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Abstract—This article reports on a map building method that
integrates topological and geometric maps created independently
using multiple sensors. The procedure is termed T-SLAM to
emphasize the integration of Topological and local Geometric
maps that are created using a SLAM algorithm. The topological
and metric representations are created independently, being local
metric maps associated with topological places and registered at
the topological level. The T-SLAM approach is mathematically
formulated and applied to the localization problem within the
Intelligent Robotic Porter System (IRPS) project, which isaimed
at deploying mobile robots in large environments (e.g. airports).
Some preliminary experimental results demonstrate the validity
of the proposed method.

Index Terms - Topological Maps, View-based Localization,
SLAM Geometric Maps, Robot Localization.

I. I NTRODUCTION

This article explores the use of combinations of topological
and local geometric maps. There are a number of methods in
the literature that attempt to exploit the perceived advantages
of combined, hybrid or hierarchical maps for use in environ-
ment representation and mobile robot localization. There are
some methods that are described in the literature that allude
to Topological SLAM [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13] in order to create an association with
(geometric) Simultaneous Localization and Mapping (SLAM),
a well-accepted means of building maps [14], [15], [16].

We could classify the methods that utilize both topological
and metric information into hierarchical or hybrid methods.
While the distinction is primarily semantic in nature, hi-
erarchical methods could be seen as maintaining different
representations in order to accomplish different purposessuch
as long-term planning in the topological map and precise
motion control for navigating among obstacles using metric
information.

One of the earliest and possibly one of the most well
known approaches in this category is the Spatial Semantic
Hierarchy or the SSH developed by Ben Kuipers [1], [2].
The SSH is described as a model of knowledge of large-
scale space consisting of multiple interacting representations,
both qualitative and quantitative. The representation of the
environment is maintained in the form of a hierarchy of maps
– including metric and topological levels – each of which

TABLE I: Comparison of Place-recognition successes with and
without using HMMs.

K total number of nodes in the topological map
k an index, node occupied by the robot or position in

the topological map
V t

obs the set of observations at timet
M total number of distinct metric maps
m an index, usually employed to denote a particular

metric map
X t

m representation of the metric mapm at time t
� i the mixture component coef�cient or component

prior probability
V the FIM, or the complete set of views/vectors as

collected during Environment-Familiarisation stage
� the initial probability distribution over the hidden

states of the Hidden Markov Model
aij the probability of transiting from [hidden] statei to

statej in the Hidden Markov Model
bi (n) the observation or emission probability for the sym-

bol bi at the placen within the Hidden Markov
Model

j an index, usually employed to denote a particular
feature,j

k � the estimated place as obtained by applying the
maximum criterion to the Belief over the indices of
the Reference Sequence

M the number of [hidden] states in the Hidden Markov
Model

N the number of [visible] observations/symbols in the
Hidden Markov Model

Z Hidden or incomplete data in a Mixture Mode
zk the vector from matrixZ corresponding to the

view/vectorVk
� the parameter set,hN; M; f � i g; f aij g; f bi (n)gi , of

the Hidden Markov Model
� i a single component of the mixture model with the

named features

allows some abstraction of the perception and interaction of
the robot with the environment. The advantages gained from
using SSH or similar hierarchical model of representationsis
that incomplete or uncertainty in the information is handled
in different forms depending on which particular localization
or navigation problem is to be solved. Local metric maps help
to perform place recognition, (middle-level) topologicalmaps
help create consistent maps in the face of challenges such as
loop-closing problems, and the global metric maps maintain
an overall consistency in the global position of the robot.

Hybrid approaches are usually employed to resolve speci�c



disadvantages of one representation with regards to the other.
In certain approaches that primarily depend on geometric
maps, the loop closure problem has been resolved by si-
multaneously having locally precise geometrical information
and globally consistent topological information about a (large)
environment.

One such hybrid method is proposed by Choset and Na-
gatani [3] propose a SLAM method that exploits topology of
the free space to localize the robot on a partial map. Low-
level control laws are used to generate Voronoi graph (VG)
and explore the unknown space. A graph matching process
over the VG structure is used for robot localization, whereby
the robot locates itself to one of the places of the VG, though
the robot does not know its metric coordinates.

Thrun [17] builds a global metric (grid-based) map of the
environment and then extracts a topological graph from this
metric representation. Besides being not scalable to largeen-
vironments, this method requires a globally consistent metric
map, which is in general very dif�cult to obtain.

There are also attempts to utilize graph based approaches to
solve particular problems that appear at the time of creation of
metric maps. Methods such as [5], use graphical methods to
maintain hypothesis for map expansion and closure,i.e. graph-
like methods are used to maintain multiple map hypothesis
of the main map which is geometrical. There are works that
enhance the applicability of metric maps and the ability of
users to interact with these such as representing individual
objects. In [18], Limketkaiet al. store the representation of
objects (some of which might also be used by persons) using
a technique called Random Markov networks.

Tomatiset al. [13] developed a hybrid map representation
wherein a global topological map connects local metric maps.
The robot may switch between both representation when
navigation conditions change (e.g.leaving a room and crossing
a door). When doing this, the method requires a detectable
metric feature in order to determine the transition point where
the change from topological to metric has to be done and al-
lows robust initialization of the metric localization (relocation
and loop closure). The method was validated within of�ce-
like environments but its potential is unclear for different and
larger environments.

In [19] Zimmer utilizes a clustering algorithm based on
neural networks to cluster the local polar maps and ultimately
register them in the global topological map. The experiments
were performed on a small environment and the results are
unclear regarding the scalability for larger environments. A
similar idea is behind the procedure adopted by Zivkovic
[20] where panoramic images are grouped and semantic in-
formation is associated with the groups. It is stated that this
method bears semblance to the way animals represent their
environment. As in the case of [4], a clustering approach is
used to group images and represent places in the environment
by using a typical set of images for that place. In [21], Thomas
and Donikian hypothesize a hierarchical set of (topological)
representations that represent the environment using similarity
of places. The developers of these methods claim that such

Navigation

Feature
extraction

scans,
images

places, edges, objects

Probabilitydistr.

Topological
Mapping

SLAM: Geometric
Mapping

Localization

A

A

A
T-SLAMT-SLAM

probability 
distr.

Max. lik
elihood

 estimate

probability
 distr.

views

Motion 
commands

Fig. 1: Depiction of T-SLAM: the use of combined Topolog-
ical and Geometric maps.

labeling of (similar-looking) places is in line with the spatial
concepts that humans employ.

In the current work, we propose a generic method to
integrate a global topological map with a set of two or more
geometric maps. Some of the nodes of the topological map
are associated with the individual metric maps, as depicted
in Fig. 1. Our method tracks the global position of the robot
only within the topological map. The localisation procedure
in the topological map isolates features or properties of the
environment into groups that are used to recover the node in
the topological map that is currently occupied by the robot.By
exploiting the associations between the nodes and the metric
maps, we also maintain the local position of the robot enabling
the precise geometric positioning of the robot. Localisation
in each local metric map is performed independently and
simultaneously. Map updating is performed simultaneously
in these local metric maps as would be performed in a
conventional SLAM algorithm.

In the next section, the method of localisation in the hier-
archical representation is presented. In subsection II-B abrief
overview of the topological localization method is presented.
In section II-C, a selected SLAM algorithm is used to create
a geometric map. In section II, the combination of topological
and geometric maps is described together with the localization
system. In section III, the preliminary result from experiments
using combined Topological and geometric maps.

II. I NTEGRATING TOPOLOGICAL AND GEOMETRIC MAPS

Our representation of the environment is composed of
a global topological map and a set of two or more local
geometric maps. LetK be the total number of nodes in
the topological map, these nodes indexed by the variable
k = 1 ; : : : ; K . Let M be the total number of metric maps
identi�ed by m = 1 ; : : : ; M . Let X t

m denote the representation
of the robot in the topological mapm at the discrete instance
of time t. X t

m varies depending on how the position of the
robot is maintained in the metric map.

Since there exists a single global topological map and mul-
tiple geometric maps conditioned on this global topological



Fig. 2: Depiction of Independent creation of Topological and
Metric maps.

Fig. 3: Depiction of Superimposition that actually exists be-
tween the Topological map and the set of geometric maps.

map, as depicted in Fig. 2 and Fig. 3.
The probability of the robot being localised in both, the

topologicalk and metric mapm is given byP(X t
m ; kjVobs)

in (1).

P(X t
m ; kjVobs) = P(X t

m jk; Vobs) � P(kjVobs) (1)

The above expression conditions the probability of locali-
sation on both maps on the probability of localisation on the
global topological map. The termP(kjVobs) in (1) denotes the
localisation in the topological map. Without prejudice to the
general case, the index indicating time has been removed from
the remaining expressions.

P(Xm jk; Vobs) represents the localisation in the metric map,
conditioned on the robot being positioned at nodek in the
topological map and can be expanded as in (4).
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Fig. 4: Registration of Topological and Geometric Maps.

P(Xm jk; Vobs) =
P(Xm ; k; Vobs)

P(k; Vobs)
(2)

=
P(Vobsjk; Xm ) � P(Xm jk) � P(k)

P(Vobsjk) � P(k)
(3)

=
P(Vobsjk; Xm ) � P(Xm jk)

P(Vobsjk)
(4)

P(Xm jk) captures the association that the nodes of the
topological map have with the individual metric maps. The
exact nature of this association can vary depending on the
features that are used with the topological and metric map
and on the assumptions that are associated with the creation
of each type of map. T-SLAM is an attempt to explore one
type of association between a set of local geometric maps and
a global topological map.

The real advantage of T-SLAM will emerge in scenarios
in which the set of metric maps is registered to the global
map only at certain places. For example,some nodes in
the topological map might be associated withway pointsin
the metric maps, through the use of arti�cial environment
properties such as Radio Frequency Identi�cation (RFID) tags
[22] as depicted in Fig. 4.

The splitting of the environment, into many smaller regions
or sections, that is described in this article is not new, see[23],
[6], [24], [25] for a recent approach. The advantages of using
the approach put forth in this article is that the knowledge of
the position of the robot is conditioned on the nodes of the
graph, the probability of which is valid globally, over the entire
environment i.e. over all the sections of the environment.

A. Current Problem formulation

In this article, the �rst version of T-SLAM is presented.
Each node of the topological map is registered with every
local geometric map. Each nodek, in the topological map is
associated with one or more geometric mapsm by a human
operator. This association is represented in the form of Node-
Metric Map association matrix. Each elementamk of this
association matrix is assigned the value of1 is the node is



associated with the geometric map,0 otherwise. Each line
in the matrix corresponds to a particular metric mapm and
each column to a particular nodek, leading to the expression
(5). The Node-Metric map association matrix allows us to
express the probability distribution associated to a mapm� ,
conditioned on the nodek, P(Xm � jk), by:

P(Xm � jk) =
am � k

P M
m =1 amk

(5)

The global probability of being at a particular po-
sition within the set of metric mapsm is given byP K

k=1 P(X t
m ; kjVobs) and the location of the robot might be

expressed as in (6) whereL (Xm ) is the Maximum Likelihood
operator. The current observation is used to update the geo-
metric map within which the robot is located.

Additionally, in the current method outlined in this article,
we localise the robot in the topological and metric maps inde-
pendently. This results in the simpli�cation:P(Vobsjk; Xm ) =
P(Vobsjk) � P(VobsjXm ).

L (Xm ) = MLE k (
KX

k=1

P(VobsjXm ) �
P(kjVobs)

P M
m =1 amk

) (6)

In the following subsection, II-B, an expression will be
developed forP(kjVobs), where the topological map is built
from a sequence of raw-image sequences. In section II-C, a
well-known SLAM algorithm is utilised to create metric maps
and localise the robot within them.

B. Topological Maps from Raw Sensor Data

In [26], a procedure was developed to localize a robot
as it travelled along a path. During a �rst trip around the
environment, the Environment Familiarization phase, depicted
at left in Fig. 5, the robot samples the environment according
to a sampling plan, collecting features by using its various
sensors into the Reference Sequence.

A repetition of the motion performed during the place
recognition should propel the robot along the path described
by the Reference Sequence. Any maneuver other than the ones
taken during the Environment Familiarization phase will take
the robot to a place that was not sampled in the Environment
Familiarization phase. TheLost_P laces, in all a total ofK
in number, accommodate these possible views. Thus, each
Lost_P lace takes into account the fact that the robot might
be seeing views that were not seen in the Environment
Familiarization phase.

The sampled views, which would normally be modelled as
a left-to-right graph as at right in Fig. 5, are augmented by
the insertion of 'Lost_P laces' as depicted in Fig. 6.

The sequence begins withPLost _0 which indicates that the
robot is completely lost or has never localized. Also, before
every original placePi , there is aPLost _i . By moving forward
from oneLost_P lace , the robot can transition fromPLost _i

to any nodePk where k > i . Similarly, from Pi the robot
can transition toPk : k > i or to PLost _i +1 . The graph does
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Fig. 5: The robot is led through the environment on the Envi-
ronment Familiarization run to create the Reference Sequence
(left). This Reference Sequence constitutes a left-to-right graph
(right) composed of 'K ' views, ordered as they were sampled
during the Environment Familiarization.

not allow a single-step transition from onePLost _i to another
PLost _j .
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Fig. 6: The �gure depicts a modi�ed Markov chain, with
' Lost_P laces' inserted within the original Reference Se-
quence, to perform place-recognition. The dotted lines indicate
the transitions to the Places in the original Reference Sequence
and which have not been drawn to avoid cluttering the �gure.

When the robot needs to localize itself, it moves through the
same environment, the current view is compared to the previ-
ously collected views and an inference is made of the current
position of the robot. A Hidden Markov Model (HMM) is used
to perform place recognition using the modi�ed Markov Chain
in Fig. 6 as a model for the transitions between the hidden
states of the HMM. The Viterbi algorithm is commonly used in
the context of HMMs to determine the most probable sequence
of hidden states that gave rise to a particular sequence of
observations. It is an inference tool that is associated with
the process of making inferences in a HMM and is utilized
to position the robot within the Reference Sequence by using
the current sequence of observations. The HMM is speci�ed in
terms of its parameters� , as in (7), whereN corresponds to the
number of states in the HMM,M the number of observations
that will be used to make the inference,� represents the
initial probability on the states, theaij s correspond to the
transition probabilities between a pair of statesi and j and
bi (n) represents the probability of viewing symboln at state
i .

� = hN; M; f � i g; f aij g; f bi (n)gi (7)



The transition between the states is in�uenced by the transi-
tion probabilities between a pair of places in the graph shown
in Fig. 6. An elementary robot motion model is developed to
evaluate the transition probability matrix. For each sequence
of M observations, a simple distribution is used to model
the transition probability distribution from eachLost_P lace
to the remaining original places in the Reference Sequence
favoring places that lie closer in the Reference Sequence. The
transition probability leading away from any of the original
places in the Reference Sequence is uniformly split between
the next original place (to the right) and to the corresponding
Lost_P lace. The one-step transition probability from one
Lost_P lace to anotherLost_P lace is zero.

The �rst hidden state is always matched to the �rst
Lost_P lace, PLost _0. ThisPLost _0, has a non-zero probability
of reaching any place in the original Reference Sequence.

The observation model of the HMM is based on matching
the current view with the views in the Reference Sequence.
In the absence of any information regarding the view that
will be visible at the 'Lost_P lace', we arbitrarily de�ne the
observation probability as an Uniform distribution over the K
view in the original Reference Sequence. The features from
each view in the Reference Sequence are converted into binary
form and are represented within a Feature Incidence Matrix
(FIM), V. Due to the large dimensionality of the FIM, it is
subsequently modelled as a Bernoulli Mixture Model (BMM).
The parameters of the BMM are obtained by running the
Expectation Maximization(EM) algorithm.

The Mixture parameters and the posterior probabilities over
the components, theZ terms in (8), are used to evaluate the
likelihood as depicted in (8),P(Vk ) representing the prior
probabilities over each viewk, in the Reference Sequence. As
expressed in (9), theMaximum Likelihood Estimationis used
to obtain the indexk � in V that best describes the object to
be matched,Vobs.

P(kjVobs) =

P M
j =1 P(Vk )zkj � j P(Vobsj� j )

P K
k=1

P M
j =1 P(Vk )zkj � j P(Vobsj� j )

(8)

P(k � jVobs) =
K

argmax
k

P(kjVobs) (9)

C. Creating and Updating local Metric Maps using SLAM

The incremental creation of Geometric maps from sensor
data has been an area of much research over the last two
decades. Simultaneous Localization and Mapping SLAM and
Concurrent Mapping and Localization, CML, algorithms have
been proposed by various researchers for the creation of
different geometric maps. These algorithms have been very
successful in the creation and utilisation of maps in indoor
environments [14].

A couple of state of the art SLAM algorithms was used
to create the local geometric maps. We experimented with
the DP-SLAM [15] and the Fast-SLAM [27] algorithms. Both
methods create grid-based metric maps using particle �lters.

The local geometric maps presented in this article were created
using the Fast-SLAM algorithm.

A particle �lter is a method of obtaining a description of a
certain state space through partial observations of that space,
which inevitably contain measurement errors. It maintains
a weighted, and normalized, set of sampled states,S =
f s1; s2; : : : ; spg, called particles. At each step, and given an
observation vectorz and a control vectoru (in our context),
the particle �lter:

1) Samplesm new statesS0 = f s0
1; s0

2; : : : ; s0
pg from S,

with replacement, using the probability density given by
the weights of the elements inS.

2) Runs the state given by each particle through the cor-
responding motion model, using the previous states and
u, obtaining in this way the new generation of particles.

3) Each new particle is then weighted, using the observa-
tion model together with the vectorz.

4) Normalizes the weights of the new set of states.

The Fast-SLAM algorithm [27] is known for the speed at
which the map is updated and for the relatively good quality of
the geometric maps that are outputted. While the original Fast-
SLAM algorithm [27] procedure was developed for metric
maps using landmark, modi�cations and improvements were
subsequently made including an adaptation to grid-based maps
[16]. An implementation of this algorithm was obtained from
the Open-SLAM web page [28]. In our current work we have
create adopted a gird-based

III. E XPERIMENTS AND RESULTS

Initial experiments have been performed on the localisation
using a global topological map and a set of multiple metric
maps. The topological representation of the environment was
maintained in the form of a sequence of laser range scans and
images gathered while leading the robot along one or more
paths in the environment.

Our robot platform is equipped with two cameras and a
Laser Range Finder, LRF, as seen in Fig. 7. The acquisition
of data from the sensors and the control of the robot is
performed within CARMEN. The two cameras, one facing
forwards and the other facing onto one side, are capable of
taking gray-scale 640x480 images. SIFT features [29] are
utilised to perform matching between current observationsand
previously obtained images.

The forward-facing LRF provides a set of 361 range mea-
surements through a 180 degree interval. Features from this
sensor are used within the topological representation of the
environment. The raw data from the sensor is used directly
by the SLAM algorithm to build and maintain the topological
map

The robot was �rst led along a path, depicted in Fig. 8,
to create the topological and the set of geometric maps. The
images from the cameras and the LRF were used to create the
topological representation of the path, while raw laser range
�nder data and odometry were used to create the geometric
maps. A new geometric maps was created after a speci�c



Fig. 7: The sensor platform comprising of two laser range
�nders and two cameras is mounted on the Segway RMP 200.

TABLE II: The Node-Metric Map Association Matrix for
experiment 1.

1 2 . . . 53 54 55 . . . 94 95 96 . . . 143 144
m=1 1 1 . . . 1 0 0 . . . 0 0 0 . . . 0 0
m=2 0 0 . . . 1 1 1 . . . 1 0 0 . . . 0 0
m=3 0 0 . . . 0 0 0 . . . 1 1 1 . . . 1 1

amount of time of robot travel. A set of three geometric maps
were created in all as shown in Fig. 9.

As stated in section II-A, the association between places
that are represented in the topological map and the individual
metric maps is represented in a Node-Metric maps association
table. Excerpts of this map are shown in Table II.

Robot path
(Experiment 1)

0 10m 20m

Fig. 8: Experiment 1: The robot was driven along a long
hallway and map-building and localisation were performed to
create independent topological and geometric representations.

In a second experiment, the robot was driven along a path
lined primarily by glass panes and pillars, Fig. 10. Typically,
such an environment is dif�cult for SLAM applications given
the absence of features in the direction lateral to the direction
of robot travel. Excerpts of the Node-Metric Map association
matrix are shown in Table III. A few images from the set
of 150 images that were used to construct the topological
representation are presented in Fig. 11. As is seen in the above
image, this environment, the robot is often surrounded by
re�ective and glazed surfaces, which make the SLAM dif�cult.
The combined maps are depicted in Fig. 12.

There is some super position since the individual paths are
created incrementally. Some of the larger amount of overlap
that is present between the sections is removed during the
process of merging topological paths. A small amount of
overlap is maintained to allow transition between paths.

Fig. 9: Experiment 1: The set of three metric maps that are
created by running the Fast-SLAM algorithm after the initial
run through the environment in experiment 1.

TABLE III: The Node-Metric Map Association Matrix for
experiment 2.

1 2 . . . 54 55 55 . . . 114 115 116 . . . 149 150
m=1 1 1 . . . 1 0 0 . . . 0 0 0 . . . 0 0
m=2 0 0 . . . 1 1 1 . . . 1 0 0 . . . 0 0
m=3 0 0 . . . 0 0 0 . . . 1 1 1 . . . 1 1

IV. CONCLUSIONS

Initial results were presented in this work on the simultane-
ous use of one global topological whose nodes are registered
with multiple metric maps.

Current work includes the improved registration of the topo-
logical map with each metric map such that the uncertainty
in the topological map can be transferred over to the metric
maps and vice versa. We expect that this will lead to increased
robustness in the localisation within the geometric maps and
to reliable loop closing procedures in the topological map.

Robot Path
(Experiment 2)

0 10m 20m

Fig. 10: Experiment 2: Mapping and localisation is performed
in a second environment that comprises pillars and glass
surfaces.



Fig. 11: Experiment 2: Typical images from a set of 150
images that comprise the topological representation of the
path.

15055
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Fig. 12: Experiment 2: The association of the nodes of the
topological map with the set of three metric maps. In the
current version of T-SLAM, the registration of topologicaland
metric maps is maintained in the form of the Node-Metric Map
association matrix.
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