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Abstract.  The Darwinian Particle Swarm Optimization (DPSO) is an evolutionary algorithm that extends the Particle Swarm 
Optimization using natural selection to enhance the ability to escape from sub-optimal solutions. An extension of the DPSO 
to multi-robot applications has been recently proposed and denoted as Robotic Darwinian PSO (RDPSO), benefiting from the 
dynamical partitioning of the whole population of robots, hence decreasing the amount of required information exchange 
among robots. This paper further extends the previously proposed algorithm using fractional calculus concepts to control the 
convergence rate, while considering the robot dynamical characteristics. Moreover, to improve the convergence analysis of 
the RDPSO, an adjustment of the fractional coefficient based on mobile robot constraints is presented and experimentally as-
sessed with 2 real platforms. Afterwards, this novel fractional-order RDPSO is evaluated in 12 physical robots being further 
explored using a larger population of 100 simulated mobile robots within a larger scenario. Experimental results show that 
changing the fractional coefficient does not significantly improve the final solution but presents a significant influence in the 
convergence time because of its inherent memory property.  
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INTRODUCTION 

One of the most well-known bio-inspired algorithms 
from swarm intelligence is the Particle Swarm Optimiza-
tion (PSO), which basically consists of a technique 
loosely inspired by birds flocking in search of food [1]. 
More specifically, it encompasses a number of particles 
that collectively move on the search space to find the 
optimal solution. A problem with PSO algorithm is that 
of becoming trapped in sub-optimal solutions. Therefore, 
the PSO may work perfectly on one problem but may 
fail on another. In order to overcome this problem, many 
authors have suggested extended versions of the PSO, 
such as the Darwinian Particle Swarm Optimization 
(DPSO) [2], to enhance the ability to escape from sub-
optimal solutions (cf., [3]). An extension of the DPSO to 
multi-robot applications has been recently proposed and 
denoted as Robotic Darwinian PSO (RDPSO), benefiting 
from the dynamical partitioning of the whole population 
of robots [4] and [5]. Hence, the RDPSO allows decreas-
ing the amount of required information exchange among 

robots and therefore is scalable to large populations of 
robots. 

From Optimization to Robotics 

The navigation of groups of robots, especially swarm 
robots, has been one of the fields that has benefited from 
biological inspiration [6]. However, real multi-robot 
systems present several constraints that need to be con-
sidered. For instance, the development of robot teams for 
surveillance or rescue missions require that robots have 
to be able to maintain communication among them with-
out the aid of a communication infrastructure. One of the 
first adapted versions of the PSO to handle real world 
constraints, such as obstacles, is presented by Min et al. 
[7]. Similarly to the RDPSO, this approach adjusts the 
velocity and direction of the mobile robot in real time, 
thus allowing the robot to reach its goal while avoiding 
obstacles in the way. Each robot runs an entire swarm 
and the global best particle is considered the best solu-
tion. Unfortunately, contrarily to our previous work [4], 
simulation results presented the comparison with Artifi-
cial Potential Field (APF) algorithms with only one ro-



bot. Also, simulation experiments lack some information 
such as the distance the robot needs to travel (since the 
time which the mobile robot spends in reaching the goal 
is presented). Another similar approach was developed 
by Pugh & Martinoli [8] where an adapted version of the 
PSO to distributed unsupervised robotic learning in 
groups of robots with only local information is present-
ed. The main difference between this algorithm and 
classical PSO is that each robot (i.e., particle) only takes 
into consideration the information of the robots within a 
fixed radius r (omnidirectional communication). The 
authors analyzed how the performance was affected if 
the standard PSO neighborhood structure was adapted to 
a more closely model, which is possible in a real robot 
group with limited communication abilities. Experi-
mental results obtained using Webots simulator showed 
that the adapted version of the PSO maintained good 
performance for groups of robots of various sizes when 
compared to other bio-inspired methods. However, con-
trarily to the previously presented RDPSO algorithm [5], 
all bio-inspired methods used, including the adapted 
PSO, tends to get trapped in local solutions. Further-
more, and contrarily to the experimental results with real 
platforms shown in our previous work [9], the authors 
does not use multi-hop connectivity and does not apply 
any kind of algorithm to enforce communication be-
tween robots. Similarly, Hereford and Siebold [10] pre-
sented an embedded version of the PSO in swarm plat-
forms. As in RDPSO, there is no central agent to coordi-
nate the robots movements or actions. Despite the poten-
tialities of the physically-embedded PSO, experimental 
results were carried out using a population of only three 
robots, performing a distributed search in a scenario 
without local solutions. Also, contrarily to our previous 
work [11], collision avoidance and fulfillment of mobile 
ad hoc network (MANET) connectivity were not consid-
ered.  

Statement of Contribution 

In our previous work [12], the fractional calculus 
(FC) concept was used to improve the convergence rate 
of the traditional DPSO presented by Tillett et al. [2]. 
Experimental results showed that, although the speed of 
convergence of the Fractional Order DPSO (FODPSO) 
depends on the fractional order ߙ, the proposed algo-
rithm outperformed the traditional DPSO and PSO¸ as 
well as the FOPSO previously presented in the literature 
[13]. This work further extends the RDPSO previously 
presented in [4] and [5] using fractional calculus to con-
trol the convergence rate of robots toward the optimal 

solution. Section two introduces some preliminary con-
cepts to pave the way for section three that generalizes 
the RDPSO to a fractional order, denoting it as Fraction-
al Order RDPSO (FORDPSO). Experimental results for 
the FORDPSO are presented in section four with both 
physical and simulated platforms. Finally, in section five 
outlines the main conclusions. 

PRELIMINARIES 

For better clarity in the presented paper, this section 
introduces the fractional calculus and gives a brief over-
view of the working principles behind the RDPSO algo-
rithm previously proposed in [4] and further extended in 
[5]. 

Fractional Calculus 

Fractional calculus (FC) has attracted the attention of 
several researchers [14], being applied in various scien-
tific fields, such as engineering, computational mathe-
matics, fluid mechanics, among others. 

FC can be considered as a generalization of integer-
order calculus, thus accomplishing what integer-order 
calculus cannot. As a natural extension of the integer 
(i.e., classical) derivatives, fractional derivatives provide 
an excellent instrument for the description of memory 
and hereditary properties of processes. The concept of 
Grünwald–Letnikov fractional differential, is presented 
by the following definition. 
 
Definition 1 [15] Let Γ be the gamma function defined 
as: 
 

Γሺ݇ሻ ൌ ሺ݇ െ 1ሻ! (1) 
 
The signal ܦఈሾݔሺݐሻሿ given by 

 
is said to be the Grünwald–Letnikov fractional deriva-
tive of order ߙ ,ࢻ א ԧ, of the signal ݔሺݐሻ. 
 

An important property revealed by (2) is that while 
an integer-order derivative just implies a finite series, the 
fractional-order derivative requires an infinite number of 
terms. Therefore, integer derivatives are “local” opera-
tors while fractional derivatives have, implicitly, a 
“memory” of all past events. However, the influence of 
past events decreases over time. 

ሻሿݐሺݔఈሾܦ ൌ lim՜ ቂ
ଵ

ഀ
∑ ሺିଵሻೖሺఈାଵሻ௫ሺ௧ିሻ

ሺାଵሻሺఈିାଵሻ
ାஶ
ୀ ቃ, (2) 



The formulation in (2) inspires a discrete time calcu-
lation presented by the following definition. 
 
Definition 2 [15] The signal ܦఈሾݔሺݐሻሿ given by 
 

ሿ൧ݐሾݔఈൣܦ ൌ ଵ

்ഀ
∑ ሺିଵሻೖሾఈାଵሿ௫ሾ௧ି்ሿ

ሾାଵሿሾఈିାଵሿ

ୀ , (3) 

 
where ܶ is the sampling period and ݎ is the truncation 
order, is the approximate discrete time Grünwald–
Letnikov fractional difference of order ߙ ,ࢻ א ԧ, of the 
discrete signal ݔሾݐሿ. 

The series presented in (3) can be implemented by a 
rational fraction expansion which leads to a superior 
compromise in what concerns the number of terms ver-
sus the quality of the approximation. Nevertheless, since 
this study focuses on the convergence of robots toward a 
given solution considering past events, the simple series 
approximation is adopted. 

That being said, it is possible to extend an integer 
discrete difference, i.e., classical discrete difference, to a 
fractional-order one, using the following definition. 
 
Definition 3 [16] The classical integer “direct” discrete 
difference of signal ݔሾݐሿ is defined as follows: 

 

∆ௗݔሾݐሿ ൌ ቐ
                   ሿݐሾݔ                 , ݀ ൌ 0
ሿݐሾݔ െ ݐሾݔ െ 1ሿ                 , ݀ ൌ 1
∆ௗିଵݔሾݐሿ െ ∆ௗିଵݔሾݐ െ 1ሿ, ݀  1

, (4) 

 
where ݀ א Գ is the order of the integer discrete differ-
ence. Hence, one can extend the integer-order ∆ௗݔሾݐሿ 
assuming that the fractional discrete difference satisfies 
the following inequalities: 
 

݀ െ 1 ൏ ߙ ൏ ݀. (5) 
 

The features inherent to fractional calculus make this 
mathematical tool well suited to describe many phenom-
ena, such as irreversibility and chaos, because of its 
inherent memory property. In this line of thought, the 
dynamic phenomena of a robot’s trajectory configure a 
case where fractional calculus tools fit adequately. 

RDPSO 

Since the RDPSO approach is an adaptation of the 
DPSO to real mobile robots, four general features were 
proposed: i) a novel “punish”-“reward” mechanism to 
emulate the deletion and creation of robots; ii) an obsta-
cle avoidance algorithm to avoid collisions; iii) an en-

forcing multi-hop network connectivity algorithm to 
ensure that the MANET remains connected throughout 
the mission; iv) a novel methodology to establish the 
initial planar deployment of robots preserving the con-
nectivity of the MANET while spreading out the robots 
as most as possible. The RDPSO is then modelled based 
on the following definition. 
 
Definition 4 [5] The behavior of robot ݊ is described by 
the following discrete equations at each discrete time, or 
iteration, ݐ א Գ: 

 
ݐሾݒ  1ሿ ൌ ሿݐሾݒݓ  ∑ ሿݐሺ߯ሾݎߩ െ ሿሻݐሾݔ

ସ
ୀଵ , (6) 

 
ݐሾݔ  1ሿ ൌ ሿݐሾݔ  ݐሾݒ  1ሿ. (7) 

 
wherein parameters ݓ and ߩ, ݓ, ߩ  0 with ݅ ൌ
1,2,3,4, assign weights to the inertial influence, the local 
best (i.e., cognitive component), the global best (i.e., 
social component), the obstacle avoidance component 
and the enforcing communication component when de-
termining the new velocity. Coefficients ݎ, ݅ ൌ 1,2,3,4, 
are random vectors wherein each component is general-
ly a uniform random number between 0 and 1. The vari-
ables ݒሾݐሿ and ݔሾݐሿ represent the velocity and position 
vector of robot ݊, respectively, and ߯ሾݐሿ denotes the best 
position of the cognitive, social, obstacle and MANET 
components.  
 

The cognitive ߯ଵሾݐሿ and social components ߯ଶሾݐሿ are 
common in PSO algorithm, where ߯ଵሾݐሿ represents the 
local best position and ߯ଶሾݐሿ represents the global best 
position of robot ݊. The obstacle avoidance component 
߯ଷሾݐሿ is represented by the position of each robot that 
optimizes a monotonically decreasing or increasing func-
tion ݃ሺݔሾݐሿሻ that describes the distance to a sensed 
obstacle (cf., [4]). In real-world scenarios, obstacles need 
to be taken into account and the value of ߩଷ depends on 
several conditions related with the main objective (i.e., 
minimize a cost function or maximize a fitness function) 
and the sensing information (i.e., monotonicity of 
݃ሺݔሾݐሿሻ). The MANET component ߯ସሾݐሿ is represented 
by the position of the nearest neighbor increased by the 
maximum communication range ݀௫ toward robot’s 
current position. A higher ߩସ may enhance the ability to 
maintain the network connected ensuring a specific 
range or signal quality between robots. 

Besides all these components, the RDPSO is repre-
sented by multiple swarms, i.e., several groups of robots 
that, altogether, form the population. Each swarm indi-
vidually follows equations (6) and (7) in the solution 



search and some punish-reward rules governs the whole 
population of robots based on the concept of social ex-
clusion (for more details refer to [4]). In what concerns 
the socially excluded robots, instead of searching for the 
objective function’s global optimum like the other robots 
in the active swarms, they basically randomly wander in 
the scenario. This approach improves the algorithm, 
making it less susceptible of becoming trapped in a local 
optimum. However, excluded robots are always aware of 
their individual solution and the global solution of the 
socially excluded group. Also, having multiple swarms 
enables a distributed approach, because the network that 
was previously defined by the whole population of ro-
bots is now divided into multiple smaller networks (one 
for each swarm), thus decreasing the number of nodes 
(i.e., robots) and the information exchanged between 
robots of the same network. In other words, robots inter-
action with other robots is confined to local interactions 
inside the same group (swarm), thus making RDPSO 
scalable to large populations of robots. 

FRACTIONAL ORDER RDPSO 

This section presents the extension of the RDPSO al-
gorithm using fractional calculus to control the conver-
gence rate of robots. Considering the inertial influence in 
(6) as ݓ ൌ 1, one would obtain: 

 
ݐሾݒ  1ሿ ൌ ሿݐሾݒ  ∑ ሿݐሺ߯ሾݎߩ െ ሿሻݐሾݔ

ସ
ୀଵ . (8) 

 
This expression can be rewritten as: 
 
ݐሾݒ  1ሿ െ ሿݐሾݒ ൌ ∑ ሿݐሺ߯ሾݎߩ െ ሿሻݐሾݔ

ସ
ୀଵ . (9) 

 
Hence, ݒሾݐ  1ሿ െ  ሿ corresponds to the discreteݐሾݒ

version of the fractional difference of order ߙ ൌ 1, i.e., 
the first order integer difference ∆ௗݒሾݐ  1ሿ. Assuming 
ܶ ൌ 1 and based on Definition 2, yields to the following 
equation: 

 
ݐሾݒఈൣܦ  1ሿ൧ ൌ ∑ ሿݐሺ߯ሾݎߩ െ ሿሻݐሾݔ

ସ
ୀଵ . (10) 

  
Based on FC concept and Definition 3, the order of 

the velocity derivative can be generalized to a real num-
ber 0 ൏ ߙ ൏ 1, thus leading to a smoother variation and 
a longer memory effect. Therefore, considering the dis-
crete time fractional differential presented on Definition 
2, one can rewrite equation (8) as: 

 

ݐሾݒ  1ሿ ൌ െ∑
ሺିଵሻೖሾఈାଵሿ௩ሾ௧ାଵି்ሿ

ሾାଵሿሾఈିାଵሿ

ୀଵ  (11) 

∑ ሿݐሺ߯ሾݎߩ െ ሿሻݐሾݔ
ସ
ୀଵ . 

  
The RDPSO is therefore a particular case of the frac-

tional order RDPSO (FORDPSO) for ߙ ൌ 1 (without 
“memory”).  

Memory Complexity 

Adding memory to the RDPSO algorithm allows im-
proving the convergence rate of robots since each robot 
will have the information about its preceding actions. 
Nevertheless, the computational requirements increase 
linearly with ݎ, i.e., the FORDPSO present a ࣩሺݎሻ 
memory complexity per robot. Moreover, it is notewor-
thy that these kinds of optimization or foraging algo-
rithms present a higher performance as the number of 
robots increase. Hence, robots should be as simple and 
low-cost as possible (i.e., swarm robots) which are usu-
ally memory limited.  

Therefore, the truncation of equation (11) will de-
pend on the requirements of the application and the fea-
tures of the robot. For instance, for the eSwarBot (educa-
tive Swarm Robot) platforms previously presented in 
[17], a ݎ ൌ 4 leads to results of the same type than for 
ݎ  4. Although one could consider the processing pow-
er as the main reason to use a limited number of terms, 
the kinematical features of the platform and the mission 
requirements also needs to be considered in such a way 
that one can present the following result. 
 
Proposition 1: Let ߜ and ݒ௫ be the encoders-wheel 
resolution of robots and the maximum allowed travelled 
distance between iterations, respectively. If ߬ is the min-
imum natural number that verifies the following inequal-
ity: 
 

െ
ሺିଵሻഓሾఈାଵሿ௩ೌೣ

ሾఛାଵሿሾఈିఛାଵሿ
൏  (12) .ߜ

 
Then the FORDPSO equation (11) should be truncated 
based on ߜ and ݒ௫, in ݎ ൌ ߬ െ 1. 
 
Proof: Let us consider the example of a differential drive 
robot (e.g., eSwarBot). A differential drive robot consists 
of two independently driven wheels and, usually, a free 
wheel for stability (e.g., caster wheel). For navigation 
purposes, the driven wheels are usually equipped with 
encoders that provide odometry measures. Hence, the 
major odometry parameter of such mobile robot to drive 
forward is the radius of the wheels ܴ௪ and the num-
ber of pulses from revolution of the wheel ܰ௨௦௦/௩. 



The kinematical equation of a differential drive robot, 
while moving forward, can be defined as: 
 

ݏ݁ݏ݈ݑ ൌ ܰ௨௦௦/௩ ൈ
ௗ௦௧

ଶగൈோೢ
, (13) 

 
where ݏ݁ݏ݈ݑ is the number of pulses necessary for the 
robot to travel a distance of ݀݅ݐݏ. Defining ݏ݁ݏ݈ݑ ൌ 1 
we can obtain the minimum distance that a robot can 
travel at each iteration, i.e., the resolution ߜ. Hence, an 
increment of the distance lower than ߜ would be unfea-
sible for the robot to travel. Also, one may observe 
through equation (11), that the relevance of past events, 
i.e., the ݒሾݐ  1 െ ݇ܶሿ term, reduces over time. In other 
words, from a given term ݎ ൌ ߬ െ 1, the relevance of all 
previous events before it would be irrelevant as the robot 
is unable to travel with such accuracy.  

■ 
 
To clarify the previous result, let us consider the fol-

lowing example. 
 

Example: Considering the eSwarBot platform, a res-
olution of ߜ ൌ 2.76 mm is obtained for a single pulse, 
taking into account that ܴ௪ ൌ 21.09 mm and the 
combination between encoders-wheel provides 
ܰ௨௦௦/௩ ൌ 48 pulses/revolution. Let us consider a 

maximum travelled distance between two iterations of 
௫ݒ ൌ 100 mm, i.e., the robot cannot travel more than 
100 mm without any update of the information. Fig. 1 
presents the computation of each term of equation (10). 
As one may observe, a term of ݎ ൌ 4 would be enough to 
represent the FORDPSO dynamics in such conditions as 
the 5th term returns an increment of 2.73 mm. In other 
words, the algorithm would present similar results for 
ݎ  4. 
 

As eSwarBots would be the robotic platforms used 
throughout this work, one will only consider the first 
ݎ ൌ 4 terms of the fractional discrete difference in (11), 
yielding: 

 

ݐሾݒ  1ሿ ൌ ௧ݒߙ 
ଵ

ଶ
௧ିଵݒߙ

  ଵ


ሺ1ߙ െ ௧ିଶݒሻߙ

 
ଵ

ଶସ
ሺ1ߙ െ ሻሺ2ߙ െ ௧ିଷݒሻߙ

  ∑ ሿݐሺ߯ሾݎߩ െ
ସ
ୀଵ

 .ሿሻݐሾݔ

(14) 

 
Next section presents the convergence analysis of the 

FORDPSO based on the dynamical characteristic of 
robots. 
 

 
 

FIGURE 1. Convergence of the robot toward the solution 
changing the differential derivative ݎ. 

Convergence Analysis 

Equation (14) represents a stochastic procedure that 
describes the discrete-time motion of a robot. One way 
to analyze the convergence of the algorithm consists on 
adjusting the parameters based on physical mobile robots 
constraints when facing a better solution. In other words, 
robots need to softly reduce its velocity (i.e., decelerate) 
when converging to a given solution. That state is usual-
ly unaddressed in the literature while analyzing the tradi-
tional PSO and its main variants, since virtual agents 
(i.e., particles) are not constrained by such behaviors.  

Let us then suppose that a robot is traveling at a con-
stant velocity such that ݒሾݐ െ ݇ሿ ൌ with k ݒ א Գ and it 
is able to find its equilibrium point in such a way that 
ሿݐሾݔ ൌ ߯, ݅ ൌ 1,2,3,4. In other words, the best position 
of the cognitive, social, obstacle and MANET compo-
nents are the same. As a result, the robot needs to decel-
erate until it stops, i.e., ݒ  ݐሾݒ  1ሿ  ڮ 
ݐሾݒ  ݇ሿ  ڮ  0.  

Consequently, equations (7) and (14) can be rewritten 
as:  

 

0  ݒ ൬ߙ  ଵ

ଶ
ߙ  ଵ


ሺ1ߙ െ ሻߙ  ଵ

ଶସ
ሺ1ߙ െ

ሻሺ2ߙ െ ሻ൰ߙ ൏  ,ݒ
(15) 

 
thus resulting in 

 
0 ൏ ߙ  0.632. (16) 
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Therefore, one can conclude that ߙ ൌ 0.632 is the 
boundary of the attraction domain, i.e., the RDPSO is 
stable for 0 ൏ ߙ  0.632 and unstable for 0.632 ൏ ߙ 
1. As a result of the above analysis, the fractional coeffi-
cient can be parameterized in such a way that the sys-
tem’s convergence can be controlled by taking into ac-
count obstacle avoidance and MANET connectivity, 
without resorting to the definition of any arbitrary or 
problem-specific parameters. 

Nonetheless, to further improve the analysis of ro-
bots’ behavior and the influence of FC in the algorithm, 
some experiments using two physical eSwarBots were 
carried out. As described in [18] and [19], a swarm be-
havior can be divided into two activities: i) exploitation; 
and ii) exploration. The first one is related with the con-

vergence of the algorithm, thus allowing a good short-
term performance. However, if the exploitation level is 
too high, then the algorithm may be stuck on local solu-
tions. The second one is related with the diversification 
of the algorithm which allows exploring new solutions, 
thus improving the long-term performance. However, if 
the exploration level is too high, then the algorithm may 
take a long time to find the global solution. As first pre-
sented by Shi and Eberhart [20], the trade-off between 
exploitation and exploration in the classical PSO has 
been commonly handled by systematically adjusting the 
inertia weight. A large inertia weight improves explora-
tion activity while exploitation is improved using a small 
inertia weight. 

 

      
FIGURE 2. Evaluation of the fractional coefficient influence. a) Experimental setup; b) Center-of-mass trajectories in phase space of 
a swarm of 2 robots. 
 

Since the FORDPSO presents a FC strategy to con-
trol the convergence of the robotic team, the coefficient 
 needs to be defined in order to provide a high level of ߙ
exploration while ensuring the global solution of the 
mission. In order to understand the relation between the 
fractional coefficient ߙ and the FORDPSO exploita-
tion/exploration capabilities, the center-of-mass trajecto-
ry in phase space of a swarm of two physical robots, for 
various values of ߙ, while fixing ߩ ൌ 0.5, will be ana-
lyzed. Both robots were randomly placed in the vicinity 
of the solution in (0,0) with a fixed distance of 0.5 me-
ters between them (Fig. 2a). The solution is defined by 
an illuminated spot which is sensed using overhead light 
sensors (LDR) (cf, EXPERIMENTAL RESULTS section 
for the experimental setup description). 

As it may be perceived (Fig. 2b), the swarm behavior 
is susceptible to variations in the value of ߙ. Figure 2 
depicts that when ߙ is too small, i.e., ߙ ൌ 0.010, the 
exploitation level is too high being likely to get stuck in 

a local solution. However, the intensification of the algo-
rithm convergence is improved – it presents a quick, 
almost linear, convergence. When ߙ is at the boundary 
of the attraction domain, i.e., ߙ ൌ 0.632, the trajectory 
of the swarm is cyclical and presents a good balance 
between exploitation and exploration. In this case, robots 
exhibit a level of diversification adequate to avoid local 
solutions and a considerable level of intensification to 
converge to the global solution, i.e., it presents a spiral 
convergence toward a nontrivial attractor. When ߙ is too 
high, i.e., ߙ ൌ 0.990, despite the cyclical trajectory of 
the swarm toward the global solution, the swarm pre-
sents an oscillatory behavior. This results in a high ex-
ploration level being more unstable and sometimes una-
ble to converge, i.e., it presents a difficult convergence. 

Based on those preliminary experiments, next section 
evaluates this novel FORDPSO using 12 eSwarBots 
being further explored using a larger population of 100 
simulated mobile robots within a larger scenario. 

ߙ ൌ 0.990 

ߙ ൌ 0.010 

ߙ ൌ 0.632 

௦ݔ ሾ݉ሿ 

௦ݒ ሾ݉.  ଵሿିݏ
b)a) 



EXPERIMENTAL RESULTS 

To further validate the claims around the FORDPSO, 
this section provides experimental results obtained using 
both real and simulated robots. 

Real Robots 

In this section, it is explored the effectiveness of us-
ing the FORDPSO on swarms of real robots, while per-
forming a collective foraging task with local and global 
information under communication constraints. Since the 
FORDPSO is a stochastic algorithm, every time it is 
executed it may lead to different trajectory convergence. 
Therefore, a set of 20 trials of 3 minutes each was con-
sidered. A minimum (ݏ), initial (ݏ௧) and maximum 
 number of 1, 2 and 3 swarms were used for a (௫ݏ)
population of ܰ  ൌ  12 robots. 

The experiments were carried out in a 2.55 meters to 
2.45 meters scenario. The experimental environment was 
an enclosed arena that contained two sites (Fig. 3a). Each 
site was represented by an illuminated spot uniquely 
identifiable by controlling the brightness of the light. 
The brighter site (optimal solution) was considered bet-
ter than the dimmer one (sub-optimal solution), and so 
the goal of the robots was to collectively choose the 
brighter site. 

The intensity values ܨሺݔ,  ሻ represented in Fig. 3bݕ
were obtained sweeping the whole scenario with a single 
robot in which the light sensor was connected to a 10-bit 
analog input, thus offering a resolution of approximately 
5 mV. To improve the interpretation of the algorithm 

performance, results were normalized in a way that the 
objective of robotic teams is to find the optimal solution 
of ݂ሺݔ, ሻݕ ൌ 1. 

The maximum communication distance between ro-
bots ݀௫ was defined as 1.5 meters. At each trial, ro-
bots were manually deployed on the scenario in a spiral 
manner while preserving the maximum communication 
distance ݀௫ (as previously presented in [5]). 

In order to evaluate the impact of fractional calculus 
in the convergence of the algorithm, the original RDPSO 
ߙ) ൌ 1) was compared to the fractional order RDPSO 
with ߙ ൌ 0.632 (cf., Convergence Analysis Section). 
Based on our previous work [9] and the presented con-
siderations, Table 1 summarizes the FORDPSO configu-
ration. 

 
TABLE 1. FORDPSO parameters. 
 

Parameter 
Value 

1st Set 2nd Set 

ߙ 1 0.632 
Number of Trials 20 
Time per Trial ሾܿ݁ݏሿ 180 
்ܰ 12 
ݏ 1 
௧ݏ 2 
௫ݏ 3 
݀௫ ሾ݉݉ሿ 1500 
௫ݒ ሾ݉݉ሿ 100 
ଵߩ 0.1 
ଶߩ 0.3 
ଷߩ 0.79 
 ସ  0.79ߩ

 
 

  
 

FIGURE 3. Experimental setup. a) Enclosed arena with 2 swarms (different colors); b) Virtual representation of the target distribu-
tion. 
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FIGURE 4. Performance of the FORDPSO with a population 
of ܰ  ൌ  12 robots changing ߙ. 

 
Since these experiments represent a foraging task, it 

is necessary to evaluate both the completeness of the 
mission and the time needed to complete it. Therefore, 
Fig. 4 depicts the convergence of both RDPSO and 
FORDPSO. The median of the best solution in the 20 
experiments was taken as the final output for both ߙ. As 
one may observe, the decrease of ߙ from 1 to 0.632 
improves the convergence rate of the algorithm also 
marginally improving the median value of the solution at 
the end of the mission, i.e., ݐ ൌ 180 seconds. 

However, analyzing swarm algorithms within small 
populations of 12 robots may not represent the required 
collective performance (cf., [21]). Also, it may not be 
enough to assess the FORDPSO performance within the 
small proposed scenario. Hence, next section presents 
computational experiments using a larger population of 
simulated robots within a larger scenario. 

Simulated Robots 

The use of simulated robots instead of the physical 
ones was necessary to further evaluate the influence of 
fractional calculus in the RDPSO algorithm. The exper-
iments were carried out in a simulated scenario of 
300 ൈ 300 meters with obstacles randomly deployed at 
each trial, in which a 2-dimensional benchmark Gaussian 
functions was defined where x and y-axis represent the 
planar coordinates in meters (Fig. 5). 

 

 
FIGURE 5. Virtual scenario based on a Gaussian distribution 
endowed with obstacles. 

 
Once again, in order to improve the interpretation of 

the algorithm performance, results were normalized in a 
way that the objective of robotic teams was to maximize 
the function, thus finding the optimal solution of 1, while 
avoiding obstacles and ensuring the MANET connectivi-
ty. A set of 100 trials of 500 iterations each was consid-
ered for ܰ  ൌ  100 robots. Also, a minimum (ݏ), 
initial (ݏ௧) and maximum (ݏ௫) number of 2, 5 and 8 
swarms were used. The maximum travelled distance 
between iterations was set as 0.5 meters, i.e., ݒ௫ ൌ 0.5 
while the maximum communication distance between 
robots was set to ݀௫ ൌ 30 meters.  

 
TABLE 2. FORDPSO parameters. 
 

Parameter 
Value 

1st Set 2nd Set 

ߙ 1 0.632 
Number of Trials 100 
Number of Iterations 500 
்ܰ 100 
ݏ 2 
௧ݏ 5 
௫ݏ 8 
݀௫ ሾ݉݉ሿ 30000 
௫ݒ ሾ݉݉ሿ 500 
ଵߩ 0.1 
ଶߩ 0.3 
ଷߩ 0.79 
 ସ  0.79ߩ

 
Once again, in order to evaluate the impact of frac-

tional calculus in the convergence of the algorithm, the 
original RDPSO (ߙ ൌ 1) was compared to the fractional 
order RDPSO with ߙ ൌ 0.632. Table 2 summarizes the 
FORDPSO configuration applied in the simulation ex-
periments. 
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Fig. 6 depicts the convergence of both RDPSO and 
FORDPSO. The median of the best solution in the 100 
experiments was taken as the final output for both ߙ. 

 

 
FIGURE 6. Performance of the FORDPSO with a population 
of ܰ  ൌ  100 robots changing ߙ. 

 
Once again, one may observe that using the integer-

order FORDPSO, i.e., ߙ ൌ 1, present worse results than 
the the fractional-order ߙ ൌ 0.632 (Fig. 6). In other 
words, one can conclude that, despite both RDPSO and 
FORDPSO reveal a similar behavior, the combination 
between FC and Darwin’s principles contributes to an 
improved convergence dynamics. 

 

CONCLUSION 

This paper introduces fractional calculus to control 
the convergence rate of the Robotic Darwinian Particle 
Swarm Optimization (RDPSO) previously proposed. 
Both memory complexity and convergence analysis of 
this novel extension, denoted as fractional-order RDPSO 
(FORDPSO), are carefully considered based on real 
robot physical constraints. 

Experimental results show that the algorithm con-
verges in most situations regardless on the fractional-
order. Nevertheless, the fractional extension of the algo-
rithm presents a considerably superior performance in 
both time and mission completeness. 

One of the future improvements will be the extension 
of the FORDPSO with adaptive mechanisms since ro-
bots may need to dynamically change their behavior 
during the search mission, based on contextual infor-
mation. Therefore, the FORDPSO should be further 
extended in order to control the swarm susceptibility to 

the main mission, obstacle avoidance and communica-
tion constraint, by systematically adjusting its parame-
ters. 
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