T-SLAM: Registering Topological and Geometric
Maps for Robot Localization in Large Environments

F. Ferreira, I. Amorim, R. Rocha and J. Dias
Institute of Systems and Robotics
Department of Electrical and Computer Engineering
University of Coimbra, Polo I
3030 Coimbra (Portugal)

{cfferreira® | ivonefamorim | rprocha | jorge}@isr.uc.pt

Abstract—This article reports on a map building method that  TABLE I: Comparison of Place-recognition successes witth an
integrates topological and geometric maps created indepeiently without using HMMs

using multiple sensors. The procedure is termed T-SLAM to % total number of nodes in the topological map

emphasize the integration of Topological _and local Geomeitr k an index, node occupied by the robot or position in
maps that are created using a SLAM algorithm. The topologicé the topological map

and metric representations are created independently, bag local Vi the set of observations at tinte

metric maps associated with topological places and registd at M total number of distinct metric maps

the topological level. The T-SLAM approach is mathematicdly m an index, usually employed to denote a particular
formulated and applied to the localization problem within the metric map

Intelligent Robotic Porter System (IRPS) project, which isaimed Xh representation of the metric map at time¢

at deploying mobile robots in large environments (e.g. airprts). o the mixture component coefficient or component

Some preliminary experimental results demonstrate the vadlity prior probability

f th d thod v the FIM, or the complete set of views/vectors as
ot the proposed method. collected during Environment-Familiarisation stage
T the initial probability distribution over the hidden
Index Terms - Topological Maps, View-based Localization, states of the Hidden Markov Model A
aij the probability of transiting from [hidden] stateto

SLAM Geometric Maps, Robot Localization. state; in the Hidden Markov Model

b;i(n) the observation or emission probability for the sym-

|. INTRODUCTION bol b; at the placen within the Hidden Markov
. . . . . Model
This article explt_)res the use of combinations of topololglca_ j an index, usually employed to denote a particular
and local geometric maps. There are a number of methods in feature,
the literature that attempt to exploit the perceived aczges k* the estimated place as obtained by applying the

maximum criterion to the Belief over the indices of

of combined, hyb_rid or hierarc_hical maps fo_r use in environ- the Reference Sequence

ment representation and mobile robot localization. Theee a M the number of [hidden] states in the Hidden Markov

some methods that are described in the literature thateallud N chOdel ber of Misiblel observations/Symbols in th

H € numper or |visible| observations/sympols In the

to Topological SLAM [1], [2], [3], [4], [5], [6], [7], [8], [9]. e Ve Vodel Y

[10], [11], [12], [13] in order to create an association with Z Hidden or incomplete data in a Mixture Mode

(geometric) Simultaneous Localization and Mapping (SLAM) 2k the /Vecttor ‘ﬁrom matrix Z corresponding to the

i - view/vector V},

a well-accepted means of building maps .[14], [15], [16]. _ A\ the parameter setN, M, {m;}, {ai; }, {bi(n)}), of
We could classify the methods that utilize both topological the Hidden Markov Model

and metric information into hierarchical or hybrid methods  ©: a single component of the mixture model with the

While the distinction is primarily semantic in nature, hi- named features

erarchical methods could be seen as maintaining different

representations in order to accomplish different purpsses

as long-term planning in the topological map and precisélows some abstraction of the perception and interactfon o

motion control for navigating among obstacles using metritbe robot with the environment. The advantages gained from

information. using SSH or similar hierarchical model of representatisns
One of the earliest and possibly one of the most wethat incomplete or uncertainty in the information is haxldle

known approaches in this category is the Spatial Semaniicdifferent forms depending on which particular localinat

Hierarchy or the SSH developed by Ben Kuipers [1], [2]or navigation problem is to be solved. Local metric maps help

The SSH is described as a model of knowledge of large perform place recognition, (middle-level) topologicahps

scale space consisting of multiple interacting represiems, help create consistent maps in the face of challenges such as

both qualitative and quantitative. The representationhaf tloop-closing problems, and the global metric maps maintain

environment is maintained in the form of a hierarchy of mapm overall consistency in the global position of the robot.

— including metric and topological levels — each of which Hybrid approaches are usually employed to resolve specific



disadvantages of one representation with regards to the.oth T Motion
In certain approaches that primarily depend on geometric commands
maps, the loop closure problem has been resolved by si- | e Navigation
multaneously having locally precise geometrical inforior@at — scans, @ WOOW /®*\
ey
1l

and globally consistent topological information aboutaade)  '™ages m»g@a}“

probabilit
| Topsogicl
/

environment. -
Feature ocalization
One such hybrid method is proposed by Choset and Nad extraction [tooten

gatani [3] propose a SLAM method that exploits topology of Il A
the free space to localize the robot on a partial map. Low- @ ”
level control laws are used to generate Voronoi graph (VG)

and explore the unknown space. A graph matching process

over the VG structure is used for robot localization, whgreb

the robot locates itself to one of the places of the VG, though ~—
the robot does not know its metric coordinates. . - .

Thrun [17] builds a global metric (grid-based) map of th{azclgl' alﬁdDggg:LOg[riocf r-:_]aSFI)‘SAM the use of combined Topolog
environment and then extracts a topological graph from this '
metric representation. Besides being not scalable to lange
vironments, this method requires a globally consistentrimet|abe”ng of (similar-looking) places is in line with the sz
map, which is in general very difficult to obtain. concepts that humans employ.

There are also attempts to utilize graph based approaches tg, the current work, we propose a generic method to
solve particular problems that appear at the time of creaifo integrate a global topological map with a set of two or more
metric maps. Methods such as [5], use graphical methodsyiQymetric maps. Some of the nodes of the topological map
maintain hypothesis for map expansion and closieegraph-  gre associated with the individual metric maps, as depicted
like methods are used to maintain multiple map hypothegi$ rig. 1. Our method tracks the global position of the robot
of the main map which is geometrical. There are works thgh)y within the topological map. The localisation proceelur
enhance the applicability of metric maps and the ability ¢f the topological map isolates features or properties ef th
users to interact with these such as representing individygironment into groups that are used to recover the node in
objects. In [18], Lim_ketka@et al. store the representation Of_the topological map that is currently occupied by the roBgt.
objects (some of which might also be used by persons) usiggyoiting the associations between the nodes and theanetri
a technique called Random Markov networks. _ maps, we also maintain the local position of the robot enabli

Tomatiset al. [13] developed a hybrid map representatiofhe precise geometric positioning of the robot. Localisati
wherein a global top.ological map connects local meFric Mapg each local metric map is performed independently and
The robot may switch between both representation Whgfiyjtaneously. Map updating is performed simultaneously

navigation conditions change.@.leaving a room and crossing, these local metric maps as would be performed in a
a door). When doing this, the method requires a detectaRls,entional SLAM algorithm.

metric feature in order to determine the transition poinereh In the next section, the method of localisation in the hier-

the change from topological to metric has to be done and gfchical representation is presented. In subsection IlbBef

lows robust initialization of the metric localization (oegation \erview of the topological localization method is present

and loop closure). The method was validated within officgy section 11-C, a selected SLAM algorithm is used to create

like enviro_nments but its potential is unclear for differamd 5 geometric map. In section II, the combination of topolagic

larger environments. _ . and geometric maps is described together with the locaizat
In [19] Zimmer utilizes a clustering algorithm based ORystem. In section III, the preliminary result from expeints

neural networks to cluster the local polar maps and ultifpatesing combined Topological and geometric maps.

register them in the global topological map. The experiment

were performed on a small environment and the results até |NTEGRATING TOPOLOGICAL AND GEOMETRIC MAPS
unclear regarding the scalability for larger environmerits  Our representation of the environment is composed of
similar idea is behind the procedure adopted by Zivkovie global topological map and a set of two or more local
[20] where panoramic images are grouped and semantic geometric maps. Let' be the total number of nodes in
formation is associated with the groups. It is stated that ththe topological map, these nodes indexed by the variable
method bears semblance to the way animals represent tiiei= 1,..., K. Let M be the total number of metric maps
environment. As in the case of [4], a clustering approach igentified bym = 1,..., M. Let X! denote the representation
used to group images and represent places in the environnwrthe robot in the topological mam at the discrete instance
by using a typical set of images for that place. In [21], Themaf time ¢. X!, varies depending on how the position of the
and Donikian hypothesize a hierarchical set of (topoldyicaobot is maintained in the metric map.

representations that represent the environment usindgsityi Since there exists a single global topological map and mul-
of places. The developers of these methods claim that suiile geometric maps conditioned on this global topologica
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Fig. 4: Registration of Topological and Geometric Maps.

P(Xm7 k; Vobs)

Fig. 2: Depiction of Independent creation of Topologicatlan P(X,, |k, Vo) = P(k,V, @)
Metric maps. » Vobs)
:P(Vobs|k;Xm) X P(Xm|k) X P(k) (3)
P(Vobs|k) x P(k)
_ P(Vops|k, X)) X P(X,n]k) @

P(Vobs|k)

P(X,,|k) captures the association that the nodes of the
topological map have with the individual metric maps. The
exact nature of this association can vary depending on the
features that are used with the topological and metric map
and on the assumptions that are associated with the creation
i of each type of map. T-SLAM is an attempt to explore one
type of association between a set of local geometric maps and
a global topological map.

The real advantage of T-SLAM will emerge in scenarios

Fig. 3: Depiction of Superimposition that actually exises- b in which the set of metric maps is registered to the global

tween the Topological map and the set of geometric mapsmap only at certain places. For exampknme nodes in
the topological map might be associated withy pointsin

the metric maps, through the use of artificial environment
. - . properties such as Radio Frequency Identification (RFIB3 ta
map, as dep|c.t(.—:-d in Fig. 2 and F|g. 3. . . [22] as depicted in Fig. 4.

The probability of the robot being localised in both, the The gpjitting of the environment, into many smaller regions
topological: and metric mapn is given by P(X;,, k|Vobs)  or sections, that is described in this article is not new,28g
in (1). [6], [24], [25] for a recent approach. The advantages ofgisin
the approach put forth in this article is that the knowled§e o
the position of the robot is conditioned on the nodes of the
graph, the probability of which is valid globally, over thetiee
environment i.e. over all the sections of the environment.

The above expression conditions the probability of locali-
sation on both maps on the probability of localisation on the. Current Problem formulation
global topological map. The terfi(k|Vops) in (1) denotes the  |n this article, the first version of T-SLAM is presented.
localisation in the topological map. Without prejudice ket Each node of the topological map is registered with every
general case, the index indicating time has been removed fripcal geometric map. Each nodg in the topological map is
the remaining expressions. associated with one or more geometric mapdy a human

P (X, |k, Vobs ) represents the localisation in the metric mamperator. This association is represented in the form ofeéNod
conditioned on the robot being positioned at nddén the Metric Map association matrix. Each elememnt,;, of this
topological map and can be expanded as in (4). association matrix is assigned the valuelofs the node is

P(Xrtnaknfobs) = P(Xrtn|kv %bs) X P(k|vobs) (1)



associated with the geometric map,otherwise. Each line Iim

in the matrix corresponds to a particular metric nrapand ‘\_W.
each column to a particular nodg leading to the expression
(5). The Node-Metric map association matrix allows us tc ) m
express the probability distribution associated to a mép
conditioned on the nodk, P(X,,-|k), by: . ‘ . O)
A Fig. 5: The robot is led through the environment on the Envi-
P(Xp|k) = ——— (5) i ot
m ZM i ronment Familiarization run to create the Reference Sexpien
1 Ym

(left). This Reference Sequence constitutes a left-tbtiggaph

The global probability of being at a particular po-right) composed of K’ views, ordered as they were sampled
smon W|th|n the set of metric mapsn is given by during the Environment Familiarization.
Zk L P(X, k|Vas) and the location of the robot might be
expressed as in (6) whefd X,,,) is the Maximum Likelihood
operator. The current observation is used to update the g@et allow a single-step transition from of&,,; ; to another
metric map within which the robot is located. Prost_j.

Additionally, in the current method outlined in this arégl
we localise the robot in the topological and metric maps4inde

Insertion or
Lost nodes

pendently. This results in the simplificatioR(V,ys|k, X)) =
P(Vops|k) % P(Vops|Xom)-

Views in the Original
Reference Segiemce

K
P(E|Vops
L( m Mﬁgk ZP obslxm) X %) (6)
k=1 Zm:l Amk

In the following subsection, II-B, an expression will be
developed forP(k|V,s), where the topological map is built
from a sequence of raw-image sequences. In section II-C, a
well-known SLAM algorithm is utilised to create metric maps
and localise the robot within them. Fig. 6: The figure depicts a modified Markov chain, with
"Lost_Places’ inserted within the original Reference Se-
guence, to perform place-recognition. The dotted linegcatd

In [26], a procedure was developed to localize a robtte transitions to the Places in the original Reference Secpi
as it travelled along a path. During a first trip around thand which have not been drawn to avoid cluttering the figure.
environment, the Environment Familiarization phase, ctepi
at left in Fig. 5, the robot samples the environment accgrdin When the robot needs to localize itself, it moves through the
to a sampling plan, collecting features by using its variousame environment, the current view is compared to the previ-
sensors into the Reference Sequence. ously collected views and an inference is made of the current

A repetition of the motion performed during the placeosition of the robot. A Hidden Markov Model (HMM) is used
recognition should propel the robot along the path desdribeéo perform place recognition using the modified Markov Chain
by the Reference Sequence. Any maneuver other than the cineBig. 6 as a model for the transitions between the hidden
taken during the Environment Familiarization phase wiketa states of the HMM. The Viterbi algorithm is commonly used in
the robot to a place that was not sampled in the Environmehe context of HMMs to determine the most probable sequence
Familiarization phase. Th&ost_Places, in all a total of X' of hidden states that gave rise to a particular sequence of
in number, accommodate these possible views. Thus, eadservations. It is an inference tool that is associatedh wit
Lost_Place takes into account the fact that the robot mighthe process of making inferences in a HMM and is utilized
be seeing views that were not seen in the Environmeotposition the robot within the Reference Sequence by using
Familiarization phase. the current sequence of observations. The HMM is specified in

The sampled views, which would normally be modelled aerms of its parameters as in (7), whereV corresponds to the
a left-to-right graph as at right in Fig. 5, are augmented hyumber of states in the HMM}/ the number of observations
the insertion of Lost_Places’ as depicted in Fig. 6. that will be used to make the inference, represents the

The sequence begins with..; o which indicates that the initial probability on the states, the;;s correspond to the
robot is completely lost or has never localized. Also, befotransition probabilities between a pair of stateand ; and
every original place?;, there is aPp,.s; ;. By moving forward b;(n) represents the probability of viewing symbolat state
from one Lost_Place , the robot can transition from?zqs: ; 4.
to any nodeP, wherek > 4. Similarly, from P; the robot
can transition toPy, : k > 4 or to Pro«_i+1. The graph does A= (N, M, {m},{ai;},{bi(n)}) @)

B. Topological Maps from Raw Sensor Data



The transition between the states is influenced by the tranthe local geometric maps presented in this article werdedea
tion probabilities between a pair of places in the graph showsing the Fast-SLAM algorithm.
in Fig. 6. An elementary robot motion model is developed to A particle filter is a method of obtaining a description of a
evaluate the transition probability matrix. For each segee certain state space through partial observations of thetesp
of M observations, a simple distribution is used to modethich inevitably contain measurement errors. It maintains
the transition probability distribution from eadtost_Place a weighted, and normalized, set of sampled stafes=
to the remaining original places in the Reference Sequengs, s,,...,s,}, called particles. At each step, and given an
favoring places that lie closer in the Reference Sequerite. Tobservation vector and a control vector: (in our context),
transition probability leading away from any of the oridinathe particle filter:

places in the Reference Sequence is uniformly split betweeny) samplesn new statesS’ = {s/,s),...,s.} from S,

the next original place (to the right) and to the correspogdi with replacement, using the probability dgnsity given by

Lost_Place. The one-step transition probability from one the weights of the elements ifi.

Lost_Place to anotherLost_Place is zero. 2) Runs the state given by each particle through the cor-
The first hidden state is always matched to the first responding motion model, using the previous states and

Lost_Place, PLost_o. ThiS PLost_o, has a non-zero probability u, obtaining in this way the new generation of particles.

of reaching any place in the original Reference Sequence. 3) Each new particle is then weighted, using the observa-
The observation model of the HMM is based on matching  tion model together with the vectar

the current view with the views in the Reference Sequence.4) Normalizes the weights of the new set of states.

In the absence of any information regarding the view that The Fast-SLAM algorithm [27] is known for the speed at

will be visible at the Lost_Place’, we arbitrarily define the : . :
observation probability as an Uniform distribution ovee i which the map is updated and for the relatively good quality o

form and are represented within a Feature Incidence Ma?@gaps using landmark, modifications and improvements were
X . . o ntly m including an ion rid- m
(FIM), V. Due to the large dimensionality of the FIM, it is bsequently made including an adaptation to grid-bases ma

- [16]. An implementation of this algorithm was obtained from
subsequently modelled as a Bernoulli M|?<ture Model (BMM)the Open-SLAM web page [28]. In our current work we have
The parameters of the BMM are obtained by running thcereate adopted a gird-based
Expectation Maximization(EM) algorithm.

The Mixture parameters and the posterior probabilities ove 1. EXPERIMENTS AND RESULTS
the components, thg terms in (8), are used to evaluate the ) o
likelihood as depicted in (8)P(V;) representing the prior I_n|t|al experiments he_lve been performed on the !ocallaatlt_)
probabilities over each view, in the Reference Sequence. A$Sing a global topological map and a set of multiple metric
expressed in (9), thhlaximum Likelihood Estimatiois used Maps. The topological representation of the environmeist wa

to obtain the index:* in V that best describes the object tgnaintained in the form of a sequence of laser range scans and
be matchedV, ;.. images gathered while leading the robot along one or more

paths in the environment.
Our robot platform is equipped with two cameras and a

M
> =1 P(Vi)zrjo; P(Vobs|©;) Laser Range Finder, LRF, as seen in Fig. 7. The acquisition

P (k[ Vovs) = ZkK—1 Z{»\{lP(Vk)ijajP(Vobsl@j) (8) of data from the sensors and the control of the robot is
T performed within CARMEN. The two cameras, one facing

. K forwards and the other facing onto one side, are capable of

Pk |Vos) = arginaxp(kmbs) ©) taking gray-scale 640x480 images. SIFT features [29] are

utilised to perform matching between current observatants
previously obtained images.

The incremental creation of Geometric maps from sensorThe forward-facing LRF provides a set of 361 range mea-
data has been an area of much research over the last suoements through a 180 degree interval. Features from this
decades. Simultaneous Localization and Mapping SLAM asénsor are used within the topological representation f th
Concurrent Mapping and Localization, CML, algorithms havenvironment. The raw data from the sensor is used directly
been proposed by various researchers for the creationhbgfthe SLAM algorithm to build and maintain the topological
different geometric maps. These algorithms have been vemap
successful in the creation and utilisation of maps in indoor The robot was first led along a path, depicted in Fig. 8,
environments [14]. to create the topological and the set of geometric maps. The

A couple of state of the art SLAM algorithms was use@images from the cameras and the LRF were used to create the
to create the local geometric maps. We experimented witbpological representation of the path, while raw laseigean
the DP-SLAM [15] and the Fast-SLAM [27] algorithms. Bothfinder data and odometry were used to create the geometric
methods create grid-based metric maps using particlesfiltemaps. A new geometric maps was created after a specific

C. Creating and Updating local Metric Maps using SLAM
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Fig. 7: The sensor platform comprising of two laser range 7 W*:ff"w*# Re—
finders and two cameras is mounted on the Segway RMP 200. L j g 1 20
TABLE 1I: The Node-Metric Map Association Matrix for
experiment 1.
T] 2] ..] 53 54 55 ..] 94] 95| 96 ..] 143 144 . _
m=] 1| 1] ./1]0[0|..]J0 |00 00 — . .
m=3 0[O0 .J1[1[1] JT[O0[0[.J0]0 e TR
m=30|0]../0]0[0]|.J1T |1 [T .11 »w ., | Wi

amount of time of robot travel. A set of three geometric magsg. 9: Experiment 1: The set of three metric maps that are
were created in all as shown in Fig. 9. created by running the Fast-SLAM algorithm after the initia

As stated in section II-A, the association between placB4n through the environment in experiment 1.
that are represented in the topological map and the indaidu
metric maps is represented in a Node-Metric maps assatiating| £ |1

: ' The Node-Metric Map Association Matrix for
table. Excerpts of this map are shown in Table II.

experiment 2.

1] 2 [ 54 55 55 ..] 114 115 116 ..] 149 150
m=1 1] 1 [1]0]o0]..JoJO0O]O0]..J]oO]oO
= —— — Robot path m=4 0| 0 j1j1|1f..]12]0]0]|..]0]O
et S (Experiment 1) m=3 0] O Jofo]oO T 111 .. J11

——
0 10m 20m
HE T JEEER IV. CONCLUSIONS

Initial results were presented in this work on the simultane

Fig. 8: Experiment 1: The robot was driven along a long§us use of one global topological whose nodes are registered
hallway and map-building and localisation were performed With multiple metric maps.

create independent topological and geometric represemgat ~ Current work includes the improved registration of the topo
logical map with each metric map such that the uncertainty

in the topological map can be transferred over to the metric

In a second experiment, the robot was driven along a pattaps and vice versa. We expect that this will lead to inciitase
lined primarily by glass panes and pillars, Fig. 10. Tydigal robustness in the localisation within the geometric maps an
such an environment is difficult for SLAM applications giverto reliable loop closing procedures in the topological map.
the absence of features in the direction lateral to the timec
of robot travel. Excerpts of the Node-Metric Map associatio
matrix are shown in Table Ill. A few images from the set — - .
of 150 images that were used to construct the topologice T .-
representation are presented in Fig. 11. As is seen in thesabo — = (oot e

Zz ™ (Experiment 2)
image, this environment, the robot is often surrounded b G | e
reflective and glazed surfaces, which make the SLAM difficult "' <—=—=—=——=———==—==7 o tom 20m

The combined maps are depicted in Fig. 12.

There is some super position since the individual paths ar

created incrementally. Some of the larger amount of overI%) . . . . o
that is present between the sections is removed during fig- 10: Experiment 2: Mapping and localisation is perfodme

process of merging topological paths. A small amount &f & second environment that comprises pillars and glass
overlap is maintained to allow transition between paths. ~ Surfaces.
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Fig. 11: Experiment 2: Typical images from a set of 1501]
images that comprise the topological representation of the

path.
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Fig. 12: Experiment 2: The association of the nodes of the
topological map with the set of three metric maps. In th[gz]

current version of T-SLAM, the registration of topologieald

metric maps is maintained in the form of the Node-Metric Ma

association matrix.
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