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.ptAbstra
tIn vision systems used in roboti
s, inertial and earth �eld magneti
 sensors 
anprovide valuable data about the observer ego-motion, as well as an absoluteorientation referen
e. This arti
le exploits the inertial orientation measurementsto 
ompensate the rotational degrees of freedom, in two di�erent domains.First, inertial data is used to proje
t images on a leveled plane, relaxing thedemands on interest point mat
hing algorithms when performing image mosai
ing.Se
ond, in the rotation-
ompensated, pure translation 
ase, full homographies areredu
ed to planar homologies, and the ratio of heights over the ground plane on twoviews are 
al
ulated more a

urately. Both te
hniques are validated over outdoorimage sequen
es in
luding aerial images from an remotely piloted blimp.Keywords: Vision, Inertial Measurement Units, Planes, Navigation.
1. INTRODUCTIONVision systems in roboti
 appli
ations 
an berigidly 
oupled with Inertial Measurement Units(IMUs), whi
h 
omplement it with sensors provid-ing dire
t measures of orientation relative to theworld north-east-up frame, su
h as magnetome-ters and a

elerometers (that measure gravity).A novel 
alibration te
hnique [Lobo and Dias,2005℄ �nds the rigid body rotation between the
amera and IMU frames, and then the 
ameraorientation in the world is obtained by rotat-ing the IMU orientation measurement. The ap-proximation of the rotational degrees of freedomshould allow faster pro
essing or the use of simplermovement models in 
omputer vision tasks. Forexample, it 
an be explored to improve robustnesson image segmentation and 3D stru
ture re
overy[Lobo et al., 2006℄.The limits of 
omputer vision or sensorial datafusion alone have already been largely explored,

and it is known that some limits may be over
omeby 
ombining them.In [Hygounen
 et al., 2004℄, a stereovision-onlyaproa
h is used to build a 3D map of the envi-ronment from stereo images taken by a remotely
ontrolled blimp, tra
king the 
amera pose andlandmarks on the ground. It was not their aim tointegrate IMU measurements.On-board inertial and GPS data, together with adynami
 model of the vehi
le is used in [Brownand Sullivan, 2002℄ to proje
t images taken froma high-�ying airplane onto the ground plane. One-pixel a

ura
y is a
hieved with no need of image-based te
hniques.Image mosai
ing was performed in [Gra
ias, 2002℄,for an unmanned submarine navigating over �atsea-bottom, using only images as input. The reg-istration 
onverged only if the vehi
le movementis restri
ted to be planar (no large 
hange on rolland pit
h).



Figure 1. The vision-inertial system and an aerialvehi
le that 
arries it.Combined IMU and vision data were used tokeep pose estimates in an underwater environ-ment, navigating a robot submarine over a largearea [Eusti
e, 2005℄. Relative pose measurementsfrom the images avoided divergen
e of the tra
kedvehi
le pose, and an image mosai
 is a byprodu
t.In previous work [Mirisola et al., 2006℄ IMU sensedorientation aided the registration of stereo depthmaps from a moving stereo 
amera. Ea
h depthmap was rotated to a leveled referen
e frame pro-vided by the inertial sensed orientation. Then theremaining translation ve
tor to register the 3Ddepth maps was found by interest point mat
h-ing on the image sequen
e. A robust estimationpro
ess dete
ts outliers from both interest pointmat
hing and stereo depth maps, and is very fastdue to the simple translation ve
tor model.The aim of this arti
le is to exploit the inertialorientation measurements in two other domains,separating rotational and translational 
ompo-nents, and using simpler movement models thato�er in
reased performan
e or a

ura
y.In se
tion 2 we dis
uss the registration of imagesover planar surfa
es. As the 
amera orientationmeasurements allow us to rotate the stereo depthmaps, images of the ground surfa
e 
an also beregistered into a 
ommon leveled plane, and berotated to align with the north-east axes. In thisway, the performan
e of interest point mat
hingalgorithms used in image mosai
ing is shown tobe improved.Next, se
tion 3 shows that in the rotation-
ompensated, pure translation 
ase, planar ho-mographies be
ame homologies, a more restri
tedmodel that allows to 
al
ulate relative 
ameraheights from pixel 
orresponden
es with more a
-
ura
y. Images from the UAV of �gure 1 are usedin the last experiment.Finally, the 
on
lusions are shown in se
tion 4.1.1 De�nitions of referen
e framesThe 
amera provides intensity images I. Thesubs
ript i is the time index. Hen
e the followingframes are de�ned, as shown in �gure 2:
• Camera Frame {C}: This frame is usedin the pinhole 
amera proje
tion model. Theorigin is pla
ed at the 
amera 
enter, the axis

Figure 2. De�nition of frames of referen
e.
Figure 3. The virtual leveled plane 
on
ept.

z is the depth, and the axes x and y areparallel to the image plane. The 
amera is
alibrated, its intrisi
 parameter matrix K isknown, and f is its fo
al length.
• Inertial Frame {I}: The IMU outputs therotation W RI |i from the {I} to the {W}frame.
• World Frame {W}: A NED (North EastDown) frame.
• Rotated Camera Frame {R}: This virtual
amera frame shares its origin with the {C}frame, but its opti
al axes points in thedire
tion of gravity, and the image axes areparallel to the north and east axes.The 
amera-inertial 
alibration outputs the 
on-stant rotation IRC between the 
amera ({C}) andinertial ({I}) frames.1.2 A virtual leveled planeThe knowledge of the 
amera orientation provideddire
tly by the IMU measurements allows theimage to be proje
ted on entities de�ned on anabsolute NED frame, su
h as a virtual horizon-tal plane (with normal parallel to gravity), at adistan
e f below the 
amera 
enter, named asthe virtual leveled plane, as shown in �gure 3.Proje
tion rays from 3D points to the 
amera
enter interse
t this plane, proje
ting the 3D pointinto the plane. This proje
tion 
orresponds to theimage of a virtual 
amera at the {R} frame, withopti
al axis 
oin
ident with the gravity ve
tor. Inthe �gure the moving observer is an UAV (out ofs
ale).



1.3 Experimental PlatformsThe moving observer hardware is shown in �g.1. The 
amera is a Point Gray Flea [Point GrayIn
., 2006℄, and the inertial and magneti
 sensoris a Xsens MT9-B [XSens Te
h., 2006℄.2. BUILDING IMAGE MOSAICS.This se
tion deals with the registration on the vir-tual leveled plane of an image sequen
e taken froma moving 
amera, rigidly 
oupled with an IMU.One arbitrary image is 
hosen as the referen
eimage IB , and the origin of its {R}|B frame isset as the origin of the {W} frame.2.1 Proje
ting on the virtual leveled plane.For ea
h image Ii, �rst the 
amera orientationin the {W} frame is 
al
ulated as the rotation
W RC |i = W RI |i ·

IRC .Then the image is transformed by the in�nite ho-mography [Ma et al., 2004℄, denoted by H∞ = K ·
RRC |i ·K

−1. H∞ is indu
ed by the plane at in�n-ity, i.e., it is the homography between two imagestaken from 
ameras at the same 
amera 
enter,but rotated by the rotation matrix RRC |i. Hereit synthesizes a virtual view from a non-existent
amera {R}|i with an image plane 
oin
ident withthe virtual leveled plane - thus proje
ting theimage on it. RRC |i = RRW ·W RC |i is the rotationfrom the {C}|i to the {R}|i frame, where RRW isa �xed rotation.Any image 
an be pi
ked as the referen
e one, asit is automati
ally proje
ted to the desired mosai
plane orientation. In an image-only approa
h, theorientation of the mosai
 plane must be retrievedfrom a spe
i�
 image, or external inputs shouldbe used.2.2 Building mosai
s with interest point mat
hingOn
e the images are proje
ted into the virtualplane, interest point mat
hing algorithms �ndpixel 
orresponden
es between pairs of su
h pro-je
ted images, from whi
h homographies are 
al-
ulated to register these pairs. Small mosai
s arebuilt from su

essive overlapping frames in thesequen
e, registering as many frames as possible(two examples of small mosai
s are shown in �g.4, separately and then drawn together). Next thesame algorithm is applied on the mosai
s them-selves, registering them into larger mosai
s, andso on.

Figure 4. Right, two mosai
s, with pixel 
orre-sponden
es; left, the mosai
s registered.The mosai
 of �g. 5 was built from 61 images,taken from a tripod moved manually over a pla-nar yard, with two di�erent heights. From thissequen
e 20 mosai
s were built, and then, a se
ondrun over them generated 4 larger mosai
s. The�nal run generated the mosai
 of �g. 5, withfeathering to smooth image transitions.This mosai
 was obtained without deghosting andbundle adjustment, whi
h usually must be appliedto image-only mosai
ing of this size [Szeliski,2004℄, and still may be exploited to register largerdatasets. Also, some re
ent results in mosai
ingsuppose a rotation-only model (e.g. [Brown andLowe, 2003, Szeliski, 2004℄), where the 
amera
enter is the same for all images. But here the
amera is freely translating and rotating.For 
omparison, the same interest point mat
hingalgorithms were applied to su

essive frames inthe original image sequen
e as well as in thesequen
e proje
ted into the virtual plane. Thereproje
tion error (root mean square) on pixel
orresponden
es was 20% less on the proje
tedimages.Also, after tuning interest point dete
tor param-eters, a better ratio of number of mat
hings ver-sus total number of interest points dete
ted wasobtained with the proje
ted images, hen
e themat
hing of interest point des
riptors was 50%faster, while still yielding a 2% larger number of
orresponden
es.3. CAMERA HEIGHTS FROMHOMOGRAPHIES AND HOMOLOGIESConsider a 3D plane imaged in two views, anda set of pixel 
orresponden
es belonging to thatplane, in the form of pairs of pixel 
oordinates
(x,x′), representing the proje
tion of the same 3Dpoint on ea
h view. The transformation relatingthese two sets of 
oordinates is a homography,



Figure 5. A mosai
 from 61 registered images.said to be indu
ed by the plane. Given the two
amera proje
tion matri
es P = [I|0] and P ′ =
[R|t], the homography 
an be re
overed from pixel
orresponden
es [Ma et al., 2004℄, and it is relatedto the 3D plane normal n, the distan
e from the
amera 
enter to the plane d, and the relative
amera poses de�ned by a rotation matrix R anda translation ve
tor t, by:

λH = λ
(

R − tn
T /d

) (1)The module of the s
ale λ is the se
ond largestsingular value of λH , and the 
orre
t signalof H 
an be re
overed by imposing a positivedepth 
onstraint. In the translation-only 
ase,plane indu
ed homographies be
ome a spe
ialform 
alled planar homology.A planar homology G [van Gool et al., 1998℄ is aplanar perspe
tive transformation that has a lineof �xed points (the axis), and another �xed point,the vertex. The axis is the image of the planevanishing line (the interse
tion of the 3D planeand the plane at in�nity), and the vertex is theepipole, or Fo
us of Expansion (FOE).The 
ross ratios de�ned by the vertex, a pair of
orresponding points, and the interse
tion of theline joining this pair with the axis, have the samevalue µ for all points. The matrix G is de�nedfrom the axis a, vertex v, and µ, by:
G = I + (µ − 1)

va
T

vT a
(2)3.1 3D plane parallel to image planeIf the 3D plane is parallel to the image planes, theaxis is the in�nite line a = (0, 0, 1)T , and equation2 be
omes:

Figure 6. Two 
ameras under pure translation.
G =





1 0 (µ − 1) · vx

0 1 (µ − 1) · vy

0 0 µ



 (3)where vx, vy are the unhomogeneous image 
oor-dinates of the vertex v = (vx, vy, 1). µ dependsonly of the relative depths of the 3D plane inboth views. To analyze this relation, we re
allthat the relative s
ene depth of two points equalsthe re
ipro
al ratio of the image distan
es to thevanishing point of their 
onne
ting line [Arnspanget al., 1999℄.This fa
t is true for two images of the same 3Dpoint X under pure translation. De�ning Z and
Z ′ as the depth of X in �rst and se
ond views,and x and x

′ as its respe
tive proje
ted image
oordinates, as in �g. 6, we have:
Z ′

Z
=

dist(x,v)

dist(x′,v)
(4)where dist is eu
lidean distan
e on the image. If a3D plane is parallel to the image planes, all pointson it have the same depth, and are transferredbetween the two views by the same homology.The homology 
al
ulation involves many pairs of
orresponding pixels, and thus is potentially morestable than an image measure involving just onepair. To relate the relative depth of the planewith the 
ross-ratio µ we re
all that, given thehomography matrix indu
ed by a 3D plane in twoviews, the relative distan
e between the 
amera
enters and the plane is equal to the determinantof the homography [Malis et al., 1999℄.This is valid for full homographies, thus also forhomologies. As, from equation 3, det(G) = µ, andas the distan
e between the 
amera 
enter and theplane is the depth of the plane, we have:

Z ′

Z
=

dist(x,v)

dist(x′,v)
= µ (5)3.2 Results: Relative Height for horizontal planes.Again, rotation is 
ompensated by proje
ting theimages into the virtual leveled plane. In su
h



rms error std of errorfull homography 0.055 0.036homology 0.029 0.013Table 1. Results for relative depth of 3Dplane parallel to virtual image planes.way, pure translation is simulated, and supposingthat the 
amera views a �at horizontal plane, the
amera height is equal to the plane depth. Thisse
tion des
ribes the pro
ess to 
al
ulate the ratioof the heights in two views.A FOE estimate is obtained from pixel 
orrespon-den
es with outlier removal [Chen et al., 2003℄.Then, from the pixel 
orresponden
es and the esti-mated FOE, µ is estimated by averaging the ratioof equation 5 for all 
orresponding pixel pairs.Given the estimates for v and µ, an optimiza-tion routine minimizes the proje
tion error of the
orresponden
es when proje
ted by the homology
G(v, µ,a = [0, 0, 1]T ), �nding improved estimatesfor v and µ. The relative depth is det(G) = µ.In the following experiment, the IMU-
amera sys-tem of �g. 2 was mounted on a tripod, taking 50images of the ground from di�erent viewpoints.On this 
ontrolled environment the homology andhomography models 
an be 
ompared with hand-measured ground truth (this is not possible for theairship dataset used at the end of this se
tion).Figure 7 shows the height for all images, relativeto the �rst image height (104.5cm). Two arrows
onne
t two highlighted points to their respe
tiveimages. The tripod was set to 3 di�erent heights,thus the 3 horizontal lines are the ground truth.The stars are µ as des
ribed above. The 
rossesare the relative depths taken as the determinantof a full homography, estimated with RANSAC,optimized to minimize the proje
tion error onpixel 
orresponden
es, and s
aled as in eq. 1. Therelative depths obtained from the full homographyand from the homology model are 
ompared, andthe results, summarized in table 1, show that thelatter o�ers improved a

ura
y.Figure 8 shows a pro
ess diagram. There is noneed to proje
t all the image on the virtual plane,but only the 
oordinates of the pixel 
orrespon-den
es. Sensor data 
ould provide dire
tly an ini-tial FOE estimate. The initial µ estimate is trivial,and the �nal optimization takes approximately asmu
h time as the optimization for the homogra-phy. Therefore potentially this pro
ess 
an be fastenough for roboti
 appli
ations.In the following plane segmentation experiment,two images were taken from a stair
ase s
ene
ontaining various horizontal planes, and image
ross ratios were used to order the planes bytheir height. First, the image pair was proje
tedinto the leveled plane, pixel 
orresponden
es were

Figure 7. Relative heights to the ground from thetripod experiment, with two example images.
Figure 8. Finding the homology between twoviews.

Figure 9. The relative depths from two views usedto order planes by their height.found, and from them, the FOE was 
al
ulated.Then, image 
ross ratios with the FOE were 
al
u-lated for all 
orresponding pixel pairs, and groupsof these pairs with 
lose 
ross ratio values werefound by pi
king the peaks of their histogram.Figure 9 shows ea
h group with a di�erent 
olor,and the s
ale relating 
olors to relative depths isshown on the right. These points are very fast toobtain, and they 
an be seeds for plane segmen-tation algorithms.The last result was obtained from images taken bythe remote 
ontrolled blimp of �g. 1 
arrying theIMU-
amera 
alibrated system and GPS, �yingover a planar area. The GPS measured heightis shown in �gure 10 
ompared against visualodometry based on the µ value of homologies
al
ulated for the image sequen
e by the pro
essdes
ribed here. The height of the �rst image ismanually set as h1 = 4m, and the height of the
ith image is hi =

(

∏i−1

j=1
j+1µj

)

·h1, where j+1µjis the 
ross ratio of the homology that transformsthe jth image into the image j + 1. For the fewimage pairs where the homology 
ould not be
al
ulated, the last valid µ value was assumed



Figure 10. Visual odometry based on homology
ompared with GPS altitude measurements.to be the 
urrent one. No other attempt wasmade to �lter the data to avoid the drift fromsu

essive multipli
ation of relative heights. Thes
ale depends on the manually set height h1. AsGPS altitude is not very a

urate, the 
omparisononly shows the existen
e of 
orrelation.The IMU orientation output was dire
tly used,and its standard deviation for an stati
 IMU (ason the tripod experiment) is 3◦ (it is larger for themoving UAV). Errors on the orientation in
reasethe reproje
tion error of the homology, turning
orre
tly mat
hed pixel pairs into outliers, with amore signi�
ative e�e
t as the distan
e from theopti
al 
enter of the {R} 
amera in
reases. But onthese experiments there were still enough inliersfor a reliable 
al
ulation.4. CONCLUSIONInertial orientation measurements and 
omputervision were 
ombined in two di�erent domains.The IMU data approximated the rotational de-grees of freedom, and images were proje
ted onan earth-grounded virtual plane. While image-only mosai
ing is 
ommonly done, this IMU-basedproje
tion improves the performan
e of essentialparts of the mosai
ing pro
ess.The virtual plane proje
tion also aids to deter-mine relative heights, by simulating pure transla-tion, and enabling the use of the homology model,that has been shown to be more a

urate than fullhomographies. En
ouraging results were shown,both in 
ontrolled laboratory environments whereground truth 
an be measured, and on aerialimages taken from an UAV using dire
tly theorientation output of an o�-the-shelf IMU.In further developments these ideas 
ould be ap-plied to 3D planes in general position, and theFOE 
ould be dire
tly measured. The height mea-surements 
ould be used for landing aerial ve-hi
les, or as an additional altitude sensor. The

inertial-
amera 
alibration is a key te
hnique tomake these ideas useful for roboti
 mapping andnavigation, in
luding aerial roboti
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