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Abstract 
2. The Basis Of The Method 

In this paper we present a texture analysis and 
classification method based on the computation of high- 
order statistics of gray-levels or selected features. The 
computation of these high-order statistics can be 
performed in parallel in non-overlapping windows that 
cover the full image. Classification is performed by neural 
networks. In this extended summary results are presented 
for back-propagation networks only, but several other 
types of neural nets were also tested. 

1. Introduction 

Texture is a visual quality that has been 
extensively researched in computer vision and 
psychophysics. Texture is generally defined as a structure 
which is made up of a large ensemble of similar elements 
or patterns without one of these drawing special attention 
111. The observer gets a global impression of uniformity 
when he looks at a texture. Textures can be classified in 
between two extreme classes: deterministic and stochastic. 
Deterministic textures are described by primitives and 
placement rules that define the primitives‘ spatial 
distribution. In stochastic textures it is not possible to 
recognize a subpattem or dominant repetition frequency. 
Stochastic textures can be considered as a result of a 2D 
stochastic process.However most of natural textures do 
not fall into one of these two categories, and are best 
described as a “mixed” type. 

Approaches for texture analysis, classification and 
synthesis can also be divided into two main categories: 
structural and statistical [2 ] .  This division is in 
correspondence with the above described categorization of 
textures.Statistical approaches use statistical measures of 
the gray level distributions or of selected features to 
describe textures.Structura1 methods characterize textures 
by describing their primitives and their placement rules 
[31. 

The method we present in this paper is based on 
the estimation of high-order statistics @gher than third- 
order) of the gray levels or of selected local features. Many 
statistical methods were proposed based on Julesz findings 
that the human visual system uses global first- and 
second-order statistics for texture discrimination [4, 51. 
One category of such methods are those based on the 
computation of the cooccurrence matrices [6, 71.Other 
methods were proposed that use third-order statistics as 
well as first- and second-order statistics. The use of third- 
order statistics enabled the extraction of more of the 
structural and directional information of the texture. 

The use of second-order moments is equivalent to 
the use of the autocorrelation function. In many cases this 
is a natural choice for texture characterization and the 
information extracted from the second-order statistics is 
sufficient for its analysis and classification. However it is 
well known that the information contained in the 
autocorrelation function is only sufficient for a full 
description of signals in the cases of Gaussianity. In the 
cases where deviations from Gaussianity and phase 
relations occur higher order statistics (also known as 
“cumulants“) have to be used. The use of high-order 
statistics enables also the detection and characterization of 
nonlinear properties in signals [ti]. 

Most of the real world signals are non-Gaussian 
and thus have non-zero higher-order spectra. For texture 
classification distinct classification features can be 
extracted from the higher-order spectra In this work we 
actually used estimates of the probability density 
functions and corresponding moments to classify textures. 
The computation of the estimates of the high-order 
probability density functions is performed in non- 
overlapping windows defined in each image. 
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3. The Model 

Let us assume that we have C texture classes 

a specific feature takes in d points of a two-dimensional 
grid. These feature values can be, for example, the gray 
level values of d pixels. Let us also assume that we are 
using k * 1 (k lines, I columns) images.This two- 
dimensional grid is a r * s window defined within the 
image, with I << k and s << I . Let X be a d-  
dimensional vector of the form 

where the xi are the values of the feature in specific 
points of the 2D grid. One important question that has to 
be taken into account is the spatial distribution of the d 
points. These d points have to be uniformly distributed 
all over the r * s window. This is to avoid that local 
structures determine the probability density functions to 
be estimated. For the classification we need to have 
estimates of the probability density functions 

p (X / w i  ) ,  i = 1, 2, ..., C 
In the cases where d = 2 these estimates can be 
approximated by the cooccurrence matrices. Once these 
probability density functions are estimated classification 
can be performed in a number of different ways [9]. One 
can, for example, use the Bayes decision rule to classify 
tan unknown texture. Given a vector X we want to find 
out a texture class wi for which the probability 

is maximum. 
According to the Elayes rule 

(Wl, 9, ..., Wc) . Let X i ,  X2, ..., xd be the values that 

x = (11, X2, ...> X d  ) 

p (wi / X) , i=l, 2, ..., C 

However In the work described in this paper we used a 
different approach. To characterize each texture class we 
compute first-, second- and third-order moments and 
entropies of the estimates of the probability density 
functions p ( X/ wi ) . Each element x i  of the vector X 
is quantized and assumes a finite number of different 
values.For example in the case where the feature used is 
the pixel's gray level value the xi will assume a 
maximum of 256 different values (for 8 bits/pixel 
images). Eachxi will be represented as a vector itself. We 
can write 

xi = ( Xil' xi2 , .... Xif ) 
As X is a multidimensional vector there are several 
first-, second- and third-order moments. For example we 
can define several means: 

The values calculated are used as descriptors or features of 
the texture classes. For classification we used neural 
networks (we used several types of networks and compared 
their performances). The neural net is trained with these 
descriptors. For recognition we will also use moments of 
the multidimensional probability distribution p (X). In 
order to obtain an estimate of the probability density 
function which is reasonably accurate we need to have a 
reasonable number of samples. That is achieved requiring 
that the window where the spatial sampling of the d pixels 
is performed be of dimensions significantly smaller than 
the image. This way each image or subimage provides us 
with a sufficient number of samples. The underlying 
assumption is that all the analyzed patches can be 
considered as representing samples of the texture field. We 
call this method parallel because the computation of the 
estimates of the probability density functions can be 
performed in parallel. Indeed for that purpose the image is 
divided into several non-overlapping windows of 
dimension r *s . These samples can be taken into 
account (in the computation of the estimates) 
simultaneously. 

4. Implementation 

One problem with the implementation of this 
model is the high-dimensionality of the estimates p(X/wi 
). For example, if we are dealing with images with 256 
gray levels the estimate of a third-order probability density 
function would require an impracticable amount of 
memory. There are several alternatives to solve this 
problem and we chose one solution that somehow 
"preserves" the direct computation of high-order statistics. 
For that purpose we used a kind of gray level sampling. 

Let us assume we are dealing with 8 bits/pixel 
images. From each image we generate a number of binary 
images. This number depends on the resolution of the 
gray level sampling we want to perform. In our case we 
generated from each image four binary images. We used 4 
gray level thresholds equally spaced in the range [0,255]. 
The thresholds we used were 64,128,192,224. 

Let f(x,y) be the gray level of pixel (4 y) . Let T 
be the value of the threshold. The binary images g(x,y) 
were generated by applying the condition: 

In each one of these binary images we compute 
the histograms p ( X / w i  ). The use of binary images 
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enabled us to compute high-order statistics. In this case 
(binary images) the estimate of the probability density 
function p ( X/wi ) is a unidimensional vector (as a result 
of some manipulation of the pixels' binary values). We 
typically used 10 pixels which means that we were 
computing tenth-order statistics. These histograms were 
computed in 16*16 windows. From each histogram the 
mean, variance, third-order moment and entropy were 
computed. Therefore each texture class was represented by 
a set of 16 values (4 statistical parameters per binary 
image). These measures were used as inputs of the neural 
networks. 

The types of neural nets tested with this type of 
statistical measures were back-propagation, leaming vector 
quantization, probabilistic neural nets, self-organizing 
maps and counter-propagation, However in this papr  only 
the results obtained with back-propagation are presented. 

LeQrning step 
Gain term 
Momentum 

5.Results 

0 --> loo00 
0.15 0.075 
0.4 0.2 

loo00 --> 3m 

The tests were performed on images from the 
album [lo]. Eight classes were considered: grass lawn 
@9), cloth @19), beach sand @29), water @38), wood 
(D68), raf€ia (D84), pigskin (D92) and fur (D93).The 
training set was composed by 24 images from each class 
and the test set was composed by 32 images from each 
class. All the images were digitized by performing 
rotations, translations and variations of illumination on 
the textures' photographic plates. 
The results presented here are for a back-propagation net 
with one-hidden layer. The records in the training file were 
presented randomly, whereas the test file was presented 
sequentially. The layer parameters used were those 
described in Table 1. 

Lays 

input 

hidden 

output 

Table 2 Coefficients used in the hidden layer 

Summation Trmffer Output Lemningmle Lenrning 

schedule 

sum linear direct none none 

sum tanh direct cumulative hidden1 (see 

epoch = 16 below) 

sum tanh direct cumulative out (see below) 

epoch = 16 

Gam term 10.3 10.15 
Momentum 10.4 10.2 

The results for the network with different number of nodes 
at the different layers are presented in Table 4. 

Table 4: Performance as a function of the number of nodes 

In the sequence of numbers 16-4-16, the first number 

Table 1: Layer parameters 

Each layer was fully connected to the next one. We used 
different values for the learning coefficients in the different 
layers and they were modified as the learning progressed. 

represents the number of nodes in the input layer, the 
second number represents the number of nodes in the 
hidden layer and the third number represents the number of 
nodes in the output layer. 
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Learn 15000 means that 15000 records were presented to 
the network during the training phase. The number in the 
performance columns represent the number of images 
correctly classified out of the total of 256 images. The 
results for a one-hidden layer back-propagation network 
with epoch size variation are described in Table 5. 

Table 5: Performance as a function of epoch size variation 

6. Conclusions 

The new method for texture analysis and classification 
described in this paper is based on the parallel 
computation of features. These features are estimates of 
high-order probability distributions. Based on these 
estimates of probability distributions a set of descriptors 
(which are several moments of the distributions as well as 
their entropy measures) is computed. These descriptors 
were then used with back-propagation neural networks to 
perform texture classification. As expected (due to the 
high dimensionality of the estimated probability 
distributions) the method proved to be quite robust against 
translations, rotations and variations of illumination. 
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