clear, its restraints are only evident when considering prac-
tical implementations, namely cost restraints. It becomes
obvious that a team of robots has to be composed of multi-
ple cheaper robots, meaning machines with less processing
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power and smaller batteries, but also easier to build, work
with, repair and replace. This creates the need for interac-
tion among robots in order to solve complex problems and
run computationally heavy algorithms. In order to tackle
the problem of communication between the elements of a
multi-robot system, two main areas of study have been in
research recently: cloud computing [8] and robotic clusters
[9].

Cloud computing has been defined as being a model for
providing remote access, on demand, to a pool of computing
resources. It refers to both hardware and software systems
delivered or made available primarily over the Internet, be-
ing servers, storage systems, applications or services exam-
ples of cloud computing [11]. Associated with this model is
the term cloud, which refers to the data centre that provides
such service.

This computing paradigm has been classified into three
main service models, each having proven its utility which
is evidenced by the comercial applications that have been
created. In Infrastructure as a Service (IaaS), only mini-
mal software (bare operating system) is provided to operate
the hardware resources. The Amazon EC2 [2] is an exam-
ple of such cloud service. In Platform as a Service (PaaS),
the cloud provides an operating system, as well as a range
of programming languages, libraries, tools and frameworks
with which the consumer can develop its owns applications.
As examples of PaaS we can point out the Google App En-
gine [1] or Heroku [3] where applications are developed and
run entirely on the cloud. Finally, in Software as a Service
(SaaS), the user can only access applications already imple-
mented on the cloud, having no control over the infrastruc-
ture, servers, storage or individual application capabilities.
This is the highest level of cloud structure being the most
restrictive one but also the easier to use. The Google Docs
is a fine example of a SaaS, where the client has access to
applications like a text editor, which is usually installed and
run locally on a machine, that are run instead on remote
servers.

These traditional approaches to cloud computing do not
cater specifically to robots nor present the right tools to
develop robotic applications, thus limiting the applicability
of these existing platforms to robotic scenarios [12]. How-
ever, there have been some attempts to bring this promising
paradigm to the field of Robotics, also in three different de-
livery models.

Function as a Service (FaaS) or Equipment as a Service
(EaaS) is a low-level model that uses the cloud to provide
robot resources, such as sensors and cameras or robotic tasks
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solvers like SLAM frameworks, being [15] a good example.
Robot as a Service (RaaS) is a model whereby the user has
access to a robotic platform such as a teleoperated robot.
As an example, authors present in [5] a system for an au-
tonomous assistive robot that uses the cloud to improve the
ability of the connected robots. Robotic Service as a Service
(RSaaS) is a concept where the user is offered a robotic ser-
vice without the user specifying the platform that executes
such service.

One of the prime benefits of cloud computing is the ability
to offload a computationally heavy task to the cloud, while
taking benefit of its parallel processing capabilities to have a
relatively low execution time when compared to a machine
with good processing power running the same task locally.
Hence, the following issues arise: How much data should be
offloaded to the cloud? How should the cloud spread the
task across its resources? Energy consumption and deadline
requirements are deciding factors when offloading a task to
the cloud [7].

Time required in communication between robot and the
cloud must also be taken into consideration, especially when
considering mobile robots whose only reasonable source of
connection is through some wireless network. Wireless com-
munication systems are prone to delivery failures, either by
environmental reasons or channel clutter. These particu-
larities combined with package overhead can make a cloud-
based solution to a multi-robot system less desirable, espe-
cially when considering real-time scenarios.

Finally we can identify security challenges. For obvious
reasons, a remote data centre can be attacked, more so if
it interfaces with its users wirelessly. Consequently, strong
barriers against outside malicious threats must be taken
into consideration, with virtualization of resources being the
most used form of security. Cloud stored data must also be
protected, so confidentiality protection mechanisms are also
needed to ensure data integrity and privacy.

Overall it is difficult to predict the benefits of a Cloud-
based system. Even in tasks that require a large amount of
data, having more information being fed remotely does not
result necessarily into better performance [16]. This coupled
with other initiatives that look towards the future, such as
the Internet of Things [4], serves as additional motivation
for this research.

Section 2 presents how the robotic tasks implemented pre-
viously in ROS [14] were adapted in this work to a cloud
environment. Section 3 presents the experiments and its
results. Finally, Section 4 discusses the conclusions of this
work.

2. EXPORTATION OF TWO MULTI-ROBOT
TASKS TO THE CLOUD

In this section, we present the two multi-robot tasks that
were exported to a cloud environment. This cloud envi-
ronment was created using the Rapyuta framework [12] and
below we present the systems adapted to the communication
mechanisms provided by this framework.

2.1 Multi-robot SLAM
The first use case is based on a ROS stack previously de-

veloped by our research group for multi-robot SLAM [10],
which enables any working single-robot SLAM technique to
be performed by a team of robots, provided that such tech-

nique conforms to ROS standards [14] and outputs occu-
pancy grids. The ROS stack for multi-robot SLAM has five
running nodes [10], as seen on Fig. 1 (note that the node
slam gmapping is not a part of the stack).

Figure 1: Interaction between the nodes and topics
of the multi-robot SLAM stack [10].

The map dam node is a simple auxiliary node that sub-
scribes to the map topic, which is fed by a single-robot
SLAM technique such as gmapping [6] and crops it. The
data interface node is responsible for broadcasting the robot’s
local map to the remaining robotic agents, while receiving
their local maps and publishing them in a map vector.

The complete map node upon receiving an updated map
vector calls a service provided by the align node building
a global map in a hierarchical fashion. As the diagram in
Fig. 2 shows, maps are coupled and merged. The resulting
map from the merging process then moves up in the pyra-
mid, being itself coupled with another map resulting from
the same merging process. In the event of an odd number
of maps, the last one automatically moves up. This process
repeats itself until only one global map is found. Whenever
one of the local (bottom) maps is changed only the subse-
quent maps that depend on it are remerged, thus avoiding
costly and unnecessary merging operations.

Figure 2: Tree-like process of map merging [10].

The align node provides a service that receives two occu-
pancy grids as input, computes a transformation between
them using computer vision, and outputs a new occupancy
grid representing the result of the merging process. Finally,
the remote nav node is another auxiliary node, whose func-
tion is to propagate the transform information from the
data interface node and the complete map node to the tf
ROS topic.

These five nodes are modular enough to enable three dif-
ferent configurations [10]. If there is only one instance of the
nodes that generate the global map, the system assumes a
centralized configuration. On the other hand, if there is an
instance of these nodes for every robot then we are upon
a distributed configuration. It is also possible to set up
a mixed configuration. All communication passes through
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the data interface node, thus the topics this node subscribes
and publishes are handled by the appropriate Rapyuta inter-
faces. By exporting everything to the cloud, including the
SLAM node (gmapping in our case), we get a multi-robot
configuration of the system as shown in Fig. 3.

Figure 3: Comparison between distributed (left) and
centralized (right) modes of operation in the cloud
environment. The boxes labeled with LXC repre-
sent Linux containers running on cloud machines.

2.2 Multi-Robot patrolling
The second use case we use in this work is based on a

ROS package previously developed by our research group
that implements multi-robot patrolling algorithms [13]. The
patrol isr demo package takes advantage of the ROS navi-
gation stack in order to provide robots with a way of mov-
ing through the environment. It implements the Travel-
ling Salesman Problem (TSP) and the Concurrent Bayesian
Learning Strategy (CBLS) methods of patrolling. The TSP
technique implemented was selected in this work as it is well
known but also offers more predictable agents’ trajectories.
The package also implements a monitor node, which only
aids in the synchronization of the robotic team’s agents and
logs all the data, thus the node can be shut down after the
patrolling starts.

The patrolling task is achieved by the cooperation be-
tween the TSP and the previously mentioned navigation
stack nodes (Fig. 4). The TSP node computes a trajectory
based on the algorithm with the same name and informs the
remaining agents of its intentions. Secondly, it provides a
goal (or target pose) to the navigation stack, which repre-
sents the next vertex to be visited. The navigation stack
then takes care of moving through the environment as well
as avoiding obstacles.

Figure 4: Interaction between the nodes and topics
of the multi-robot patrolling package [13].

In order for the TSP node to compute a valid route and
to send valid goals, two files containing detailed map in-
formation are needed. Topological information from a map
is used as a way of determining the regions of interest (or
vertexes) in the multi-robot patrolling problem [13]. With
this purpose, a simple text file containing all the necessary
information to make a web of vertexes is used to represent
a map. This information includes coordinates, neighbours,
direction of each neighbour and the cost to move to each
one. Since the optimal TSP route (in case one exists) does
not change over time, another file containing this route is
fed to the node so that it does not need to be computed
every time. Having established the general TSP route, the
node has to determine afterwards where to start (since the
route is cyclical). To do so, it consults a coded list of initial
positions that, based on the robot’s ID, provides a correct
starting position. However, this assumes the robot with a
given ID always starts on the same position.

Upon starting execution, communication among agents is
required to compute a degree of proximity and to adjust
trajectories accordingly, so as to avoid potential collisions.
This inter-robot communication is once again handled by the
Rapyuta interfaces. Finally, each goal provided to the nav-
igation stack nodes are based on the coordinates retrieved
from the file containing the map’s topological information.

Throughout the whole execution of the navigation stack
nodes, a considerable amount of computer resources are con-
sumed, even if the robot is held to a stop, since the nodes are
continuously scanning for obstacles and computing/sending
velocity commands.

Exporting every node to the cloud we get a system as the
one shown in Fig. 5.

Figure 5: The multi-robot patrolling package and
the navigation stack nodes running on Rapyuta’s
Cloud environment. The boxes labeled with LXC
represent Linux containers running on Cloud ma-
chines.

3. RESULTS AND DISCUSSION
As discussed previously, the main characteristic that a

cloud-based solution provides to a robotic system is the
scalability it provides in terms of computer resources. Not
only these resources can be made seemingly infinite to the
robots, but also forming a large robotic team is made much
cheaper. As such, we believe experiments involving such
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a team should be conducted as a proof of concept of this
highly desirable characteristic. Thus, we carried out experi-
ments with twenty robots in a simulation environment using
the stage simulator available in ROS [14]. We believe simu-
lated robots are only justifiable if the order of magnitude of
the size of the team of simulated robots is greater than the
one achievable with the available real robots. On the other
hand, we only had available three desktop machines with
Intel R© CoreTM2 Quad Processor Q6600, Intel R© CoreTM2
Quad Processor Q9300 and Intel R© CoreTM2 Quad Proces-
sor Q9400, which limited the cloud’s resources and the size
of the robotic team to the specified twenty.

Apart from providing with a proof of concept, it was also
our objective to evaluate the tradeoff between CPU time
and bandwidth that comes with a cloud-based approach,
from the point of view of a single robot. With this in mind,
experiments were conducted in order to register the CPU
time spent by the considered robotic tasks and the required
bandwidth in both the traditional and the cloud-adapted
systems.

The use of simulation time and clock mismatches in the
cloud and local machines can cause timing mismatch errors.
In order to solve this, we implemented a ROS node that runs
on every container and subscribes to every time sensitive
topic and republishes them with the machine’s local current
time. Due to the topic naming that Rapyuta’s interfaces
provide, these topics do not overlap. Still on this topic, it
is important to note that these timing considerations can
have a negative impact on the robotic task or even make
it unreliable to run in the cloud. This is specially true for
tasks with strict hard real-time constraints.

3.1 Simulation Experiments
As stated above, two types of simulation experiments were

conducted. On this first experiment, as a proof of concept,
we launched twenty robots on the stage simulator. On the
side of the cloud, there were twenty containers (one for each
robot) running the core nodes for both tasks. For the multi-
robot patrol task, one of these containers ran the monitor
node, while on the multi-robot SLAM case there was an
additional container running the merging and global map
building nodes.

Each simulated robot fed the necessary data to the rce-ros
node, which propagates them to a container in the cloud un-
der a different topic name due to the aforementioned timing
constraints. These topics were then republished under their
normal name and with a new timestamp. Figs. 6 and 7
represent successful experiments of these setups.

A second set of experiments centered around the point
of view of a robot, rather than the results of the system
as a whole, was conducted in order to evaluate and better
comprehend the tradeoff between CPU time and bandwidth
imposed by this cloud solution. In this case, only one robot
was launched at a time, executing its task under similar
conditions while the CPU time was measured.

As Tabs. 1 and 2 show, the difference in terms of computa-
tional power required to run the system on both approaches
is stark. Not only do you save up a lot of CPU time on the
cloud approach, but you also gain a more predictable CPU
consumption independently from the environment.

Although the differences in CPU time are clear and sig-
nificant, the bandwidth aspect is trickier to evaluate. The
cloud approach requires a steady amount of bandwidth as it

Figure 6: Global map generated through multi-
robot SLAM and the merging process of 20 different
local maps. Each of the simulated robots discovered
the central area and one of the 20 outside branches.

Figure 7: Successful experiment with 20 simulated
robots patrolling a TSP generated trajectory. The
considered vertexes are placed in a grid-like fashion,
where each square is surrounded by up to 4 vertexes
to a total of 100.

Table 1: Comparison between the CPU time used by
the multi-robot SLAM stack on the traditional and
Rapyuta-adapted systems from the point of view of
a robot.

System Mean(%) Max(%) Min(%)
Rapyuta-adapted 2.4 2.5 2.3
Traditional 45.0 46.1 43.7

Table 2: Comparison between the CPU time used
by the multi-robot patrolling package on the tradi-
tional and Rapyuta-adapted systems from the point
of view of a robot.

System CPU time (%)
Rapyuta-adapted 3.8
Traditional 39.1

is moving local topics that are published at a predefined rate
to the cloud (10 Hz in this case). On the other hand, the
traditional systems do not possess this characteristic. More-
over, in the case of multi-robot SLAM, the required amount
of bandwidth depends a lot on the environment. As the
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maps are compressed, a larger amount of features in the envi-
ronment will lead to a worse compression rate, while a blank
featureless one will lead to a higher one. The size of the envi-
ronment will also take a considerable impact on the final size
of the maps to be sent to the network. Maps are also not sent
at a steady rate but only when a significant change to the
local map is detected, thus the speed of the robot is another
variable that impacts the traditional system’s bandwidth re-
quirements. On the multi-robot patrol system, robots only
exchange vectors containing four elements of type int8 (to-
tal of four bytes) among each other. This means that there
is little reason to compare bandwidth requirements between
the two systems as the Rapyuta-adapted one will always re-
quire much more than the traditional one. Thus, this is a
rather extreme case of the tradeoff present when moving a
system to the cloud.

Having said that, we registered the bandwidth used for
the Rapyuta-adapted system and the amount of data prop-
agated through the network by the topics of the traditional
multi-robot SLAM system. The latter gives an idea to which
degree the map size changes even on our simple and small-
sized map (25x25 meters). This does not result in a direct
comparison between both, but rather in an upper-bound es-
timate on how many robots could be viably deployed under
current Wi-Fi standards.

Although the amount of data sent to the cloud is steady
(see Tab. 3), there is still some variation, due to the fact
that TCP requires acknowledge packages to be sent, as well
as error checking that might lead to some being resent. Nev-
ertheless, the bandwidth required by each robot is somewhat
predictable. Additionally, laser scan length and sample rate
are variables that we control and that have great impact on
bandwidth, which gives the system an appealing flexibility.

Table 3: Bandwidth required by one robot running
the Rapyuta-adapted systems. Values in KB/s

System Mean Max Min
Rapyuta-adapted SLAM 31.0 35.5 25.9
Rapyuta-adapted patrol 47.1 53.5 39.4

A modern and off-the-shelf 802.11n compatible router can
provide a wireless speed of 65 Mb/s (or 8125 MB/s), which
can serve, in theory, over 150 robots, if we take a conser-
vative mindset. While theoretical values might be far from
practical ones, the resulting number is high enough to com-
fortably say that a dedicated network could serve any real-
istic team of robots. Furthermore, with the right setup, the
802.11n protocol is reported to reach speeds of 600 Mb/s
and the newest 802.11ac over 1Gb/s. Again, despite being
only theoretical values, they give a sense on how advanced
wireless networks are nowadays, and that they could easily
provide a good enough connection to a large robotic team.

In the case of the traditional multi-robot SLAM system,
instead of simply measuring the consumed bandwidth, we
registered the size of the topics used to propagate local maps
through the robotic team (Tab. 4). Due to the unsteady
way maps are generated, i.e. after a map is sent there is
a considerable period of time where there is no bandwidth
usage, reading the bandwidth would result in improper val-
ues. Thus we present the size of the topic at the end of the
experiments.

The first point to note is that the average rate is neg-

Table 4: Size of the topic exchanged among robots
running the traditional multi-robot SLAM system.

Mean Min Max Average rate
(KB) (KB) (KB) (KB/s)

rostopic 27.7 5.6 38.0 5.2

ligible due to the fact that local maps are only sent once
significant changes have occurred. During the experiments
each robot only sent around 22 local maps, over the course
of 2 to 3 minutes. However, while in the Rapyuta-adapted
system the volume of information is steady and predictable,
in the traditional system, network load comes in the form of
bursts, which is not an appealing feature. Secondly, Tab. 4
shows clearly the high variability on map size growing from
a minimum of 5.6 KB to a maximum of 38.0 KB. This tells
us that we can never predict the total bandwidth necessary
of the whole system, as the size and rate of messages de-
pend on uncontrollable variables, and transmission over the
network occurs in a burst fashion.

3.2 Experiments with real robots
In order to further prove the concept, experiments with

real robots were also conducted. These experiments had the
objective of proving the applicability of a cloud-based solu-
tion on real world scenarios. Although simulation provides
a close approximation to reality under ideal conditions, real
experiments are subject to erroneous sensor readings, robot
slips during movement, and a not ideal wireless Internet con-
nection. All of these impact the final outcome, and it is im-
portant for the system to be robust enough to handle such
imperfections.

Fig. 8 represents a successful multi-robot SLAM exper-
iment where all processing was done on the cloud, which
was made of a single desktop for this case. Similarly to the
map used in simulation (Fig. 6), there was a common cor-
ridor open to all the robots and three side branches to be
explored by only one. Despite the few holes on the environ-
ment picked up by the laser-range finders and a few erro-
neous readings, the global map built by the system is usable
and a close approximation to reality, thus providing a result
equivalent to the one obtained by a traditional multi-robot
system not resorting to the cloud.

Figure 8: Experiment with real robots running the
Rapyuta-adapted multi-robot SLAM system.

The first idea for the following experiment was to patrol
the O-shape corridor (a loop) of the floor where our labo-
ratory is located. This was not possible because the Wi-Fi
access points (AP) are located inside the laboratories, which
causes the Internet connection to degrade quickly. Thus we
restricted the patrolling area to the vertexes with good In-
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ternet connection, which were patrolled as shown in Fig. 9.
This solidifies the idea that a solid Internet access cover-
age is required for any Cloud-based system. Only one robot
was used for these experiments for two main reasons: firstly,
there was not enough space with proper Internet access to
justify adding a second robot; secondly, the behaviour of
the acting robot would not change by adding a team mate,
unless their trajectories intersected each other.

Figure 9: Experiment of a real robot running the
Rapyuta-adapted robot patrolling system.

Despite the robot patrolling just a portion of the whole
building, it did so repeatedly proving the correct behavior
of the cloud-based system. This tells us that if a proper
Internet access coverage was available, the robot would have
been able to patrol the entire floor.

4. CONCLUSION
A cloud-based solution always presented itself as a tradeoff

between computer resources, namely CPU time and storage,
and network bandwidth. We have successfully proven that
tradeoff favourably, as high bandwidth wireless Internet con-
nections are commonly available nowadays with off-the-shelf
components. However, it should be noted that the tasks run
on the cloud can not degrade with time delays, i.e., there
should be no hard-real time deadlines.

The cloud-based solution was also shown as a scalable one
as long as the computer cluster that forms the Cloud is pow-
erful enough and the tasks running in it enable such scaling.
During the adaptation process of existing robotic tasks to
the cloud, not many changes to the original systems were
needed, thus this cloud-based ecosystem can coexist with
traditional systems. This becomes a key aspect when devel-
oping new robotic tasks, as debugging a program running
on a foreign machine is much more troublesome. We also
believe the multimaster nature of the presented cloud en-
vironment is a big plus, as it allows for robots to be more
independent, multi-robot system to be more modular, and
if the robot control is done locally a robot is not lost in the
case of network failures.

As for future work, it would be interesting to comple-
ment this research with an energy analysis. While processing
power can consume a lot of power so can wireless communi-
cations, even while inactive.
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