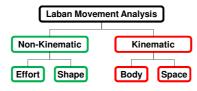
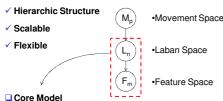
Bayesian Approaches to Human motion Analysis and Synthesis based on Laban Movement Analysis

Ph.D. Luís Santos* advised by Dr. Jorge Dias* {luis,jorge}@isr.uc.pt

*Institute of Systems and Robotics, University of Coimbra, Portugal


Overview

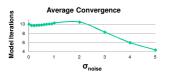
- This work explores the abstraction of a theoretical human motion descriptive language to develop a Bayesian model for motion analysis and synthesis beyond a pure mathematical representation.
- Explore the concepts of hierarchy and reversibility of Bayesian theory to develop a highly flexible, adaptive and scalable model.
- ☐ This study is divided in 3 major research blocks:
 - Bayesian formulation of the forward and reverse model

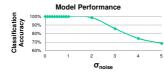

- Explore different research scenarios emerging from the development of the core model (Laban Motion Analysis Model)
- Probabilistic trajectory generalization characterized by special dynamic characteristics according to a "common" understanding of Laban syntax.

Laban Movement Analysis

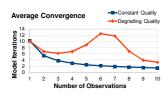
- Divided in 2 main groups spreading into 4 different components, each describing a particular aspect of human motion.
- Laban component space emerges from Labannotation and is represented by a rich and intuitive syntax (e.g. sudden or retreating)

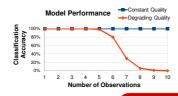
1. Bayesian Model Formulation

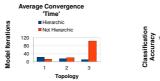

$$P(L_n \mid F_0 \cap ... \cap F_m) \propto P(L_n) \sum_{i=0:m} P(F_i \mid L_n)$$


☐ Gesture Sub-model (Scalability)

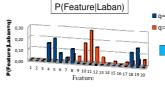
$$P(M_t = q_i, M_{t+1} = q_j \mid \sigma AB\pi)$$


Model Performance


- ☐ Performance measured in convergence time and classification accuracy
- ☐ Tested the model subject to the following conditions (most relevant results):
 - Input Noise (<u>Signal subject to Gaussian noise of different variances</u>)



Feature cardinality and quality (<u>Features are represented by Gaussian distributions and assume quality degrading with increasing variance</u>)


Topological Changes (Different hierarchies and node connectivity)

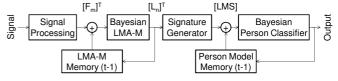
Reversibility

 Exploring Bayes symmetry property, we have inverted the learned occurrence matrices (Trained Analysis Probability Distributions) to reverse causality without the need to train a new synthesis model.

Experimental Results

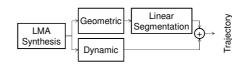
□ The database has currently 5 different actions, ranging from 20 to 25 performances each, divided between 3 to 5 different actors. Actions average performance is 11s, annotated by the second. The model update rate is 36Hz

		Laban Space sub-model (CORE) results P(L F)									
		Eff	Shape								
	Space		Time		Flow		Space		Flow		
	Dir	Ind	Sudd	Sust	Free	Bnd	Rise	Sink	Spr	Encl	
C.R.	94.1%	$90.2_{\%}$	$69.0_{\%}$	$93.2_{\%}$	$94.3_{\%}$	90.2%	50.0%	$74.6_{\%}$	$77.3_{\%}$	$73.7_{\%}$	


	Movement Space sub-model results P(M L)									
	Point	Lift	Write	Punch	Bye-bye					
C.R.	89.0%	92.2%	83.7%	81.5%	78.8%					

Conclusions summary and Future Work

- The core model provides a reliable and robust abstract motion classifier, providing a scalable hierarchic taxonomy, applicable to a wide scope of areas.
- ☐ The selected features (PCA component) are not ideal to components depending on direction rather than orientation.
- We explore Bayes Symmetry property, allowing to reverse learning distributions, to synthesize feature from desired Laban component states.
- ☐ We are now using the developed models into the remaining research stages:


2. Laban Motion Signatures

□ Human motion is influenced by a person's unique physical and psychological characteristics, hence we propose a model to identify different persons based on HOW they move, developing a highly abstract Motion Signature based on Laban Movement Analysis descriptors.

2. Trajectory Generalization

- Style machines are special processing models geometrically adapting a motion trajectory to fit a person style.
- We aim to develop a probabilistic adaptive 3 phase process that will shape trajectories geometrically and dynamically according to the comprehensive abstract syntax of LMA, in order to be performed as described by Labannotation.

(1) Geometric: Based on Body, Shape and Space synthesized Features.

(2) Dynamic: Probabilistic adapt trajectories with Effort and Shape.

(3) Fusion: Fuse both partial trajectories

Mobile Robotics Laboratory
Institute of Systems and Robotics
ISR – Coimbra