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8 Abstract In this research work, we contribute with a

9 behaviour learning process for a hierarchical Bayesian

10 framework for multimodal active perception, devised to be

11 emergent, scalable and adaptive. This framework is com-

12 posed by models built upon a common spatial configura-

13 tion for encoding perception and action that is naturally

14 fitting for the integration of readings from multiple sensors,

15 using a Bayesian approach devised in previous work. The

16 proposed learning process is shown to reproduce goal-

17 dependent human-like active perception behaviours by

18 learning model parameters (referred to as ‘‘attentional

19 sets’’) for different free-viewing and active search tasks.

20 Learning was performed by presenting several 3D audio-

21 visual virtual scenarios using a head-mounted display,

22 while logging the spatial distribution of fixations of the

23 subject (in 2D, on left and right images, and in 3D space),

24 data which are consequently used as the training set for the

25 framework. As a consequence, the hierarchical Bayesian

26 framework adequately implements high-level behaviour

27 resulting from low-level interaction of simpler building

28 blocks by using the attentional sets learned for each task,

29 and is able to change these attentional sets ‘‘on the fly,’’

30 allowing the implementation of goal-dependent behaviours

31 (i.e., top-down influences).

32
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36Introduction

37How should the uncertainty and incompleteness of the

38environment be represented and modelled so as to increase

39the autonomy of a robot? Can a robotic system perceive,

40infer, decide and act more efficiently by using a probabilistic

41framework? These are two of the challenging questions

42robotics researchers are currently facing in the design of

43more autonomous and intelligent artificial robotic systems.

44Previous work conducted in the Institute of Systems and

45Robotics by Ferreira et al. (2012, 2011)—see also (Ferreira

462011)—has contributed to addressing these challenges by

47providing the basis of a framework for artificial active

48multimodal perception, comprised of a real-timeGPU-based

49implementation of a scalable, adaptive and emergent hier-

50archical Bayesian active perception system that simulates

51several bottom-up-driven human behaviours of attention

52guidance—see Fig. 1. It was devised mainly to be used in

53human–robot interaction (HRI) applications.

54These emergent behaviours are implemented by com-

55bining simple behaviours using a set of weights, thus

56implementing a process analogous to the attentional set as

57defined by Corbetta and Shulman (2002). The bottom layer

58of this framework consists of a log-spherical inference grid

59updated using a Bayesian filter, the Bayesian volumetric

60map or BVM. Ferreira et al. (2012, 2011) modelled visu-

61oauditory perception using an approach that finds its

62inspiration in the fast pathways believed to exist in the

63human brain, which are closely linked to primal instincts of

64survival and basic social interaction.
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65 In this text, we will give a brief overview of a behaviour

66 learning process for this framework, designed to estimate

67 its free parameters (identified as attentional sets) for dif-

68 ferent free-viewing and active search tasks.

69 Related work

70 During the last decades, researchers from different fields

71 (psychologists, neuroscientists and, more recently, com-

72 puter scientists) have investigated visual attention thor-

73 oughly and also, to a lesser extent, visuoauditory attention,

74 both in terms of model analysis and in terms of synthesis

75 and implementation.

76 In the fields of neuroscience and psychology, for

77 example, research on these issues has ranged from the

78 early twentieth century, such as the work by Buswell

79 (1935), to recently Castelhano et al. (2009), and sepa-

80 rately and subsequently also Mills et al. (2011), which

81 investigated the influence of task instruction on specific

82 parameters of eye movement control, such as the number

83 of fixations and gaze duration on specific objects. On the

84 other hand, research work in computational models of

85 artificial active perception has ranged from the seminal

86 work of Bajcsy (1985) and Aloimonos et al. (1987),

87 through Itti et al. (1998) in the bottom-up influence of

88 visual saliency and Breazeal et al. (2001) in active vision

89 for social robots, to important and recent work that has

90 attempted to implement learning by imitation for active

91perception behaviours, such as the work by Belardinelli

92et al. (2007).

93We improve the current state of the art in all of these

94fields by contributing in two specific fronts: (1) a learning

95process integrated within psychophysical experiments,

96representing an important tool for both model analysis and

97synthesis in human studies and robot development,

98respectively; and (2) a fully integrated probabilistic frame-

99work that closely follows human behaviour, formally and

100explicitly dealing simultaneously with perceptual uncer-

101tainty, multisensory fusion and the perception–action loop.

102Overview of the hierarchical Bayesian framework

103for active robotic perception

104In the BVM framework, cells of a partitioning grid on the

105BVM log-spherical space Y associated with the egocentric

106coordinate system {E} are indexed through C [ Y, repre-

107senting the subset of positions in Y corresponding to the

108‘‘far corners’’ (logb qmax, hmax, umax) of each cell C; OC is a

109binary variable representing the state of occupancy of cell

110C (as in the commonly used occupancy grids—see Elfes

111(1989)), and VC is a finite vector of random variables that

112represent the state of all local motion possibilities used by

113the prediction step of the Bayesian filter associated with the

114BVM for cell C, assuming a constant velocity hypothesis,

115as depicted on Fig. 2. Sensor measurements (i.e., the result

116of visual and auditory processing) are denoted by Z—

Fig. 1 Conceptual diagram for

active perception model

hierarchy (Ferreira et al. 2012)
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117 observations P (Z |OC VC C) are given by the Bayesian

118 sensor models of Fig. 2, which yield results already inte-

119 grated within the log-spherical configuration.

120 The BVM framework is extensible in such a way that

121 other properties characterised by additional random vari-

122 ables and corresponding probabilities might be represented,

123 other than the already implemented occupancy and local

124 motion properties of the BVM, by augmenting the hierar-

125 chy of operators through Bayesian subprogramming (Bess-

126 ière et al. 2008). This ensures that the framework is scalable.

127 On the other hand, the combination of these strategies to

128 produce a coherent behaviour ensures that the framework is

129 emergent.

130 Three decision models were proposed by Ferreira et al.

131 (2012): pA, which implements entropy-based active

132 exploration based on the BVM; pB, which uses entropy and

133 saliency together for active perception; and finally, pC,

134 which adds a simple inhibition of return (IoR) mechanism

135 based on the fixation point of the previous time step. In

136 other words, each model incorporates its predecessor

137 through Bayesian fusion, therefore constituting a model

138 hierarchy—see Fig. 1. Each decision model will infer a

139 probability distribution on the next point of fixation for the

140 next desired gaze shift represented by a random variable Gt

141 [ Y at each time t [ [1, tmax]. For more details, refer to

142 (Ferreira et al. 2012).

143The complete set of variables that set up the framework

144and its extensions is summarised in the following list (ref-

145erences to temporal properties removed for easier reading):

146• C: cell index on the BVM occupancy grid given by the

1473D coordinates of its ‘‘far corner;’’

148• Z: generic designation for either visual or auditory

149sensor measurements;

150• OC: binary value signalling the fact that a cell C is

151either empty or occupied by an object;

152• VC: discrete variable indicating instantaneous local

153motion vector for objects occupying cell C;

154• G: fixation point for next gaze shift in log-spherical

155coordinates;

156• UC: entropy gradient-based variable ranging from 0 to

1571, signalling the potential interest (i.e., 0 and 1,

158meaning minimally and maximally interesting, respec-

159tively) of cell C as future focus of attention given the

160uncertainty on its current state given by (OC, VC), thus

161promoting an active exploration behaviour;

162• SC
i : binary value describing the ith of N sensory

163saliency of cell C;

164• QC
i
= P ([SC

i
= 1]|Zi C): probability of a perceptually

165salient object occupying cell C;

166• RC: inhibition level for cellC as a possible future focus of

167attention modelling the inhibition of return behaviour,

168ranging from no inhibition (0) to full inhibition (1).

Fig. 2 Multisensory perception

framework details (Ferreira

et al. 2012). a The Bayesian

volumetric map (BVM) referred

to the egocentric coordinate

frame of the robotic active

perception system; b BVM

sensor models; c BVM

Bayesian occupancy filter
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170 multisensory perception

171 Any of the three decision models, pA, pB and pC, results in

172 an inference result similar to the following equation

173 (which, in fact, corresponds to model pB),

174

175 The automatic multisensory active perception behav-

176 iours emerge from the distributions P(Qi,t |Gt pB), which

177 are either beta distributions B(aQ, bQ) for

183183183183183183 [Gt
= C] expressing that, for a given point of fixation

184 proposal for the next gaze shift, QC
i,t is more likely near 1,

185 or a uniform distribution on QC
i,t for [Gt

= C]. In this

186 equation, the probability of a perceptually salient object

187 occupying cell C, given by QC
i,t, is to be replaced by UC

t or

188 RC
t , depending on which model besides pB one is referring

189 to, either pA or pC, respectively.

190 Therefore, the learning process in this context is defined

191 as supervised learning through the maximum likelihood

192 estimation (MLE) of the free parameters of the respective

193 beta distributions. The training data to perform this learn-

194 ing is gathered from psychophysical experiments, in which

195 human subjects using a head-mounted device are presented

196 with realistic 3D, audiovisual, virtual-reality scenarios. The

197 subjects’ tracked head-eye gaze shifts control the virtual

198 stereoscopic-binaural point of view and hence the pro-

199 gression of each stimulus movie—see Fig. 3—while

200 audiovisual stimuli and corresponding fixation points are

201 logged. This way, controlled conditions will be enforced by

202 proposing both free-viewing and active search tasks to the

203 subjects, thus enabling as systematic estimation of distri-

204 bution parameters to promote the appropriate human-like

205 emergent behaviour depending on the robot’s goal. On the

206 other hand, this learning process will allow testing both of

207 our primary hypotheses for active visuoauditory

208perception, namely active exploration and automatic ori-

209enting using sensory saliency, as valid strategies in human

210behaviour regarding saccade generation.

211Discussion

212At the time of writing this text, pilot experiments have

213already been conducted, validating the learning procedure

214and already displaying promising results.

215In the following months, the final experiments will be

216conducted and a robotic demonstrator will be set up, using

217the learned attentional sets in implementing different tasks.

218This will further prove that the Bayesian hierarchical

219framework adequately follows human-like active percep-

220tion behaviours, namely by exhibiting the following

221desirable properties:

222Emergence—High-level behaviour results from low-

223level interaction of simpler building blocks.

224Scalability—Seamless integration of additional inputs is

225allowed by the Bayesian programming formalism used

226to state the models of the framework.

227Adaptivity—Initial ‘‘genetic imprint’’ of distribution

228parameters may be changed ‘‘on the fly’’ through

229parameter manipulation, thus allowing for the imple-

230mentation of goal-dependent behaviours (i.e., top-down

231influences).
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Fig. 3 Virtual point-of-view

generator set-up that allows the

updating of audiovisual stimuli

presentation according to the

monitored subjects’ gaze

direction
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