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Overview

0 This work explores the abstraction of a theoretical human motion descriptive
language to develop a Bayesian model for motion analysis and synthesis
beyond a pure mathematical representation.

O Explore the concepts of hierarchy and reversibility of Bayesian theory to
develop a highly flexible, adaptive and scalable model.

O This study is divided in 3 major research blocks:

= Bayesian formulation of the forward and reverse model
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= Explore different research scenarios emerging from the development of
the core model (Laban Motion Analysis Model)

= Probabilistic trajectory generalization characterized by special dynamic
characteristics according to a “common” understanding of Laban syntax.

Laban Movement Analysis

[ Laban Movement Analysis ]
|

]
[ Kinematic ]

[ Non-Kinematic ]

[ Effort] [Shape] [ Body ] [Space]

O Divided in 2 main groups spreading into 4 different components, each
describing a particular aspect of human motion.

O Laban component space emerges from Labannotation and is represented by a
rich and intuitive syntax (e.g. sudden or retreating)

1. Bayesian Model Formulation
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Model Performance

O Performance measured in convergence time and classification accuracy.

O Tested the model subject to the following conditions (most relevant results):
= Input Noise (Signal subject to Gaussian noise of different variances)
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= Feature cardinality and quality (Features are represented by Gaussian
distributions and assume quality degrading with increasing variance)
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= Topological Changes (Different hierarchies and node connectivity)
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O Exploring Bayes symmetry property, we have inverted the learned occurrence
matrices (Trained Analysis Probability Distributions) to reverse causality

without the need to train a new synthesis model.
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Experimental Results

O The database has currently 5 different actions, ranging from 20 to 25
performances each, divided between 3 to 5 different actors. Actions average
performance is 11s, annotated by the second. The model update rate is 36Hz

Laban Space sub-model (CORE) results P(L|F)
Effort | Shape
Space Time Flow | Space Flow
Dir Ind Sudd Sust Free Bnd | Rise Sink Spr Encl

C.R. 94.1, 90.2, 69.0, 93.2, 94.3, 90.2,

50.0,, 74.6,, 77.3,, 73.7,,

Movement Space sub-model results P(M|L)
Point Lift Write Punch Bye-bye
C.R. 89.0,, 92.2,, 83.7, 81.5,, 78.8.,

Conclusions summary and Future Work

0  The core model provides a reliable and robust abstract motion classifier,
providing a scalable hierarchic taxonomy, applicable to a wide scope of areas.

O The selected features (PCA component) are not ideal to components
depending on direction rather than orientation.

O We explore Bayes Symmetry property, allowing to reverse learning
distributions, to synthesize feature from desired Laban component states.

O We are now using the developed models into the remaining research stages:

2. Laban Motion Signatures

Human motion is influenced by a person’s unique physical and psychological
characteristics, hence we propose a model to identify different persons based
on HOW they move, developing a highly abstract Motion Signature based on
Laban Movement Analysis descriptors.
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2. Trajectory Generalization

O Style machines are special processing models geometrically adapting a motion
trajectory to fit a person style.

O We aim to develop a probabilistic adaptive 3 phase process that will shape
trajectories geometrically and dynamically according to the comprehensive
abstract syntax of LMA, in order to be performed as described by

Labannotation. (1) Geometric: Based on

Body, Shape and Space
synthesized Features.

(2) Dynamic: Probabilistic
adapt trajectories with Effort
and Shape.

(38) Fusion: Fuse both
partial trajectories
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