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Abstract. Managing the bandwidth requirements of a team of robots
operating cooperatively is an ubiquitous and commonly overlooked prob-
lem, despite being a crucial issue in the successful deployment of robotic
teams. As the team’s size grows, its bandwidth requirements can easily
rise to unsustainable levels. On the other hand, general-purpose compres-
sion techniques are commonly used to transmit data through constrained
communication channels, and may offer a solution to this problem.

In this paper, we study the possibility of using general-purpose compres-
sion techniques to improve the efficiency of inter-robot communication,
firstly by comparing the performance of various compression techniques
in the context a of multi-robot simultaneous localization and mapping
(SLAM) scenarios using simplified occupancy grids, and secondly by per-
forming tests with one of the compression techniques on real-world data.

Keywords: Compression Methods, Multi-Robot Systems, Efficient In-
formation Sharing.

1 Introduction

Cooperation among mobile robots almost always involves interaction via explicit
communication, usually through the use of a wireless network. Commonly, this
network is taken for granted and little care is taken in minimizing the amount
of data that flows through it, namely to assist the robot’s navigation across the
environment.

However, in real-world applications, the navigation effort can be but a small
part of the tasks that must be dealt with by a complete robotic system [17].

* This work was supported by the CHOPIN research project (PTDC/EEA-
CRO/119000,/2010) and by the ISR-Institute of Systems and Robotics (project PEst-
C/EEI/UI0048/2011), funded by the Portuguese science agency “Fundacao para a
Ciéncia e a Tecnologia” (FCT).

** The authors would like to acknowledge Eurico Pedrosa, Nuno Lau and Artur
Pereira [14] for providing us with a software tool intended to adapt the raw sen-
sor log files into a format readable by ROS.
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Therefore, it should operate as efficiently as possible. Additionally, in harsher
scenarios, such as search and rescue operations, constrained connectivity can
become an issue, and caution must be taken to avoid overloading the network.
An efficient model of communication is also a key element of a scalable imple-
mentation: as the number of robots sharing the network increases, the amount of
data that needs to be communicated does as well. Thus, greater care in prepar-
ing data for transmission is needed, so as to avoid burdening the network by
transmitting redundant or unnecessary data.

In this paper, we analyze the data transmitted by a team of robots on a
cooperative mission that includes mapping and navigation. With this purpose,
we use a multi-robot simultaneous localization and mapping (SLAM) task [13]
as a case study of the exchange of information among robots, though the ideas
proposed herein can be generalized to other cooperative tasks, at different ab-
straction levels. In our case study, mobile robots are required to communicate
occupancy grids [6] among themselves, in order to obtain a global representation
of the environment based on partial maps obtained locally by individual robots.

Occupancy grids are metric representations of the environment, being repet-
itive by nature [6]. In their simplest form, they consist of a matrix of cells, each
representing a fraction of the robot’s workspace, that are commonly in one of
three states: free, occupied or unknown. These can be seen as the result of a
“thresholding” operation applied to a more complex occupancy grid, which is
composed of cells whose occupancy, instead of one of three values, is modeled
through a probability value or a probability distribution [16].

In larger environments, or at greater resolutions, these simpler grids are usu-
ally stored as large matrices filled with only three different values, often contain-
ing very long chains of repeated cells. Keeping this data in memory in this form
is a sensible approach. The data is very easily accessible, with little computa-
tional overhead. However, transmitting it in this form is most likely a wasteful
use of bandwidth.

Compression methods are widely used in the transmission and storage of
bulky data, such as large numbers of small files, logs, sound and video. Com-
pression is even being used by default in specific file systems, offering a possible
solution for this problem. These exploit the data’s inherent compressibility in
order to represent it using fewer bits of data than originally.

In this paper, we present a novel compression benchmarking tool and metric,
as well as results and discussion of a series of experiments on the compression
and decompression of occupancy grids, as a case study for the application of
compression techniques in multi-robot coordinated tasks.

In the following pages, various general-purpose, lossless compression tech-
niques are analyzed and compared, in an effort to determine which, if any, is
more suitable as a solution to the large bandwidth requirements of multi-robot
systems. We will start by presenting a review of previous work in efficient com-
munication between coordinated robots, followed by a short presentation of the
various techniques being compared. We then present and discuss our benchmark-
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ing results, as well as preliminary results obtained by operating on real-world
data. We summarily conclude by taking an outlook into future work.

1.1 Related Work

Data compression is a process through which we aim to represent a given piece
of digital data using fewer bytes than the original data, and can be seen as a way
of trading excess CPU time for reduced transmission and storage requirements.
Compression methods are divided into two main groups: lossless methods, which
make it possible to reconstruct the original data without error; and lossy meth-
ods, which make use of the way humans perceive signals to discard irrelevant
data.

Lossy compression algorithms are commonly used in the compression of sig-
nals intended for human perception, such as image and sound. These techniques
usually make use of the way we perceive signals to reduce their size [19]. For
example, given that the human hearing’s capability ranges from about 20Hz to
about 20kHz, sound compression techniques can remove any signal components
outside that frequency range. Although the compressed data should be signifi-
cantly smaller than the original, humans hearing sound reconstructed from lossy
compressed data should experience much the same. However, the original signal
cannot be recovered.

Lossless compression, on the other hand, compresses data in a way that it is
later fully recoverable. In 1977 [20] and 1978 [21], Abraham Lempel and Jacob
Ziv developed two closely related algorithms which were to become the basis for
most of the lossless, general-purpose compression algorithms currently in use.
LZ77 and LZ78, as their works were to become known, are methods of dictionary-
based lossless compression. Summarily, the LZ77 and LZ78 algorithms keep a
dictionary of byte chains encountered throughout the uncompressed data, and
replace repetitions of those chains with links to entries in the dictionary, thus
reducing the size of the data.

LZ77 compresses data by running a sliding window of a given fixed length over
the input data, which is composed of variable-length sequences of bytes. For each
input sequence, the algorithm looks for matches between the current sequence
and a previous occurrence inside the sliding window. When a match is found,
the repeated sequence is replaced by an offset and a length, which represent
location of the previous occurrence in the sliding window, and the length of the
repetition. For example, if the string “abc” existed twice in the window, the
second occurrence would be replaced by an offset that pointed to the beginning
of the string, and a length of three characters. This simple concept is the basis
of dictionary coding. Furthermore, LZ77 has a way of dealing with very long
repetitions, by specifying a length that is longer than the source string. This
way, when decoding, the source string is copied multiple times into the output
buffer, correctly rebuilding the repetition. For example, if the string “abc” exists
somewhere in the sliding window, and the string “abcabc” exists somewhere after
it, the second string would be replaced by an offset that pointed to the letter 'a’
in the first string, and a length of six characters, instead of the length of three
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(a) LZ77 operates by running a sliding window over the data. When a sequence in the
input data is matched to data that is still inside the window, it is replaced with an
offset-length pair that points to the previous instance of that data. In this figure, the
dark blue segments were matched, and the second one is replaced with the orange,
smaller segment, that points to the first copy of the matched segment.
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(b) LZ78 operates by building an explicit dictionary. As the input data is consumed,
the algorithm attempts to match each input sequence with an existing sequence in the
dictionary. If the matching operation fails, the new data is added to the dictionary.
This illustration shows the case where a match is found. In that case, the dark blue
segments are matched to an entry in the dictionary, and replaced in the output buffer
with the orange, shorter segment that points to the correct entry in the dictionary.

Fig. 1. A simplified pictorial explanation of LZ77 and LZ78’s operation.
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characters one might have expected, thus encoding the whole six-letter string
into a single offset-length pair. Once all the data is encoded, decoding it consists
of reversing the process, by replacing every offset-length pair in the coded data
by their corresponding byte chains.

Despite technically being a dictionary coder, LZ77 does not explicitly build a
dictionary. Instead, it relies on offset-length pairs to elliminate repetition. LZ78,
on the other hand, does create an explicit dictionary. The algorithm attempts
to find a match in the dictionary for every sequence that is taken from the
input buffer. If a match is not found, it is added to the dictionary. Every match
that is found is replaced with a structure analogous to the offset-length pair
described above, differing in the fact that now the offset represents an entry in
the dictionary. The LZ78 dictionary is allowed to grow up to a given size, after
which no additional entries are added, and input data that cannot be matched
with any dictionary entries is output unmodified. Decoding LZ78-encoded data
also consists of simply reversing the process, substituting each offset-length pair
with the appropriate entry from the dictionary. The operation of these algorithms
is illustrated in Fig. 1.

We have restricted our choice of algorithms to those based on Lempel and
Ziv’'s work, for their focus on reducing redundancy by exploiting repetition, and
for their lossless nature. It is important that the algorithms we are employing
be fully lossless, i.e. that the compressed data can be used to reconstruct the
original data, since we intend to generalize this technique to other types of data
which may not tolerate any errors. For example, lossy image-based compression
techniques, such as JPEG, could be used to reduce the size of an occupancy grid,
processing it as an image. However, compression artifacts and other inaccuracies
could lead to an erroneous representation of the environment, either by distorting
its features or by hindering other aspects of the multi-robot mapping effort, such
as occupancy grid image-based alignment and merging [3].

Efficient inter-robot communication is not an area devoid of research. Other
works, such as [2], [13] and [4], have worked on a solution for this issue by creat-
ing new models of communication for robotic teams, i.e. by developing new ways
of representing the data needed to accomplish the mission. Other research efforts
focused on developing information utility metrics, e.g. by using information the-
ory [16], which the robot can use to avoid transmitting information with a utility
measure below a certain threshold. We could find none, however, that applied
compression to further increase their optimization gains. These techniques, while
successful in their intended purpose, rely on modifications to the inner workings
of their respective approaches. In our case, we intend to create an optimization
solution that is more general, and that does not depend on modifications to the
intricacies of the underlying techniques.

Finally, there are several examples! of compression benchmarks. However,
we found none that focus on the algorithms’ ability to optimize inter-robot com-
munication. Their main focus is on comparing the techniques’ performance on

! Such as Squeeze Chart (http://www.squeezechart.com/) and Compression Ratings
(http://compressionratings.com/).
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the compression and decompression of standard datasets, such as long sections
of text, random numbers, etc. The need to test these techniques in the com-
pression of specific, Robotics-related datasets, as well as the need to do so in a
methodical, unbiased way, compelled us to create our own solution.

2 Free and Open Source Software Data Compression
Techniques

As stated previously, occupancy grids, while a practical way of keeping an en-
vironment’s representation in memory, are cumbersome as transmission objects.
At the typical size of 1 byte per cell, an 800-by-800 cell grid (e.g. a representation
of a somewhat small 8-by-8 meter environment at 100 cells per meter) occupies
640 kilobytes of memory. Depending on how fast an updated representation is
generated, and how many robots take part in the mapping effort, this can lead to
the transmission of prohibitively large amounts of data. If we update that same
grid once every three seconds on each robot, each robot will generate an average
of about 213KB/s. For a relatively small team of three robots, that equates to
generating 640KB per second of data that needs to be transmitted. This simple
calculation does not take into account the possibility of one of the robots explor-
ing the environment further away from the others, causing the grids to expand,
which would further enlarge the amount of repetitive data generated.

If we assume that each robot has to transmit its map to each of the team
members, in a client-server networking model, each map update carries a band-
width cost of C = S x (n — 1), where C' is the total cost, in bytes, S is the size
of the map, in bytes, and n is the number of robots in the team. We can easily
determine then that a regular 802.11g access point, operating at the typical av-
erage throughput of 22Mb (or 2.75MB) per second could support a team of 14
robots.

Given the redundancy that is naturally occurring in the data, there is great
potential for optimization in the team’s usage of bandwidth. Since data com-
pression methods aim to remove redundancy from data, and can be applied to
any type of data, they seem to be adequate candidates for network optimization.

LZ77 and LZ78 inspired multiple general-purpose lossless compression algo-
rithms, widely used today as Free and Open Source Software (FOSS) imple-
mentations. We have collected the ones that we believe are the most suitable
as solutions to our problem, given their availability, use and features. We will
summarily discuss them next.

DEFLATE, presented in [5], is the algorithm behind many widely used com-
pressed file formats such as zip and gzip, compressed image formats such as
PNG, and lossless compression libraries such as zlib2, which will be the imple-
mentation through which DEFLATE will be tested. This algorithm combines
the LZ77 algorithm with Huffman Coding [9]. The data is first compressed using
LZ77, and later encoded into a Huffman tree. Being widely used, this technique
was one of the very first to be considered as a possible solution to this problem.

2 Zib is available at http://www.zlib.net/.
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LZMA3, which stands for Lempel-Ziv-Markov Chain Algorithm, is used by
the open-source compression tool 7-zip. To test this algorithm, we used the refer-
ence implementation distributed as the LZMA SDK. No extensive specification
for this compressed format seems to exist, other than its reference implemen-
tation. LZMA combines the sliding dictionary approach of LZ77 with range
encoding.

LZ4* is an LZ77-based algorithm focused on compression and decompression
speed. It has been integrated into the Linux kernel and is used on the BSD-
licensed implementation of ZFS [18], OpenZFS, as well as other projects.

QuickLZ® is claimed to be “the world’s fastest compression library”. However,
the benchmark results provided by its authors do not compare this technique to
either LZ4 or LZMA, warranting it a place in our comparison.

Finally, Snappy®, created by Google, is a lightweight LZ77-based compression
library that aims at maximizing compression and decompression speed. As such,
and unlike other techniques, it does not employ an entropy encoder like the
Huffman Coding technique used in DEFLATE.

3 Benchmarking Methodology

Part of the motivation behind this work consists of the fact that compression
benchmarking tools usually focus on either looking for the fastest technique, or
for the one that achieves the highest compression ratio, as defined by:

_Lv

R=77,

(1)
where R is the compression ratio, Ly is the size of the uncompressed data, and
L¢ is the size of the compressed data, both usually measured in bytes.

When choosing among a collection of compression techniques, compression
ratio is a metric of capital importance, since the better the ratio, the less in-
formation the robots have to send and receive to complete their goal. However,
the techniques’ compression and decompression speeds are also important; an
extremely slow, frequent compression may jeopardize mission-critical computa-
tions. Thus, we cannot simply find the technique that maximizes one of these
measures; there is a need to define a new, more suitable performance metric, in
order to find an acceptable trade-off.

Therefore, we define:

R
TTAT )

in which E is the technique’s temporal efficiency. It is determined by dividing
the compression ratio achieved by the technique, R, by the total time needed

E

3 The LZMA SDK used is available at http://www.7-zip.org/sdk.html.

4 LZ4 is available at http://code.google.com/p/1z4/.

5 QuickLZ is freely available for non-commercial purposes at http://quicklz.com/.
5 Snappy is available at https://code.google.com/p/snappy/.
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to compress and decompress the data, T, and T}, respectively. The purpose of
this quantity is to provide an indication of how efficiently the technique at hand
uses its computational time. The algorithm that achieves the highest temporal
efficiency, while at the same time achieving acceptable compression ratio, is a
strong candidate for integration in work that requires an efficient communication
solution, provided that its absolute compression ratio is acceptable.

In order to test these techniques, the authors developed a benchmarking tool”
that, given a number of compression techniques, runs them over occupancy grids
generated by SLAM algorithms, outputting all the necessary data to a file. This
tool allows us to both apply the techniques to the very specific type of data we
wish to compress, as well as test them all in the same controlled environment. It
was designed to be simple and easily extensible. As such, the addition of a new
technique to the benchmark should be trivial for any programmer with basic
experience.

To account for the randomness in program execution and interprocess inter-
ference inherent to modern computer operating systems, each algorithm was run
over the data 100 times, so that we could extract results that were as isolated
as possible from momentary phenomena, such as a processor usage peak, but
that reflected the performance we could expect to obtain in real-world usage.
Interprocess interference could have been eliminated by running test process in
the highest priority. However, that does not constitute a real-world use case, and
that methodology would provide results that could not be expected to occur dur-
ing normal usage of the techniques. Results include the average and standard
deviation of the compression and decompression times for each technique and
dataset, as well as the compression ratio achieved for each case. These results
can be seen textually in Table 1, or graphically in Figs. 3 and 4. Each technique
was tested using their default, slowest and fastest modes, except for QuickLZ
and Snappy, which only provide one mode of operation, and LZ4, which only
provides a fast (default) and a slow, high compression mode.

All tests were run on a consumer-grade machine equipped with an Intel Core
i7 M620 CPU, supported by 8 GB of RAM, under Ubuntu Linux 12.04.

3.1 Datasets

In order to test the effectiveness of compression algorithms in treating typical
occupancy grids, and given the intention of studying, at least to some degree,
how each algorithm behaves depending on the dataset’s size, five grids of dif-
ferent environments were chosen: Intel’s Research Lab in Seattle; the ACES
building, in Austin; MIT’s CSAIL building and, finally, MIT’s Killian Court,
rendered in two different resolutions, so that differing sizes were obtained. These
datasets are illustrated in Fig. 2. The occupancy grids we present were obtained
from raw sensor logs using the gmapping® [8] SLAM algorithm, running on the

" The tool is publicly available under the BSD license at https://github.com/
gondsm/mrgs_compression_benchmark.
8 A description of the gmapping package can be found at http://wiki.ros.org/slam_

gmapping.
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(a) Intel’'s Research Lab, measuring (b) ACES Building, measuring
753,078 bytes uncompressed. 1,280,342 bytes uncompressed.

(¢) MIT CSAIL Building, measuring 1,929,232 (d) MIT Killian Court, measur-

bytes uncompressed. ing 9,732,154 bytes (low resolution
rendering) and 49,561,658 bytes
(high resolution rendering) uncom-
pressed.

Fig. 2. A rendering of each dataset used in our experiments. These were obtained by
performing SLAM over logged sensor data.

ROS [15] framework. The logs themselves have been collected using real hardware
by teams working at the aforementioned environments, used for benchmarking
SLAM techniques [12], and later made publicly available.”

9 The raw log data used to create these maps is available at http://kaspar.
informatik.uni-freiburg.de/~slamEvaluation/datasets.php.
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4 Benchmarking Results
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Fig. 3. A graphical illustration of each technique’s performance on all datasets. Each
of the dotted lines connects data points for the same technique, so that trends become
evident. Note the logarithmic scale in some of the axes.

Fig. 3 and Table 1 illustrate the obtained results. In Fig. 3(a), we show the
general trend in temporal efficiency for each technique as the size of the map
grows. The general tendency is for efficiency to decrease as the data increases in
size. However, in Fig. 3(b), we can observe that the compression ratio achieved
tends to grow with the data’s size. This effect can be attributed to the fact that,
as the map grows, there are longer sequences of repetitive data, such as large open
or unknown areas. It can also be explained, to a much smaller degree, by the fact
that every compression technique adds control information to the compressed
data, and that the size of this control data tends to be less significant as the
uncompressed data grows. These figures lack error bars or other uncertainty
representations due to the small dispersion of results, illustrated in Table 1 by

the small values of standard deviation.

As expected, slower techniques generally achieve higher compression ratios.
Furthermore, our results show that some techniques are indeed superior to oth-
ers, in both temporal efficiency and compression ratio. LZ4 has shown both
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Table 1. Results obtained by processing the three smallest datasets 100 times with
each technique. o. and o4 correspond to the standard deviations of the compression and

decompression times, respectively. T. and Ty correspond to the average compression
and decompression times, respectively.

(a) Raw results obtained for the Intel Research Lab dataset.

Ratio |T. (ms)|oe Ta (ms)|og

DEFLATE (zlib) 27.727| 15.130| 1.179| 1.423|0.140
DEFLATE (zlib) Fast [18.474| 4.503| 0.736| 1.388|0.241
DEFLATE (zlib) Slow|31.633106.519| 4.167| 1.306|0.195
LZ4 11.741] 0.452| 0.064| 0.410/0.064
LZ4 HC 22.850| 89.312| 3.721| 0.241/0.028
LZMA 31.920(126.282| 7.315| 2.364]0.287
LZMA Fast 29.825| 17.080| 1.156| 2.487|0.181
LZMA Slow 34.029|229.789|13.086| 2.290(0.242
QuickLZ 10.519] 1.222] 0.153| 0.742|0.069
Snappy 10.807] 0.753] 0.128| 0.529/0.100

(b) Raw results obtained for the ACES Building dataset.

Ratio |7 (ms) |oe¢ T, (ms) |oq
LZ4 12.5734(0.737898]0.118167]0.656754]0.0954742
LZ4 HC 25.8623| 129.498| 9.9717|0.381131|0.0711197
DEFLATE (zlib) 30.4135| 24.7584| 1.49278| 2.27353| 0.329637

DEFLATE (zlib) Fast | 19.573| 8.26037| 1.6616| 2.41425| 0.444267
DEFLATE (zlib) Slow|35.4023| 165.532| 5.24992| 1.91064| 0.341901

LZMA 34.815| 187.78| 10.3723| 3.60015| 0.352538
LZMA Fast 32.8633| 27.4526| 1.42182| 4.04572| 0.499422
LZMA Slow 37.7465| 327.663| 11.5554| 3.62876| 0.431443
QuickLZ 10.9759| 2.11142|0.243054| 1.29769| 0.127622
Snappy 11.3352| 1.20599| 0.12735(0.841902| 0.108266

(c) Raw results obtained for the MIT CSAIL Building dataset.

Ratio |T. (ms)|o. Ta (ms)|og

DEFLATE (zlib) 43.274| 27.927| 1.203] 3.370(0.172
DEFLATE (zlib) Fast [26.818| 9.100| 0.382| 2.717|0.178
DEFLATE (zlib) Slow|49.205(146.207| 1.760| 3.027|0.069

LZ4 18.236] 0.779] 0.052| 0.725/0.090
LZ4 HC 35.953|179.027| 2.698| 0.432|0.087
LZMA 48.763|200.306({11.911| 4.142|0.302
LZMA Fast 45.522| 33.280| 0.448| 4.304/|0.105
LZMA Slow 53.088|342.213| 8.815| 4.019(0.261
QuickLZ 15.359] 2.533] 0.117| 1.407/0.088

Snappy 13.387| 1.250| 0.059| 1.008|0.048
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Table 2. Results obtained by processing the two largest datasets 100 times with each
technique. o. and o4 correspond to the standard deviations of the compression and

decompression times, respectively. T, and Ty correspond to the average compression
and decompression times, respectively.

(a) Raw results obtained for the smallest MIT Killian Court

dataset.
Ratio |7 (ms)|oe T, (ms)|oq
LZ4 61.8855(15.0167|2.04569|15.9073|2.94617
LZ4 HC 102.05| 3928.3|86.8325(12.4447|1.46376
DEFLATE (zlib) 149.383[614.592(24.0875|110.101(4.45021

DEFLATE (zlib) Fast |77.6953|242.236| 21.732|65.1652|7.47955
DEFLATE (zlib) Slow|156.064(1375.26|50.3694|109.791|5.90444

LZMA 183.704|3685.39| 150.48|75.4362|6.84588
LZMA Fast 165.082|776.456|20.6407| 83.2567|6.06081
LZMA Slow 193.595|4995.91|386.814(63.4425|5.07394
QuickLZ 40.063| 53.632| 2.382| 21.701| 1.365
Snappy 18.400| 17.986| 0.799| 23.335| 1.080
(b) Raw results obtained for the largest MIT Killian Court
dataset.
Ratio |7 (ms) |oec T, (ms)|oq

DEFLATE (zlib) 94.044| 111.906| 1.738| 18.610|0.492

DEFLATE (zlib) Fast| 52.831| 41.207| 3.083| 11.647|0.846
DEFLATE (zlib) Slow|103.676| 316.500| 5.208| 17.499(0.717

LZ4 40.553 2.920| 0.198| 2.797|0.406
LZ4 HC 72.116| 710.753| 32.165| 1.992|0.147
LZMA 110.622| 663.896| 15.645| 13.595|0.527
LZMA Fast 102.493| 141.536| 1.216| 14.580|0.316
LZMA Slow 121.472|1269.680{158.155| 14.937|1.938
QuickLZ 29.856| 14.027| 2.274| 5.774|0.612

Snappy 16.951 5.192| 0.751| 5.101(0.492
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Fig. 4. A graphical illustration of each technique’s performance on smaller datasets.

a higher temporal efficiency and compression ratio than that of QuickLZ and
Snappy, making it a clearly superior technique, in this case. However, L.Z4 HC,
LZ4’s slower mode of operation, is an inferior technique in the compression of
larger datasets, both in temporal efficiency and compression ratio, when com-
pared to LZMA and DEFLATE. Its temporal performance diminishes signifi-
cantly with the growth in map dimensions, with an insufficient increase in com-
pression ratio.

In applications where compression ratio is secondary relatively to speed, LLZ4
is a strong candidate, and clearly the best among the techniques that were
tested. It strongly leans towards speed and away from compression ratio, but
offers acceptable ratios (around 15 for smaller maps, reaching 50 in larger ones)
given its extremely fast operation. In other words, for applications which rely
on transmitting occupancy grids, a very significant reduction of data flow can
be achieved by employing this relatively low-footprint technique, which makes
it suitable for use in real-time missions. As Fig. 3(a) shows, this technique is, by
far, the most efficient at utilizing resources, achieving the best results in terms
of temporal efficiency among the techniques that we tested.

If further reduction in bandwidth is required, other techniques offer better
ratios, at the expense of computational time. LZMA’s fast mode offers one of
the best ratios that we have observed, while still being acceptably fast. For the
smallest dataset, this technique took, on average, about 15ms for compression,
and achieved a ratio of 29.8. Depending on the application, 15ms of processor
time per compression may be acceptable, given that this technique achieves a
ratio that is almost three times as large as L.Z4’s, which achieved a ratio of 11.7,
as is shown in Table 1(a).

In Fig. 4, we explore the case of the exchange of smaller maps, by averag-
ing the temporal efficiency and ratio for each technique when operating over the
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smaller datasets. Smaller maps are commonly transmitted between robots at the
beginning of the mission, when there is still little information about the environ-
ment. In these conditions, we note, as mentioned before, a generalized decrease
in total compression ratio, and a narrowing of the gap between slow and fast
techniques in terms of compression ratio: all techniques produce results within
the same order of magnitude. However, the relationships between approaches
in terms of temporal efficiency remain much the same. Thus, for smaller data,
faster techniques appear to be a better option, since they achieve results that
are comparable to those of their slower counterparts, at a much smaller cost in
computational resources.

Larger maps, such as our largest examples, are very uncommonly transmitted
during multi-robot missions, and hence unworthy of a closer analysis. Addition-
ally, for these larger datasets, the multi-robot SLAM technique employed may
make use of delta encoding techniques for transmission, transmitting only, for
example, the updated sections of the map. In this case, we expect that the com-
pression techniques applied to the map sections have the same performance as
those applied to the smaller datasets in this test, since they will effectively be
compressing smaller maps.

It is important to note that even the worse-performing techniques have
achieved significant compression ratios, with a minimum ratio of about 10. Con-
sequently, by using compression, we can reduce the total data communicated
between robots during a mapping mission by at least a factor of 10, which shows
the viability of compression as a solution for the problem of exchanging occu-
pancy grids in a multi-robot system. In the context of the example we presented
at the beginning of section 2, this equates to cutting our bandwidth require-
ments from 213KB/s per robot, to a much more affordable 21.3KB/s per robot,
boosting our access point’s theoretical capacity from 14 to 140 robots.

5 Real-World Application: Preliminary Results

Analyzing the results obtained previously, we postulated that the usage of a com-
pression technique in a cooperative mapping scenario would provide a significant
gain in communication efficiency. To test this hypothesis, we ran several SLAM
approaches in a real-world testbed. The data output by the SLAM techniques
(a stream of non-simplified occupancy grids) was fed into our software, which
tested its compressibility as well as the time spent on compression operations.
Our software used LZ4 as its underlying compression engine, given the promising
performance we observed previously.

We have gathered two sets of data, in different environments: a synthetic
arena, located in one of the research laboratories of the Institute of System and
Robotics, as well as on the corridors of the ISR itself. Data was gathered and
recorded, so that it could then be processed by multiple SLAM techniques. This
ensured that any performance gains we observed were not limited or related to
any single SLAM technique. The SLAM techniques used for this validation were
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L
(a) A picture of the test arena, located in  (b) A picture of ISR’s corridors. The ex-
one of ISR’s research laboratories, mea- plored area measures roughly 12x10 me-
suring roughly 7x7 meters. ters.

(¢) An occupancy grid relative to the test  (d) An occupancy grid relative to the
arena. ISR’s corridors.

Fig. 5. An illustration of the environments where data was gathered, as well as the
generic occupancy grids generated by SLAM techniques operating on each environment.

gmapping[8], slam_karto[11] and hector_slam[10]. For the sake of consistency,
these tests were run on the same machine as before.

Table 3 illustrates the results obtained during the missions. Essentially, these
results show that the LZ4 compression technique adopted to ensure efficiency in
communication is a viable option.

As postulated in previous sections, using compression on occupancy grids
yields important data savings. In this case, using real occupancy grids (as op-
posed to the simplified ones used previously), we saved at least about 7/8 of
all data meant to be sent, which equates to approximately 88% savings in data
sent. These bandwidth savings come at a very reduced computational cost, as
is visible on the last column of Table 3. At the most, we spent a total of about
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Table 3. Network statistics for outgoing data obtained in both scenarios. N is the
number of processed maps (output by the SLAM technique into our software), R is the
average compression ratio achieved during the mission, L is the total size of the maps
received by our software (before compression), L; is the total amount of data sent into
the network by this robot and, D; is the amount of data we saved, i.e. the difference
between the total size of the maps and the data actually transmitted, and, finally, T},
is the total time spent processing maps, in milliseconds. All sizes are in bytes.

(a) Results obtained in the test arena.

N| R | L L, D, |T,

gmapping|21|8.78{169062|19253|149809|2.77
Karto |6 [8.03| 48357 | 6015 | 42342 |0.82
Hector |75(8.61|606667|70472|536195(9.61

(b) Results obtained in the ISR’s corridors.

Nl R | L L, D. | T,
gmapping|21(13.92| 930050 | 66787 | 863263 | 7.68
Karto | 6[12.06] 209799 | 17402 | 192397 | 2.64
Hector [76|12.03(3198376|265883|2932493|14.99

15 milliseconds processing maps during a mission, which, given that during that
mission we saved 11/12, or 91.6%, on transmitted data, is a very positive result.

We can also observe that there is a very significant discrepancy in the average
compression ratio obtained in both missions. Given the characteristics of each
environment, and our previous tests, we can now reflect on the reason behind
such discrepancy.

In Section 4, we observed that the map’s compressibility tends to grow with
the map’s size, and postulated that this effect was the result of an increase of
the size of “single-color” areas, i.e. of areas of the same type (free, occupied or
unknown). In this case, the maps are very close in size, close enough that such
a discrepancy cannot be justified by the map’s size alone. However, these maps
present very different characteristics: while the map generated in the test arena
tends to feature smaller unknown areas, and with more transitions between the
several states, its counterpart tends to have a large unknown area, due to the
site’s geometry. This leads us to believe that the reason behind the fact that a
map’s compressibility tends to grow with its size is, in fact, the higher likelihood
of existing, in a larger map, much more substantial “single-color” areas which,
as we have seen in Section 1.1, are very easily encoded in much smaller byte
strings.

To conclude, these results show us that, if applied to a team of robots running
a multi-robot SLAM technique based on the exchange of occupancy grids, the
usage of a general-purpose compression technique is a promising solution to the
inherent problem of inefficient communication.
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6 Conclusion

In this text, we have explored the issue of communication optimization in the
context of cooperative robotics, specifically the application of general-purpose
lossless compression techniques to reduce the volume of data transmitted in co-
operative robotic mapping missions. We have shown that compression is a viable
option for the reduction of required network bandwidth in these scenarios, by
defining and employing a new metric for the comparison of compression tech-
niques, as well as the implementation of a new benchmarking tool. Moreover,
important results about the performance of different lossless compression tech-
niques in the context of multi-robot tasks were obtained, which can support an
informed decision on which technique should be used in this context.

We have also further tested our hypothesis by employing one of the compres-
sion techniques we have tested in a real-world system, compressing the unaltered
occupancy grids output by a SLAM technique. These tests yielded results that
further prove the validity of this technique.

In the future, it would be extremely interesting to implement and thoroughly
study this procedure within a full-fledged multi-robot SLAM technique. It would
be very interesting to observe the changes in bandwidth requirements when com-
pression is employed in such a scenario. It would also be of interest to investigate
the influence of the application these techniques in the operation of Ad-Hoc net-
works, such as MANETs (Mobile Ad Hoc Networks), since they can be used in
search and rescue operations [1], a type of operation that requires great commu-
nication efficiency.

Finally, these results only apply to solutions based on the exchange of oc-
cupancy grids, which are but a subset of all the cooperative robotic tasks in
existence. Occupancy grids are not, then, by any means, the only form of data
exchanged during cooperative robotic missions, it would be interesting to ex-
plore the application of compression to other types of bandwidth-heavy data
that robots need to exchange, such as the more complex occupancy grids de-
scribed in [7], possibly culminating in the creation of a compression technique
mainly intended for the optimization of robotic communication.
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