
Overview

� This work explores the abstraction of a theoretical human motion descriptive
language to develop a Bayesian model for motion analysis and synthesis
beyond a pure mathematical representation.

� Explore the concepts of hierarchy and reversibility of Bayesian theory to
develop a highly flexible, adaptive and scalable model.

� This study is divided in 3 major research blocks:

� Bayesian formulation of the forward and reverse model

� Explore different research scenarios emerging from the development of
the core model (Laban Motion Analysis Model)

� Probabilistic trajectory generalization characterized by special dynamic
characteristics according to a “common” understanding of Laban syntax.

Bayesian Approaches to Human motion Analysis
and Synthesis based on Laban Movement Analysis

� Topological Changes (Different hierarchies and node connectivity)

Reversibility

� Exploring Bayes symmetry property, we have inverted the learned occurrence
matrices (Trained Analysis Probability Distributions) to reverse causality
without the need to train a new synthesis model.
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characteristics according to a “common” understanding of Laban syntax.

Laban Movement Analysis

� Divided in 2 main groups spreading into 4 different components, each
describing a particular aspect of human motion.

� Laban component space emerges from Labannotation and is represented by a
rich and intuitive syntax (e.g. sudden or retreating)

1. Bayesian Model Formulation

� Hierarchic Structure

� Scalable

� Flexible

�Core Model

�Gesture Sub-model (Scalability)

Experimental Results

� The database has currently 5 different actions, ranging from 20 to 25
performances each, divided between 3 to 5 different actors. Actions average
performance is 11s, annotated by the second. The model update rate is 36Hz

Conclusions summary and Future Work

� The core model provides a reliable and robust abstract motion classifier,
providing a scalable hierarchic taxonomy, applicable to a wide scope of areas.

� The selected features (PCA component) are not ideal to components
depending on direction rather than orientation.

� We explore Bayes Symmetry property, allowing to reverse learning
distributions, to synthesize feature from desired Laban component states.

� We are now using the developed models into the remaining research stages:

2. Laban Motion Signatures

� Human motion is influenced by a person’s unique physical and psychological
characteristics, hence we propose a model to identify different persons based

Movement Space sub-model results P(M|L)

Point Lift Write Punch Bye-bye

C.R. 89.0% 92.2% 83.7% 81.5% 78.8%

Laban Space sub-model (CORE) results P(L|F)

Effort Shape

Space Time Flow Space Flow

Dir Ind Sudd Sust Free Bnd Rise Sink Spr Encl

C.R. 94.1% 90.2% 69.0% 93.2% 94.3% 90.2% 50.0% 74.6% 77.3% 73.7%
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Model Performance

�Performance measured in convergence time and classification accuracy.

�Tested the model subject to the following conditions (most relevant results):

� Input Noise (Signal subject to Gaussian noise of different variances)

� Feature cardinality and quality (Features are represented by Gaussian
distributions and assume quality degrading with increasing variance)

characteristics, hence we propose a model to identify different persons based
on HOW they move, developing a highly abstract Motion Signature based on
Laban Movement Analysis descriptors.

2. Trajectory Generalization

� Style machines are special processing models geometrically adapting a motion
trajectory to fit a person style.

� We aim to develop a probabilistic adaptive 3 phase process that will shape
trajectories geometrically and dynamically according to the comprehensive
abstract syntax of LMA, in order to be performed as described by
Labannotation.
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(1) Geometric: Based on

Body, Shape and Space

synthesized Features.

(2) Dynamic: Probabilistic

adapt trajectories with Effort

and Shape.

(3) Fusion: Fuse both

partial trajectories


