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Abstract

In vision systems used in robotics, inertial and earth field magnetic sensors can
provide valuable data about the observer ego-motion, as well as an absolute
orientation reference. This article exploits the inertial orientation measurements
to compensate the rotational degrees of freedom, in two different domains.

First, inertial data is used to project images on a leveled plane, relaxing the
demands on interest point matching algorithms when performing image mosaicing.
Second, in the rotation-compensated, pure translation case, full homographies are
reduced to planar homologies, and the ratio of heights over the ground plane on two
views are calculated more accurately. Both techniques are validated over outdoor
image sequences including aerial images from an remotely piloted blimp.
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1. INTRODUCTION

Vision systems in robotic applications can be
rigidly coupled with Inertial Measurement Units
(IMUs), which complement it with sensors provid-
ing direct measures of orientation relative to the
world north-east-up frame, such as magnetome-
ters and accelerometers (that measure gravity).

A novel calibration technique [Lobo and Dias,
2005] finds the rigid body rotation between the
camera and IMU frames, and then the camera
orientation in the world is obtained by rotat-
ing the IMU orientation measurement. The ap-
proximation of the rotational degrees of freedom
should allow faster processing or the use of simpler
movement models in computer vision tasks. For
example, it can be explored to improve robustness
on image segmentation and 3D structure recovery
[Lobo et al., 2006].

The limits of computer vision or sensorial data
fusion alone have already been largely explored,

and it is known that some limits may be overcome
by combining them.

In [Hygounenc et al., 2004], a stereovision-ounly
aproach is used to build a 3D map of the envi-
ronment from stereo images taken by a remotely
controlled blimp, tracking the camera pose and
landmarks on the ground. It was not their aim to
integrate IMU measurements.

On-board inertial and GPS data, together with a
dynamic model of the vehicle is used in [Brown
and Sullivan, 2002] to project images taken from
a high-flying airplane onto the ground plane. One-
pixel accuracy is achieved with no need of image-
based techniques.

Image mosaicing was performed in [Gracias, 2002],
for an unmanned submarine navigating over flat
sea-bottom, using only images as input. The reg-
istration converged only if the vehicle movement
is restricted to be planar (no large change on roll
and pitch).



Figure 1. The vision-inertial system and an aerial
vehicle that carries it.

Combined IMU and vision data were used to
keep pose estimates in an underwater environ-
ment, navigating a robot submarine over a large
area [Eustice, 2005]. Relative pose measurements
from the images avoided divergence of the tracked
vehicle pose, and an image mosaic is a byproduct.

In previous work [Mirisola et al., 2006] IMU sensed
orientation aided the registration of stereo depth
maps from a moving stereo camera. Each depth
map was rotated to a leveled reference frame pro-
vided by the inertial sensed orientation. Then the
remaining translation vector to register the 3D
depth maps was found by interest point match-
ing on the image sequence. A robust estimation
process detects outliers from both interest point
matching and stereo depth maps, and is very fast
due to the simple translation vector model.

The aim of this article is to exploit the inertial
orientation measurements in two other domains,
separating rotational and translational compo-
nents, and using simpler movement models that
offer increased performance or accuracy.

In section 2 we discuss the registration of images
over planar surfaces. As the camera orientation
measurements allow us to rotate the stereo depth
maps, images of the ground surface can also be
registered into a common leveled plane, and be
rotated to align with the north-east axes. In this
way, the performance of interest point matching
algorithms used in image mosaicing is shown to
be improved.

Next, section 3 shows that in the rotation-
compensated, pure translation case, planar ho-
mographies became homologies, a more restricted
model that allows to calculate relative camera
heights from pixel correspondences with more ac-
curacy. Images from the UAV of figure 1 are used
in the last experiment.

Finally, the conclusions are shown in section 4.

1.1 Definitions of reference frames

The camera provides intensity images I. The
subscript ¢ is the time index. Hence the following
frames are defined, as shown in figure 2:

e Camera Frame {C}: This frame is used
in the pinhole camera projection model. The
origin is placed at the camera center, the axis
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Figure 2. Definition of frames of reference.
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Figure 3. The virtual leveled plane concept.

z is the depth, and the axes = and y are
parallel to the image plane. The camera is
calibrated, its intrisic parameter matrix K is
known, and f is its focal length.

e Inertial Frame {I}: The IMU outputs the
rotation W Ry|; from the {I} to the {W}
frame.

e World Frame {WW}: A NED (North East
Down) frame.

e Rotated Camera Frame {R}: This virtual
camera frame shares its origin with the {C'}
frame, but its optical axes points in the
direction of gravity, and the image axes are
parallel to the north and east axes.

The camera-inertial calibration outputs the con-
stant rotation ! Rc between the camera ({C}) and
inertial ({I}) frames.

1.2 A virtual leveled plane

The knowledge of the camera orientation provided
directly by the IMU measurements allows the
image to be projected on entities defined on an
absolute NED frame, such as a virtual horizon-
tal plane (with normal parallel to gravity), at a
distance f below the camera center, named as
the wvirtual leveled plane, as shown in figure 3.
Projection rays from 3D points to the camera
center intersect this plane, projecting the 3D point
into the plane. This projection corresponds to the
image of a virtual camera at the {R} frame, with
optical axis coincident with the gravity vector. In
the figure the moving observer is an UAV (out of
scale).



1.8 Ezxperimental Platforms

The moving observer hardware is shown in fig.
1. The camera is a Point Gray Flea [Point Gray
Inc., 2006], and the inertial and magnetic sensor
is a Xsens MT9-B [XSens Tech., 2006].

2. BUILDING IMAGE MOSAICS.

This section deals with the registration on the vir-
tual leveled plane of an image sequence taken from
a moving camera, rigidly coupled with an IMU.
One arbitrary image is chosen as the reference
image Ip, and the origin of its {R}|p frame is
set as the origin of the {WW} frame.

2.1 Projecting on the virtual leveled plane.

For each image [I;, first the camera orientation
in the {W} frame is calculated as the rotation
WReli ="V Rili - "Re.

Then the image is transformed by the infinite ho-
mography [Ma et al., 2004], denoted by Ho, = K -
BRcl|i- K—1. Hy is induced by the plane at infin-
ity, i.e., it is the homography between two images
taken from cameras at the same camera center,
but rotated by the rotation matrix #Rc|;. Here
it synthesizes a virtual view from a non-existent
camera { R}|; with an image plane coincident with
the virtual leveled plane - thus projecting the
image on it. ®*Rc|; = Ry -" Rc|; is the rotation
from the {C}|; to the {R}|; frame, where fRyy is
a fixed rotation.

Any image can be picked as the reference one, as
it is automatically projected to the desired mosaic
plane orientation. In an image-only approach, the
orientation of the mosaic plane must be retrieved
from a specific image, or external inputs should
be used.

2.2 Building mosaics with interest point matching

Once the images are projected into the virtual
plane, interest point matching algorithms find
pixel correspondences between pairs of such pro-
jected images, from which homographies are cal-
culated to register these pairs. Small mosaics are
built from successive overlapping frames in the
sequence, registering as many frames as possible
(two examples of small mosaics are shown in fig.
4, separately and then drawn together). Next the
same algorithm is applied on the mosaics them-
selves, registering them into larger mosaics, and
o on.
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Figure 4. Right, two mosaics, with pixel corre-
spondences; left, the mosaics registered.

The mosaic of fig. 5 was built from 61 images,
taken from a tripod moved manually over a pla-
nar yard, with two different heights. From this
sequence 20 mosaics were built, and then, a second
run over them generated 4 larger mosaics. The
final run generated the mosaic of fig. 5, with
feathering to smooth image transitions.

This mosaic was obtained without deghosting and
bundle adjustment, which usually must be applied
to image-only mosaicing of this size [Szeliski,
2004], and still may be exploited to register larger
datasets. Also, some recent results in mosaicing
suppose a rotation-only model (e.g. [Brown and
Lowe, 2003, Szeliski, 2004]), where the camera
center is the same for all images. But here the
camera is freely translating and rotating.

For comparison, the same interest point matching
algorithms were applied to successive frames in
the original image sequence as well as in the
sequence projected into the virtual plane. The
reprojection error (root mean square) on pixel
correspondences was 20% less on the projected
images.

Also, after tuning interest point detector param-
eters, a better ratio of number of matchings ver-
sus total number of interest points detected was
obtained with the projected images, hence the
matching of interest point descriptors was 50%
faster, while still yielding a 2% larger number of
correspondences.

3. CAMERA HEIGHTS FROM
HOMOGRAPHIES AND HOMOLOGIES

Consider a 3D plane imaged in two views, and
a set of pixel correspondences belonging to that
plane, in the form of pairs of pixel coordinates
(x,x’), representing the projection of the same 3D
point on each view. The transformation relating
these two sets of coordinates is a homography,



Figure 5. A mosaic from 61 registered images.

said to be induced by the plane. Given the two
camera projection matrices P = [I|0] and P’ =
[R]t], the homography can be recovered from pixel
correspondences [Ma et al., 2004], and it is related
to the 3D plane normal n, the distance from the
camera center to the plane d, and the relative
camera poses defined by a rotation matrix R and
a translation vector t, by:

AH =X (R—tn"/d) (1)

The module of the scale A is the second largest
singular value of AH , and the correct signal
of H can be recovered by imposing a positive
depth constraint. In the translation-only case,
plane induced homographies become a special
form called planar homology.

A planar homology G [van Gool et al., 1998] is a
planar perspective transformation that has a line
of fixed points (the azis), and another fixed point,
the wverter. The axis is the image of the plane
vanishing line (the intersection of the 3D plane
and the plane at infinity), and the vertex is the
epipole, or Focus of Expansion (FOE).

The cross ratios defined by the vertex, a pair of
corresponding points, and the intersection of the
line joining this pair with the axis, have the same
value p for all points. The matrix G is defined
from the axis a, vertex v, and pu, by:

vaT

GZI"‘(N—l)m (2)

3.1 3D plane parallel to image plane
If the 3D plane is parallel to the image planes, the

axis is the infinite line a = (0,0, 1)7, and equation
2 becomes:

Figure 6. Two cameras under pure translation.
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where v, v, are the unhomogeneous image coor-
dinates of the vertex v = (vg,vy,1). p depends
only of the relative depths of the 3D plane in
both views. To analyze this relation, we recall
that the relative scene depth of two points equals
the reciprocal ratio of the image distances to the
vanishing point of their connecting line [Arnspang
et al., 1999].

This fact is true for two images of the same 3D
point X under pure translation. Defining Z and
7' as the depth of X in first and second views,
and x and x’ as its respective projected image
coordinates, as in fig. 6, we have:

Z'  dist(x,V) 4
Z  dist(x',v) @
where dist is euclidean distance on the image. If a
3D plane is parallel to the image planes, all points
on it have the same depth, and are transferred
between the two views by the same homology.

The homology calculation involves many pairs of
corresponding pixels, and thus is potentially more
stable than an image measure involving just one
pair. To relate the relative depth of the plane
with the cross-ratio g we recall that, given the
homography matrix induced by a 3D plane in two
views, the relative distance between the camera
centers and the plane is equal to the determinant
of the homography [Malis et al., 1999].

This is valid for full homographies, thus also for
homologies. As, from equation 3, det(G) = p, and
as the distance between the camera center and the
plane is the depth of the plane, we have:

Z' _ dist(x,v)

Z  dist(x/,v) s %)

3.2 Results: Relative Height for horizontal planes.

Again, rotation is compensated by projecting the
images into the virtual leveled plane. In such



rms error | std of error
full homography 0.055 0.036
homology 0.029 0.013

Table 1. Results for relative depth of 3D
plane parallel to virtual image planes.

way, pure translation is simulated, and supposing
that the camera views a flat horizontal plane, the
camera height is equal to the plane depth. This
section describes the process to calculate the ratio
of the heights in two views.

A FOE estimate is obtained from pixel correspon-
dences with outlier removal [Chen et al., 2003].
Then, from the pixel correspondences and the esti-
mated FOE, p is estimated by averaging the ratio
of equation 5 for all corresponding pixel pairs.

Given the estimates for v and p, an optimiza-
tion routine minimizes the projection error of the
correspondences when projected by the homology
G(v,p,a=10,0,1]T), finding improved estimates
for v and p. The relative depth is det(G) = p.

In the following experiment, the IMU-camera sys-
tem of fig. 2 was mounted on a tripod, taking 50
images of the ground from different viewpoints.
On this controlled environment the homology and
homography models can be compared with hand-
measured ground truth (this is not possible for the
airship dataset used at the end of this section).

Figure 7 shows the height for all images, relative
to the first image height (104.5¢m). Two arrows
connect two highlighted points to their respective
images. The tripod was set to 3 different heights,
thus the 3 horizontal lines are the ground truth.
The stars are p as described above. The crosses
are the relative depths taken as the determinant
of a full homography, estimated with RANSAC,
optimized to minimize the projection error on
pixel correspondences, and scaled as in eq. 1. The
relative depths obtained from the full homography
and from the homology model are compared, and
the results, summarized in table 1, show that the
latter offers improved accuracy.

Figure 8 shows a process diagram. There is no
need to project all the image on the virtual plane,
but only the coordinates of the pixel correspon-
dences. Sensor data could provide directly an ini-
tial FOE estimate. The initial p estimate is trivial,
and the final optimization takes approximately as
much time as the optimization for the homogra-
phy. Therefore potentially this process can be fast
enough for robotic applications.

In the following plane segmentation experiment,
two images were taken from a staircase scene
containing various horizontal planes, and image
cross ratios were used to order the planes by
their height. First, the image pair was projected
into the leveled plane, pixel correspondences were
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Figure 7. Relative heights to the ground from the
tripod experiment, with two example images.
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Figure 8. Finding the homology between two
views.
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Figure 9. The relative depths from two views used
to order planes by their height.

found, and from them, the FOE was calculated.
Then, image cross ratios with the FOE were calcu-
lated for all corresponding pixel pairs, and groups
of these pairs with close cross ratio values were
found by picking the peaks of their histogram.
Figure 9 shows each group with a different color,
and the scale relating colors to relative depths is
shown on the right. These points are very fast to
obtain, and they can be seeds for plane segmen-
tation algorithms.

The last result was obtained from images taken by
the remote controlled blimp of fig. 1 carrying the
IMU-camera calibrated system and GPS, flying
over a planar area. The GPS measured height
is shown in figure 10 compared against visual
odometry based on the p value of homologies
calculated for the image sequence by the process
described here. The height of the first image is
manually set as hy = 4m, and the height of the

ith image is h; = (H;;ll j+1uj) -h1, where 71,
is the cross ratio of the homology that transforms
the jth image into the image j + 1. For the few
image pairs where the homology could not be

calculated, the last valid p value was assumed
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Figure 10. Visual odometry based on homology
compared with GPS altitude measurements.

to be the current one. No other attempt was
made to filter the data to avoid the drift from
successive multiplication of relative heights. The
scale depends on the manually set height hy. As
GPS altitude is not very accurate, the comparison
only shows the existence of correlation.

The IMU orientation output was directly used,
and its standard deviation for an static IMU (as
on the tripod experiment) is 3° (it is larger for the
moving UAV). Errors on the orientation increase
the reprojection error of the homology, turning
correctly matched pixel pairs into outliers, with a
more significative effect as the distance from the
optical center of the { R} camera increases. But on
these experiments there were still enough inliers
for a reliable calculation.

4. CONCLUSION

Inertial orientation measurements and computer
vision were combined in two different domains.
The IMU data approximated the rotational de-
grees of freedom, and images were projected on
an earth-grounded virtual plane. While image-
only mosaicing is commonly done, this IMU-based
projection improves the performance of essential
parts of the mosaicing process.

The virtual plane projection also aids to deter-
mine relative heights, by simulating pure transla-
tion, and enabling the use of the homology model,
that has been shown to be more accurate than full
homographies. Encouraging results were shown,
both in controlled laboratory environments where
ground truth can be measured, and on aerial
images taken from an UAV using directly the
orientation output of an off-the-shelf IMU.

In further developments these ideas could be ap-
plied to 3D planes in general position, and the
FOE could be directly measured. The height mea-
surements could be used for landing aerial ve-
hicles, or as an additional altitude sensor. The

inertial-camera calibration is a key technique to
make these ideas useful for robotic mapping and
navigation, including aerial robotics.

REFERENCES

J. Arnspang, K. Henriksen, and F. Bergholm.
Relating scene depth to image ratios. In 8th
Int. Conf. on Computer Analysis of Images and
Patterns (CAIP’99), pages 516 525, Ljubljana,
Slovenia, Sep 1999.

A. Brown and D. Sullivan. Precision kinematic
alignment using a low-cost GPS/INS system.
In ION GPS, Portland, OR, USA, Sep. 2002.

M. Brown and D. G. Lowe. Recognising panora-
mas. In 10th Int. Conf. on Computer Vision
(ICCV), Nice, France, October 2003.

Z. Chen, N. Pears, J. McDermid, and T. Heseltine.
Epipole estimation under pure camera transla-
tion. In C. Sun, H. Talbot, S. Ourselin, and
T. Adriaansen, editors, DICTA, pages 849 858.
CSIRO Publishing, 2003. ISBN 0-643-09041-X.

R. Eustice. Large-Area Visually Augmented Nav-
igation for AUV. PhD thesis, Massachusetts
Institute of Technology, June 2005.

N. Gracias. Mosaic-based Visual Navigation for
AUYV. PhD thesis, Instituto Superior Técnico,
Lisbon, Portugal, December 2002.

E. Hygounenc, I-K. Jung, P. Soueres, and
S. Lacroix. The Autonomous Blimp Project at
LAAS/CNRS. Int. J. of Robotics Research, 23
(4/5):473-512, April/May 2004.

J. Lobo and J. Dias. Relative pose calibration
between visual and inertial sensors. In ICRA
Workshop on Integration of Vision and Inertial
Sensors (InerVis), Barcelona, Spain, Apr. 2005.

J. Lobo, J. F. Ferreira, and J. Dias. Bioinspired
visuo-vestibular artificial perception system for
independent motion segmentation. In ICVW06
(2nd Int. Cognitive Vision Workshop), Graz,
Austria, May 2006.

Y. Ma, S. Soatto, J. Kosecka, and S. Sastry. An
Invitation to 8D Vision. Springer, 2004.

E. Malis, F. Chaumette, and S. Boudet. 2-1/2-D
Visual Servoing . IEEE Trans. on Robotics and
Automation, 15(2):238 250, April 1999.

L. Mirisola, J. Lobo, and J. Dias. Stereo vision
3D map registration for airships using vision-
inertial sensing. In 12th IASTED Int. Conf. on
Robotics and Applications (RA2006), Honolulu,
HI, USA, August 2006.

Point Gray Inc., 2006. www.ptgrey.com.

R. Szeliski. Image alignment and stitching: A
tutorial. Technical Report MSR-TR-2004-92,
Microsoft Research, December 2004.

L. van Gool, M. Proesmans, and A. Zisserman.
Planar homologies for grouping and recogni-
tion. Image and Vision Computing, 16(21-26)
January 1998.

XSens Tech., 2006. www.xsens.com.

3



