
Robust Digital Control for Differential Soccer-Player Robots

João Monteiro* and Rui Rocha

a501020736@alunos.deec.uc.pt, rprocha@deec.uc.pt

ISR – Institute of Systems and Robotics

Department of Electrical and Computer Engineering

University of Coimbra, 3030-290 Coimbra, Portugal

Abstract— Robot soccer is a popular challenge due to its
game dynamics. In particular, mobile robots must exhibit
high responsiveness to motion commands and suitable pose
control. This article presents a digital controller for pose
stability convergence, developed to small-sized soccer robots.
Special emphasis has been put on the design of a generic
controller, which is suitable for any mobile robot with
differential kinematics. The proposed approach incorporates
adaptive control to deal with modeling errors and a Kalman
filter which fuses odometry and vision to obtain an accurate
pose estimation with high sampling rate. Experimental results
validate the quality of the proposed controller.

I. INTRODUCTION

This paper describes the work that is presently being made

in the field of digital control and real time systems for

differential mobile robots within the RACbot-RT M.Sc.

project. The control method described herein is being

applied on soccer-player robots endowed of an embedded

computer, so that results can be obtained to fully validate

the proposed method.

Many approaches for differential control of mobile

robots have been proposed. For instance, [1] presents

a generic controller where pose estimation is extracted

from the robot’s kinematics, and an adaptive control block

is introduced to deal with modelling errors. In [3], a

Lyapunov based nonlinear kinematic controller is pre-

sented where the influence of the control parameters is

studied, without giving emphasis to modeling errors. The

approach proposed herein brings together the simplicity

of the Lyapunov mathematical laws, the adaptive control

concept to deal with modeling errors and proper fusion

of two sensorial data – vision and odometry – for robust

pose estimation [4]. The project is divided into two main

parts: 1) the digital controller, and 2) the real time system.

Both parts have two phases: one dedicated to research

aiming to find the best approach to be used, and next the

implementation where simulations and on-the-field tests

are made to validate the projected method as best as

possible. The article covers only the first part.

II. PROBLEM FORMULATION

The development of theories in the field of robotic

control is usually based on the extraction of a proper

mathematical model of the hardware to control. Instead,

this project emphasizes the minimization of the impact

of modeling errors in control which, once implemented,

can impose stability problems. In a mobile robot, these

errors are cumulative with t → ∞, resulting in evident

pose mismatches. Therefore, the developed controller is

focused on the kinematic stabilization of generic mobile

robots possessing differential configuration, making more

difficult the development of a suitable approach. Such

effort was highly compensated in the performance ob-

served in experimental tests. Few parameters representative

of the physical structure need to be extracted; among

them, there are mass, inertia, wheel radius and distance

between wheels. Despite the mentioned efforts to avoid

erroneous modeling, measurement errors can be present in

the extracted parameters. Having this in mind, the concept

of adaptive control is introduced, enhancing the robustness

to unmodeled or poorly extracted parameters.

A. Robotic Soccer Players

The RAC1 robot soccer team has five robot soccer

players, each equipped with the following hardware: an

embedded computer – the PC/104 –, a compact flash

card reader, an FPGA programmed with HOSTMOT4

firmware, a suitable power supply, and an H-bridge driver

for the two DC motors with installed encoders. During

development, a laptop hard drive is incorporated on the

robot’s stack. Communication is possible via a wireless

USB stick connected to the computer. In the rear of the

robot, a castor wheel is mounted to provide proper physical

balance. The software module that contains the controller

– the system control module – is downloaded via SSH

and compiled on the robot. Once running, it first connects

with the vision and brain software modules. After the

connections are established, the control module listens to

instructions from the brain.

1) Command instructions: The possible instructions to

be performed by the robots are setVelocity, setTrajectory,

Halt and Kick. The setVelocity command is a package con-

taining the desired velocity vector’s angle and magnitude .

To perform such command, the control module calculates

the actual heading error and places virtual points referred

to the world’s coordinates in the direction of the vector.

These virtual points will constitute the desired trajectory

that the robot will perform to execute such vector with a

velocity approximated to its magnitude. The setTrajectory

defines target points on the field, each with an associated

velocity vector. Halt, is a critical instruction having the

effect of stopping the robot and aborting the execution of

the previous instruction commands at any time.

B. System Control Module

This module is the principal subject of the present paper

and its development was divided into two phases: project

1Robtica Acadmica de Coimbra – www.rac-uc.pt.vu

Proc. Robotica'2008

978-972-96895-3-6

45

Fig. 1. Use case of the control module upon a setVelocity instruction
receival.

and implementation. Due to its importance, Fig. 1 depicts

a very high level representation of the control module in the

presence of a setVelocity command. In the next subsections,

the mathematical approach of the problem to be dealt by

the control module will be stated.
1) Trajectory definition and Robot Kinematics: The

studied 2D path planner defines a trajectory as a time

variant pose vector represented in the playing field, which

has its own global cartesian system defined. The robot’s

pose in the world coordinates frame contains three degrees

of freedom (DOF), which are represented by the pose

vector

q =





x

y

h



 , (1)

where x, y are the robot’s coordinates and h is its heading.

The latter is assumed to be positive in counter-clockwise

direction, beginning at the positive xx axis. The state q0

is denoted as the zero pose state (0, 0, 2nπ), where n is

an integer value. Since the robot is capable of moving

in the world, the pose q is a function of time t. The

integer representation of a set of points (x(t), y(t)) is the

trajectory, and if the derivatives ẋ, ẏ exist, h(t) is no longer

an independent variable, since

h(t) = tan−1 ẏ(t)

ẋ(t)
, (2)

from where one can see that the robot’s orientation as

a function of t depends of its velocity over each axis.

The movement of the robot is controlled by its linear and

angular velocities, v and ω respectively, which are also

functions dependent of t. The robot’s kinematics is defined

by the following Jacobian matrix




ẋ

ẏ

ḣ



 = q̇ = Jp =





cos(h) 0
sin(h) 0

0 1



 p, (3)

where the velocity matrix is defined by

p =

[

v

w

]

(4)

This kinematics is common for all non-holonomic robots

in which the number of controllable DOF’s is less than the

number of DOF’s that the robot possesses.

Fig. 2. Representation of qc and qd.

C. Pose Error

The main objective of any trajectory controller is to

reduce as much as possible the pose error of the robot

referred to a desired point. For the system to be imple-

mented, two pose vectors need to be defined: the actual

pose of the robot already represented in (1), and the other

is the desired – or target – pose vector defined by

qd =





xd

yd

hd



 , (5)

which, by definition, is the target pose that the robot

should reach at the end of the movement. We will define

the pose error qe as the transformation of the reference

pose qd to the local coordinate system of the robot with

origin (xc, yc), where the actual robot’s heading is given

by hc’s amplitude (Fig. 2). Such transformation is the

difference between qd and qc,

qe =





xe

ye

he



 =





cos(hc) sin(hc) 0
−sin(hc) cos(hc) 0

0 0 1



 .(qd − qc)

(6)

One can easily see that if qd = qc, the pose error is null,

being this the ideal final state.

1) Robot dynamic model: Based on the Lagrange’s

mathematical modelation of mechanical systems on [1],

and considering G(q) = C(q, q̈) = 0, the dynamic

equations of the mobile robot can be written as





m 0 0
0 m 0
0 0 I



 =





ẍ

ÿ

ḧ



 = (7)

1

R





cos(h) cos(h)
sin(h) sin(h)

L −L



 .

[

τ1

τ2

]

+





sin(h)
cos(h)

0



λ, (8)

where τ1 and τ2 are the left and right motor torques

respectively, m and I are the robot’s mass and inertia, R is

the wheel’s radius, L is the line distance between the two

wheels, and λ are the Lagrange multipliers of constrained

forces. The non-holonomic restriction is deduced from the

above equation, and is given by

ẋ sin(h) − ẏ cos(h) = 0, (9)

from where it is imposed that a non-holonomic mobile

robot can only move in the direction normal to the axis of

the driving wheels.

46

Proc. Robotica'2008

978-972-96895-3-6

Fig. 3. Control scheme.

III. DIGITAL CONTROLLER DESIGN

The controller is designed in three parts. In the first,

kinematic stabilization is achieved using nonlinear control

laws. For the second, the acceleration is used for expo-

nential stabilization of linear and angular velocities. The

uncertainties related with the robot’s physical structure

modeled parameters are compensated using an adaptive

control block. Introducing suitable Lyapunov functions,

stability of the system’s state variables is achieved. For

the final part, pose estimation is made by fusing odometry

and vision for robust pose feedback information by means

of a Kalman filter. The latter was designed in a way

that independence of the mathematical system’s model is

achieved, boosting the overall performance.

A. The control scheme

The developed approach is depicted in Fig. 3 . It’s a

feedback controller, in which the input state is the desired

robot’s pose [xd yd hd]
′. At its output, proper update of the

torques for each wheel is done to fulfill the controller’s ob-

jective of eliminating the pose error. The adaptive control

block is present to guarantee that a stabilized condition is

achieved independently of the presence of modeling errors.

The estimation error is brought to zero in finite time. Next,

the control blocks will be explained.

B. Pose error generator

The error dynamics is written independently of the iner-

tial (fixed) coordinate frame by Kanayama transformation.

Expanding (6), and considering the robot’s heading as h,

the following is given,

qe =





xe

ye

he



 =





cos(h) sin(h) 0
− sin(h) cos(h) 0

0 0 1



 .





xd − x

yd − y

he − h



 ,

(10)

which will compose the pose error vector.

C. Nonlinear Kinematic Controller

Lyapunov based nonlinear controllers are very simple

and yet, at the same time, very successful in kinematic

stabilization. So, bringing together the concepts simplicity

and functionality, the Lyapunov stability theorem proved

to be of great utility for this project. Let’s consider, in the

present case, the following Lyapunov candidate function

that represents, as stated in [2], the total energy of the

robot3,

V =
1

2
(x2

e + y2
e) + (1 − cos(he)). (11)

3The sum of the kinetic and potential energies.

To prove the stability condition, V̇ needs to be obtained.

Based on [1] and [3], the following is extracted,

V̇ = vrxe cos(he) − vdxe + vr sin(he)ye +

wr sin(he) − wd sin(he)

⇔ V̇ = vr cos(he − vd)xe + sin(he)(vrye + wr − wd),

where vr and wr are the reference velocities. vd and wd

are chosen to make V̇ become negative semi-definite:

vd = vr cos(he) − xe (12)

wd = wr + vrye + sin(he). (13)

Replacing these expressions in V̇ , the following is given,

V̇ = −x2
e − vr sin2(he), (14)

from where, one can easily see that V̇ is always negative

semi-definite. Let’s take a specific instance of the control

rule at this block’s output,

vd = vr cos(he) − Kxxe (15)

wd = wr + Kyvrye + Kh sin(he), (16)

where Kx, Ky and Kh are positive constants. By La Salle’s

principle of convergence and proposition 1 of [3], the null

pose state q0 is always an equilibrium state if the reference

velocity is higher than zero (vr > 0). By this, there

are three weighting constants for the pose error, without

interfering in the overall pose stability of the robot.

D. Model Reference Adaptive Control

The motivation to include this block comes from the

need of the controller to cooperate with parameter uncer-

tainties. Based on [1], one can extract the adaptation rules

for the linear velocity,

dθ1

dt
= −ε1ev̇d ⇔ θ1 =

∫

−ε1ev̇ddt (17)

dθ2

dt
= −ε2ev̇d ⇔ θ2 =

∫

−ε2ev̇ddt. (18)

Identically, one can find similar rules for the angular

velocity:

dθ3

dt
= −ε3e

′ω̇d ⇔ θ3 =

∫

−ε3e
′ω̇ddt (19)

dθ4

dt
= −ε4e

′ω̇d ⇔ θ4 =

∫

−ε4e
′ω̇ddt. (20)

where vd and wd are the desired linear and angular

velocities, and e and e′ the respective velocity errors. The

parameters ε1, ε2, ε3 and ε4 are manually tuned for best

performance achievement. The practical implementation of

this block is not simple, since it is necessary to determine

the virtual velocity before proceeding with the actual real

velocity’s calculation, which in turn is needed to evaluate

the error of the modeled parameters m and I . So, for

better organization and comprehension, it was important to

create a schematic for this block (Fig. 4), which will allow

for a better understanding in the implementation phase.

From this figure, one can easily see the virtual velocity’s

determination before evaluating the velocity error due to

uncertainty of m and I .

Proc. Robotica'2008

978-972-96895-3-6

47

Fig. 4. Adaptive Control block scheme.

E. DC Motor Control based on the Desired Torques

From the controller scheme, the output consists of a

torque vector but it is not explicit how the motors will

be actuated in response to this torque command. The

amplitude of the electric current that controls the motor’s

power for the RAC’s soccer robots is regulated by the

drive board. This board implements a H bridge to drive

each motor individually by a PWM signal. Following the

RAC’s specific case, and accordingly with the datasheet of

the used DC motors, the torque-current relation is given

by,

I = ki.τ, (21)

where ki is the current constant and has a value of 0.487.

For a motor (left or right) for which a rotor torque of

τd is desired, the necessary current that the motor must

consume, can be extracted as follows,

Id = ki.τd (22)

Referring to the datasheet, the maximum current value that

the motor should consume is 0.57A, being the ideal value

0.35A. Therefore, the IMAX reference value should be

between 0.35 and 0.57, letting the hardware capabilities be

fully used, but avoiding permanent overload. So, a value

of 0.4 is admitted to be suitable and the maximum power

consumption for the robot’s 12VDC motors is calculated

by

PMAX = V IMAX = 12 ∗ 0.4 = 4.8W. (23)

By assuming that the motor will not work above a max-

imum value of its active power of PMAX = 4.8W , its

safety is ensured and, at the same time, the robot takes

advantage of its performance. It’s also guaranteed that it

will not overheat. Based on such value, the relation duty

cycle-current can be determined. Let Vap be the average

voltage value applied to the motor as a consequence of a

command duty cycle of DC, the following is given,

Vap =
DC

100
∗ 12 (24)

therefore, if with 12V DC the motor consumes a maximum

of 0.4A, the following is extracted,

Iap =
Vap

12
∗ 0.4. (25)

Bringing together the two above equations, the following

is given,

DC = kapIap, (26)

where kap = 1

0.4
.100. If the torque-current relation is ap-

plied, the useful duty cycle-torque relation can be extracted,

DC = kap.kiτap. (27)

Based on this equation, it is possible to know by a simple

calculation what value should be placed in the FPGA’s duty

cycle register for a motor that is wished to have τap torque.

F. Binary Interpreter

This block makes proper measurement of the actual ve-

locity based on the encoder displacement during a sample

time. First, a measurement of the encoder count is made

and tsamp time is waited. After this short time (the shortest

possible), a new measurement is sampled and the counting

is made finding the difference of the previous and last

pulse counter value. Given that the used motors possess a

velocity box of 1:3.71, and that the encoder is capable of

producing 512 pulses, in a row there are 4*512 transactions

when the encoder reading is in quadrature mode (which is

defined in the drive board). The angular increment of the

encoder is 2π
2048

rad referred to the motor. Referencing to

the wheel, this result is 2π
2048x3.71

rad. By this, the wheel’s

velocity in rpm is,

vwheel =

[

v1

v2

]

, (28)

where v1 = v2 = count
tsamp.1000

. 1

2048x3.71
.60 .

G. Direct Kinematics

We need to know the linear and angular velocities of

the platform to evaluate the robot’s velocity error at a

given moment. Therefore, it is useful to extract its direct

kinematics given the wheel velocities. The resulting vector

is, as one can see in the controller’s scheme, velwd.

From this, the following equations for linear and angular

platform’s velocity are given,

v =
v1 + v2

2
; w =

v1 − v2

2.rb

, (29)

where rb is the wheel radius.

H. Displacement reader

Due to the fact that the implemented Kalman filter needs

a specific input vector of ∆dk and ∆hk, which are the

linear and angular displacement respectively, it is necessary

to calculate these values for each loop,

∆d =
d1 + d2

2
; ∆h =

d1 − d2

b
, (30)

where b is the distance between wheels and d1 and d2

are the distance in meters “walked” by the left and right

wheels respectively.

I. Kalman Filter

A differential robot with odometry system is equipped

with an encoder in each motor. An angular displacement of

α radians on the rotor corresponds to a performed distance

d on the periphery of the wheel, and subsequently to an

encoder count. The distance is given by d = kα with k =
1

r
, where r is the wheel radius. If the robot’s movement is

assumed to be linear, the distances d1 and d2 performed by

the left and right wheels respectively, can be transformed in

48

Proc. Robotica'2008

978-972-96895-3-6

linear and angular displacements by (30). For a particular

sample instant, the following is given:

∆dk =
d1,k + d2,k

2
; ∆hk =

d1,k − d2,k

b
. (31)

The robot’s coordinates referenced on the world’s coordi-

nates can be determined by the following equations:

Xk+1 = Xk + ∆dk cos(hk +
∆h

2
) (32)

Yk+1 = Yk + ∆dk sin(hk +
∆h

2
) (33)

hk+1 = hk + ∆k. (34)

These coordinates constitute the state vector, and are

observed by the vision coordinate vector z. These mea-

surements can be described as a nonlinear function c of

the robot’s coordinates, which possesses an independent

noise vector v. Defining the above equations as vector α

and placing ∆dk and ∆hk in an input vector uk, the robot

can be modeled by the following equations

xk+1 = a(xk, uk, wk, k) (35)

zk = c(xk, vk, k), (36)

where wk˜N(0, Qk) and vk˜N(0, rk), being both not cor-

related, i.e., E[wlv
T
l] = 0.

We can now design the extended Kalman filter, using

the odometry-based system model:

x̂k+1 = a(xk, uk, wk, k) (37)

Pk+1 = AkPkAT
k + Qk (38)

Kk = PkCT
k [CkPkCT

k + Rk]−1 (39)

x̂k = x̂k + Kk[zk − Ckx̂k]Pk = [I − KkCk]Pk (40)

The process noise is modeled by two Gaussian white noises

applied on the two odometry displacement measurements

∆dk and ∆hk.

J. Filter simulation

In the developed simulation, when a voltage is present at

the input of each motor transfer function, a displacement

is produced at its output, making it possible to simulate

the robot’s movement. In this case, and because there is

no feedback loop since only the evaluation of the filter’s

performance is desired, the output will rise indefinitely in

a linear form, except at the start phase of the motor. We

want to observe the behavior of the filter in the presence

of vision and odometry noise, analyzing the estimated

state variables.

– Filter test case: Robot in x = 0, y = 0, heading = 0,

σ2
vis = 1, σ2

odo = 1
The displacement made by the robot will be indefinitely

linear along the xx axis, being the displacement over

yy and the robot’s heading equal to zero. Fig. 5 shows

this situation, being the blue slope the displacement

over xx, the red slope the displacement over yy and

the green one the robot’s heading. The magenta slope

represents the vision error. As one can see, the filter

possesses little but visible sensitivity to vision noise,

contrary to what happens with odometry noise. In Fig. 6,

one can see a screenshot of the visualizer tool developed

for the controller module. The robot accurately goes to

Fig. 5. Filter test case results.

Fig. 6. SetPoint command to x = 0, y = 0.

the defined setPoint, but possessing a yy axis precision

error of 1 to 2 cm maximum. This precision error exists

because of two main causes. The first is the backward

force exerted by the energy cable that feeds the robot in

test environment4. The second is because of the defined

tuned parameter for the influence of the robot’s error over

the yy coordinate – Ky . Tuning for near-zero error is

possible but leads to a very hard control scheme in the

presence of a physical disturbance, making the controller

produce high overshoot for compensation. Since the

RAC soccer robot is destined to walk on a field where

collisions with other robots may be present, the revealed

accuracy perfectly suits the team needs. For collision-free

applications, where minimum physical errors exist and

depending on the world’s space, the control can be made

harder, raising Ky .

IV. ON-THE-FIELD RESULTS

– Setpoint command to (0,0)

For this test, a setPosition command to (0, 0) is sent.

– setVelocity with v = 0.3mps and desired velocity

angle = 0

For this test, the robot was subjected to extreme noise

conditions. Referring to fig. 7, the robot is subjected to

two disturbances done by blocking its left wheel, evident

by the multiple white dots in the same place. Also, the

colored pattern, which is placed on the robot to track its

pose through the vision module, was blocked for a while

so that no vision data was being received by the controller

for it to estimate the actual pose. Controller’s robustness

is proved.

– Sequence of setVelocity commands with v = 0.3mps

4During tests, it is preferred to have the robot constantly fed with
energy instead of placing the batteries that discharge with time.

Proc. Robotica'2008

978-972-96895-3-6

49

Fig. 7. setVelocity with v = 0.3mps and desired velocity angle = 0.

Fig. 8. Sequence of setVelocity commands with v = 0.3mps and
velocity angle = 1.3rad.

and velocity angle = 1.3rad

In this final test (Fig. 8), a sequence of setVelocity

commands is sent to evaluate the control module’s

response in the presence of new velocity instructions.

This test’s characteristics are more realistic under the

robot soccer game, where a high movement dynamic is

required for the robot. As one can conclude, the robot

accurately executes the performed commands, evidencing

the software module’s robustness.

V. CONCLUSION

A controller for pose error elimination of a soccer-player

robot was projected and its practical results have been

shown. In the theoretical formulation of the controller,

particular emphasis was given to devise a generic control

scheme, so as to be robust against errors in the estimation

of the robot dynamic parameters. On-the-field tests reveal

that the projected approach is not only valid, but also

robust. It allows the robot to correct its trajectory, making

it converge to the desired pose.

A real-time system for the robot is now under develop-

ment. Studies have been made to find the best approach to

schedule properly the sub-tasks carried out by the robot

when executing motion commands. It is important that

the scheduler makes hard tasks meet their deadlines, and

also provide fast average response times for tasks with

soft deadlines. This effort will boost the robot’s response

capability, improving the global system’s performance.

REFERENCES

[1] A. Gholipour, M. J. Yazdanpanah,“t Dynamic Tracking Control of
Nonholonomic mobile robot with model reference adaptation for
uncertain parameters”, University of Tehran, 2000.

[2] M. Vidygascar, Nonlinear Systems Analysis, Prentice Hall, New
Jersey, NJ; 1993.

[3] Y. Kanayama, Y. Kimura, F. Miyazaki, Tetsuo Nogushi, ”A Stable
Tracking Control Method For An Autonomous Mobile Robot”,
cH2876-1/90/oooO/0384$01, 1990 IEEE.

[4] T. Larsen, M. Bak., N. A. Andersen, O. Ravn,”Location Estimation
for an Autonomously Guided Vehicle using an Augmented Kalman
Filter to Autocalibrate the Odometry”, Technical University of
Denmark, 2000.

[5] A. M. Bloch, M. McClamroch, ”Control and Stabilization of Non-
holonomic Caplygin Dynamic Systems”,England, 1991.

[6] D. Wang, Guangyan Xu, ”Full State Tracking and Internal Dynam-
ics of NonHolonomic Wheeled Mobile Robots”, Proceedings of the
American control Conference, June, 2000

[7] A. Martinelli, R. Siegwart, Estimating the Odometry Error of a
Mobile Robot During Navigation, Autonomous Systems Lab, Swiss,
Federal Institute of Technology Lausanne (EPFL), 1996.

50

Proc. Robotica'2008

978-972-96895-3-6

