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• Newmethod based on Gaussian Mixture Models (GMM).
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a b s t r a c t

This article proposes a framework to detect and segment changes in robotics datasets, using 3D robotic
mapping as a case study. The problem is very relevant in several application domains, not necessarily
related with mobile robotics, including security, health, industry and military applications. The aim is
to identify significant changes by comparing current data with previous data provided by sensors. This
feature is extremely challenging because large amounts of noisy data must be processed in a feasible
way. The proposed framework deals with novelty detection and segmentation in robotic maps using
clusters provided by Gaussian Mixture Models (GMMs). GMMs provides a feature space that enables data
compression and effective processing. Two alternative criteria to detect changes in the GMM space are
compared: a greedy technique based on the Earth Mover’s Distance (EMD); and a structural matching
algorithm that fulfills both absolute (global matching) and relative constraints (structural matching). The
proposed framework is evaluated with real robotic datasets and compared with other methods known
from literature. With this purpose, 3D mapping experiments are carried out with both simulated data
and real data from a mobile robot equipped with a 3D range sensor.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The problem of detecting novelties comprises the comparison
of current data with a priori data or expected behavior. This could
be related with a training dataset to learn the normality or some
information about the previous state of the data. Using this infor-
mation,we intend to determinewhether something changes, given
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that the data portion related to novelty is initially unknown. The
expressions novelty detection and change detection are used inter-
changeably throughout the text to denote the identification of dif-
ferences between pairs of datasets (e.g. robotic map of the same
section of an environment at two different instant times). Segmen-
tation of these novelties implies to determinewhich data is related
to them. These problems are important in a large variety of areas,
as shown in the work of Markou and Singh [1] and, more recently
and extensively, in the work of Chandola et al. [2], where anomaly
detection is focused. In thatwork, theymade a distinction between
anomalies and novelty detection, wherein the latter is related to
a novel pattern, being typically incorporated into the model after
being detected.

In robotic applications, it can be useful to take into account nov-
elties in the scene (dynamicmapping), in order to accomplish other
tasks relying on that knowledge about the environment. This is the
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Fig. 1. The system is aimed at detecting significant changes (novelties) and seg-
menting the data (set of points) related with novelties. The use of a high-level
representation makes it easier to detect changes, represented in the flowcharts
parallelograms .

topic of increasing interest in the robotic community and which
is presented as a particular case study in this article. In robotic
surveillance and security systems, for instance, changes in the en-
vironment affecting the robot’s path can configure risky situations,
which require the activation of some kind of alarmswith which ei-
ther the robot or a human operator should be aware of. In a simi-
larway, robots exploring dangerous environments (e.g. abandoned
mines, maintenance of nuclear reactors or oil pipes), should solve
and warn about dangerous situations when a significant change is
detected with respect to the known map. In this kind of applica-
tions, the robotic platform may be also equipped with a robotic
arm and an artificial hand, in order to manipulate and grasp ob-
jects associated to changes in the environment. In all these situ-
ations, when the robot revisits some section of the environment,
it is worth comparing current perceptual data with previously ac-
quired one, in order to detect novelties in the scene [3].

The problem addressed in this article is novelty detection and
segmentation. It involves processing large datasets which is quite
challenging and requires the development of specific techniques,
aiming at achieving two interrelated goals (see Fig. 1): firstly, de-
tectingwhether there is some significant change; secondly, if some
significant change exists, segmenting the data associated with it.
In order to improve the accuracy and ensure the feasibility of the
change detection process, sensor data must be transformed into
a more compact form before comparing with previously acquired
data. In this case, the chosen representation heavily determines the
performance of the whole task.

This article proposes a framework to robustly detect and seg-
ment changes in the particular case of 3D robotic maps. Initially,
the data to be compared is simplified and compressed without
loosing essential information, by using a clustering method based
on Gaussian Mixture Models (GMMs). Next, segmentation is ac-
complished by two alternative methods: a greedy algorithm [3],
which uses a metric based on Earth Mover’s Distance (EMD); and a

structural matching algorithm [4]. These two approaches are com-
pared in order to detect changes and obtain a segmented point
cloud representing those changes.

The main contribution of this article is the development of a
practical method comprising techniques to detect and segment
changes in large datasets. Themethod is validatedwith real data in
the context of 3D robotic maps. Related to previous papers of the
authors on novelty detection, a more detailed study and thorough
experimental evaluation of our method is achieved in this article.
The algorithm is evaluated through different experiments (e.g. dif-
ferent robot’s point of views, different sizes of changes, etc.) and it
is compared with other change detection algorithms. Besides, this
work extends our previous contributions, pointing out new statis-
tical results. A comparative study is made between a state-of-art
method and the proposed method using real large datasets, which
shows the advantages of the proposed method. Moreover, the use
of GMMs as descriptive features of data allows describing and com-
pressing datasets in an concise way. Furthermore, the use of geo-
metrical features (surface variation) in 3D robotic maps is aimed at
achieving even better data compression.

The techniques presented in this article open newopportunities
to develop automatic processes for surveillance of infrastructures,
by proposing a new and robust approach for searching and
detecting changes within large amounts of data.

1.1. Related work

Extracting features from data is a challenging step. It involves
removing irrelevant or redundant data in order to achieve some
goal (e.g. detecting a novelty) with information compression [5].
In spatial data, as in 3D robotic maps, the use of planar structures
[6,7] and K-means clustering [8] has been proposed. This prob-
lem can also be addressed by following different approaches,
such as Principal Component Analysis (PCA) [9] and Independent
Component Analysis (ICA) [10], which enable a good dimensional
reduction. Gaussian Mixture Models (GMMs) also exhibit interest-
ing properties, namely good compression and description of data,
as it was demonstrated in [11,3]. GMMs are largely used in sev-
eral applications, such as recognition, especially in audio [12], clus-
tering [13] and classifiers for pedestrian recognition [14]. Due to
their potential, GMMs were extensively used to detect novelties,
but usually as classifiers [15]. See [1] for a thorough review of pre-
vious work on novelty detection using GMMs.

Different computational methods can be used to compare
GMMs and to determine whether a change has occurred. Metrics
to compute distance between GMMs, as KL-Divergence [16] and
Euclidean Distance [17], are largely used in audio recognition and
image matching. Tomasi et al. [18] presented the Earth Mover’s
Distance (EMD) as a metric for comparing two different distribu-
tions; it is computationally efficient as an instance of the trans-
portation problem. A large number of metrics are compared in the
context of image retrieval in the work by Rubner et al. [19]. These
metrics need to be associated to a method, such as the greedy al-
gorithm used in the work of Drews Jr et al. [3]. The use of struc-
tural matching as a data association method can also be applied
in this context, by using the maximum clique in a correspondence
graph [20], as presented in the work of Núñez et al. [4].

The behavior of an autonomous mobile robot working in dy-
namic environments has been extensively studied for the last
decade. The common strategy has been to remove dynamic ob-
jects in order to improve the navigation and localization tasks [21].
However, these changes in the robot’s surroundingmay be actually
relevant depending on the applications. In this sense, Andreasson
et al. [22] presented a system for autonomous change detection
with a security patrol robot using 3D laser range data and images
from a color camera.
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Novelty detection in the context of surveillance robots was also
addressed in thework ofMarsland et al. [23], where they use Grow
When Required (GWR) nets together with habituation. They ap-
plied theirmethod to sonar data. This workwas extended by Vieira
Neto and Nehmzow [24] using visual colored data, where visual
attention is applied through salience maps. Moreover, the use of
incremental PCA is compared in this context providing similar re-
sults.

More recently, thework of Sofman et al. [25,26] uses novelty de-
tection to identify new classes in data. Features are selected using
the Multiple Discriminant Analysis (MDA) approach and applied
in NORMA algorithm with few adaptations. It was validated in an
AGV acquiring features from LADARs and Cameras. Although this
method is efficient, it requires extensive training data.

Novelty detection based on GMMs and EMD was addressed
in [11], and later in [3]. In a first stage, a GMM was computed to
cluster the cloud of 3D points. Next, EMD was used to quantify
changes in the data. A new greedy algorithmwas proposed to seg-
ment changes. Despite the quality of the attained results, the com-
putation timeswere still too large tomake viable their practical use
with large datasets. Moreover, themethod is sensitive to themaxi-
mumnumber of Gaussians in theGMM. Bearing on the same essen-
tial ideas, this article extends previous work of the authors [11,3]
with the aim of relieving the required computation burden and pa-
rameters specification. Furthermore, a more thorough experimen-
tal evaluation with real and large datasets is presented.

1.2. Organization of the article

The article is organized as follows. Section 2 presents in detail a
solution based on Gaussian Mixture Models for the novelty detec-
tion and segmentation problem. Section 3 describes experiments
to evaluate the proposed framework with large datasets acquired
with real sensors. Finally, in Section 4, the main conclusions and
future work are drawn.

2. Novelty detection and segmentation

This section describes the proposed method for detecting and
segmenting changes in the environment. The crux of the nov-
elty detection problem is to identify any previously unknown fea-
ture [27]. One of themain envisioned applications for ourmethod is
advanced perception for autonomousmobile robots equippedwith
3D laser range finders, or an equivalent 3D range sensor provid-
ing dense 3D data of its working environment (e.g. depth camera).
Fig. 2 illustrates a typical situation where an autonomous robot
moves in its working environment. As shown in the figure, the en-
vironmentmay present sudden changes—in the example, a change
occurred in the hallway. The robotmust find and segment this nov-
elty in order to cope with the environment’s dynamics and it also
needs to correctly update its model of the environment.

The several stages of the novelty detection and segmentation
process that is proposed in this article were outlined in Fig. 1.
First, information from the environment is acquired by a 3D sen-
sor (different laser scanners have been used in this paper). This
data is pre-processed in the next stage, by two consecutive meth-
ods with the aim of reducing the number of points in the 3D map:
(i) a simplification algorithm and (ii) a sparse outliers and ground
plane removalmethods. The simplificationmethoduses surface in-
formation and generates a multi-scale point cloud [28]. As most
of the data contained in both datasets being compared are usu-
ally related with static structures, the sparse outliers and ground
plane removal methods remove data which, although not being
related to novelties, significantly increase the computational bur-
den. Once the pre-processing stage is completed, the dataset is
converted from the Euclidean space to the mathematical space of

Fig. 2. The aim of the proposed novelty detection method is to find and segment
changes in the mobile robot’s workspace (e.g. the appearance of a person in (b)).

GaussianMixtures, i.e. features based on GaussianMixtureModels
(GMMs) are extracted from the simplified data. The use of these
features allows the process to describe the environment informa-
tion in amore convenient way, and easily detect and segment nov-
elties. This GMM-based approach was seminally proposed by the
authors in [11]. Finally, novelties are computed and segmented in
this mathematical space of GMMs, and two different algorithms
will be described in Section 2.4. One algorithm is based on Earth
Mover’s Distance (EMD), as was described in [11,3]; and second
one is a structural matching algorithm based on graph theory re-
cently proposed in [4]. The latter one takes into account not only
absolute constraints (similarity between Gaussians) but also rela-
tive constraints as regards local structural information. The follow-
ing subsections describe in detail each one of these stages.

2.1. 3D laser data acquisition

Independently of the 3D laser sensor, range data provided by
these sensors are typically represented in the form {Pl = (x,
y, z)l|l=1...NR}, where (x, y, z)l are the cartesian coordinates of the
l-th range reading and NR is the total number of range readings in
each 3D scan. The higher the laser scanner resolution, the larger is
NR, i.e. the cloud of points comprises a larger number of 3D points.
Therefore, if the aim is to compare clouds of 3D points, first they
have to be simplified and compressed without losing essential in-
formation. Comparing directly these clouds of points is not feasible
for typical values of NR.

2.2. Pre-processing

The most important part of the pre-processing stage is the sim-
plification algorithm that is used to decrease the density of points
in the point cloud provided by the 3D laser scanner, without com-
promising its geometric properties. The proposed simplification
method is based on thework by Pauly et al. [28] in the domain of 3D
surface modeling and reconstruction. This approach has the inter-
esting property of reducing the amount of data with low computa-
tional cost andwithout compromising its geometric discriminative
power. Results obtained in [3] show the importance of this part in
the novelty detection system, because this method reduces signif-
icantly the computational burden without degrading the novelty
detection ability.

The simplification method computes a multi-scale point cloud
using binary space partition in a top down approach. The use of
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Fig. 3. 2D sketch of the hierarchical clustering algorithm: on the left, split plane
within the set of points (blue), based on covariance ellipsoid and centroid; on the
middle, the result after an iterative step, generating the cluster in level 1; on the
right, the last step which generates the lower level clustering, wherein each cluster
represents a single point. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. Simulated point cloud with white noise with zero mean, where the simpli-
fication method is applied. It illustrates, in black, the simplified point cloud and, in
yellow, the original point cloud. Flatter regions suffer a larger reduction in the num-
ber of points. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

covariance analysis enables the method to compute the surface
variation, σ , based on eigenvalues, λ, from each point cluster and
defined by (1). The point cluster P is then split if the cardinality of
P , |P|, is larger than a predefined value and the surface variation, σ ,
is above a maximum threshold σmax. In this article, σmax = 0.1 and
the range ofσ is [0, 1

3 ]; these parameterswere empirically selected
for a typical commercial laser data density.

σ =
λ0

λ0 + λ1 + λ2
, λ0 ≤ λ1 ≤ λ2. (1)

This hierarchical clustering simplification process builds a bi-
nary tree by splitting each region. The split plane is defined by
the centroid of P and the eigenvector associated to the greater
eigenvalue (λ2). The point cloud is always split along the direc-
tion of greatest variation. The multi-scale representation is based
on the restriction level imposed to the tree. The tree grows until
the cluster is just one point and the scale is then chosen by setting
values for the size of |P| and for σmax. Fig. 3 illustrates this hierar-
chical clustering algorithm. Fig. 4 shows an illustrative result of the
characteristics of the simplificationmethod,wherein it reduces the
number of points in flatter regions but not in regions with lower
curvature ratios.

In a typical point cloud acquired by a laser scanner, the ground
plane is almost always present. The subset of points representing
the ground plane is one of the types of static information which
is not useful for the novelty detection process, and unnecessarily
increases the computational burden. It can be easily filtered out by
using RANSAC to fit a ground plane [29]. Moreover, sparse outliers
in the 3D scan laser data are removed by using the technique
of Rusu et al. [30].

2.3. Feature extraction based on GMMs

Computing changes in the Euclidean space, i.e. by processing
directly clouds of points, presents several pitfalls, including com-
putation cost and scale variance. Therefore, it is required to rep-
resent data in a more convenient mathematical space for novelty
detection and segmentation. The method proposed here uses the
mathematical space of Gaussian Mixtures.

A Gaussian Mixture Model (GMM) is a probability density func-
tion described by a convex linear combination of Gaussian density
functions [31], with the form:

f (x, Θ) =

K
k=1

πk g(x;µk, Σk)

x ∈ RM

, (2)

where the functions g are Gaussian densities with parameters µk
∈ RM and Σk, the mean vector and the covariance matrix, respec-
tively. The coefficients πk are usually denoted by mixing probabili-
ties and satisfy the condition:

πk > 0 and
K

k=1

πk = 1. (3)

TheGMMcan be seen as a collection of Gaussian features providing
a good model for clusters of points: each cluster corresponds to a
Gaussian density whose mean is located about the centroid of the
cluster and whose covariance matrix estimates the spread of that
cluster.

Conversely, given a set of points in RM , one can try to find the
mixture of Gaussian functions Θ that best fits those points, using
an approach based in the Expectation Maximization algorithm,
as shown in Algorithm 1. Parameter K denotes the number of
Gaussians included in the GMM. It is selected by using Kmax and
the MDL penalty function [32]. In the present work, Θ denotes the
K(1 + N + N2)-dimensional vector containing all the parameters
of the given Gaussian mixture:

Θ = ((θ1, π1), . . . , (θK , πK )), (4)

where

θk = (µk, Σk). (5)

This is a vector containing all the coordinates of the means µk and
all the entries of the covariance matrix Σk. The conditions in (3)
ensure that f is indeed a density function.

In Algorithm 1, three steps are crucial to correctly estimate
the Gaussian Mixture Model. Firstly, an initial model is estimated,
function Initialize_model. Good resultswere reportedusing random
initialization [31]. Thus, in the present approach, the initialization
is obtained using random generation based on the follow equa-
tions:

π
(0)
k =

1
Kmax

,

µ
(0)
k = pn → n = ⌊(k− 1)(N − 1)/(Kmax − 1)⌋ + 1,

Σ
(0)
k =

1
N

N
n=1

pnpTn .

Secondly, the ExpectationMaximization algorithm is estimated
using the standard approach [33], but using as penalization criteria
theMDL penalty function [32]. Eq. (6) shows this criteria, assuming
that L = K

2


M2
+ 3M + 2


− 1 and Y is the point cloud with N

points used to estimate the GMM.

MDL(K , θ) = − log p(p|K , θ)+
1
2
L log(N ·M). (6)

The last function considered is the Resize. Its aim is to find two
Gaussians l andm thatminimize theMDL criteria. Eq. (7) shows the
distance metric to be optimized in order to find out the best pair
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of Gaussians to be joined, wherein Σ(l,m) is the covariance matrix
resulting from the union of Gaussians l and m. Finally, the result
obtained from the algorithm is the best GMM θ∗, with size K ∗ and
having MDL∗ as penalty criteria.

d(l,m) =
Nπl

2
log


|Σ(l,m)|

|Σl|


+

Nπm

2
log


|Σ(l,m)|

|Σm|


. (7)

Algorithm 1 Gaussian Mixture Models estimation algorithm -
Input: Point cloud Y and integer Kmax

1: θ (0)
← Initialize_model(Kmax)

2: k = Kmax
3: [MDL(1), θ (1)

] ← EM_algorithm(k, Y , θ (0))
4: MDL∗ ← MDL(1)

5: θ∗ ← θ (1)

6: K ∗ ← k
7: i = 1
8: while (k > 0) do
9: θ

(i)
(l,m) ← Resize(θ (i))

10: k← k− 1
11: [MDL(i+1), θ (i+1)

] ← EM_algorithm(k, Y , θ
(i)
(l,m))

12: i← i+ 1
13: if (MDL∗ > MDL(i)) then
14: MDL∗ ← MDL(i)

15: θ∗ ← θ (i)

16: K ∗ ← k
17: end if
18: end while

Fig. 5(a) illustrates clouds of 3-D points describing a syntheti-
cally generated ideal corridor, where one object has been inserted.
The GMM that is obtained from this cloud of points is depicted in
Fig. 5(b–c). It is described as a mixture of few 3D Gaussians (for 3D
data, M = 3), each one being associated to the clusters of points
identified in the scene: walls, ceiling and the novelty.

2.4. Computing changes

Once both datasets being compared are modeled in the GMMs
mathematical space, they have to be processed with the aim of
estimating changes, i.e. detecting and segmenting novelties. This
section presents two alternative approaches that can be used
to accomplish this goal. The first one, which was proposed in
[11,3], follows a greedy algorithmbased on Earth-Mover’s Distance
(EMD), which measures the distance between two distributions.
Being simple, this approach only takes into account the similarity
between two GMMs (absolute constraints). A second approach
was recently proposed by the authors in [4], which overcomes
this limitation by also considering relative constraints. In this
later approach, the problem is formulated as a maximum clique
problem in an undirected graph. In the GMM mathematical space,
the novelties detection algorithms presented in this paper allows
simultaneously to detect new objects in the scene or something
that has been removed from it.

2.4.1. EMD-based algorithm
The EarthMover’s Distance (EMD)was proposed by Tomasi et al.

[18] as a metric for measuring distance between two distributions
of points in space for which a distance between points is given.

Let GMM Θ = ((θ1, π1), . . . , (θn, πn)) and GMM Γ = ((γ1,
π1), . . . , (γm, πm)) be associated with two 3D point clouds at
different instant times. Let θi and γj be Gaussian functions and πi
and πj their associated weights, respectively. In order to identify
the novelties in the environment, the two GMMs are modeled as
weighted points (θi, πi)Θ and (γj, πj)Γ . Thus, the distance between

the two GMMs is computed as

dGMM (Θ, Γ ) = EMD ({(θ1...n, π1...n)} , {(γ1...m, π1...m)}) . (8)

Eq. (8) can be used as a quantitative metric for detecting
changes in the environment. In themost obviousway, the problem
of change detection could be tackled with EMD by defining a
threshold Uth which represents the maximum value beyondwhich
it is assumed that a novelty exists, i.e. a significant distance
between the two GMMs exists. However, using a fixed threshold
constitutes a naive approach, as it would be very difficult to tune
Uth. Therefore, we propose a greedy algorithm that overcomes this
limitation. An example of the application of this technique can
be seen in Fig. 5, where GMMs associated with clusters of 3D
points are shown. After applying the EMD-based novelty detection
algorithm to these two Gaussian Mixtures, a novelty is detected in
the maps (marked as ‘1’ in Fig. 5(c)).

The overall structure of the EMD-based algorithm is outlined
in Algorithm 2. The method achieves more than just detecting
changes, since the novelty is segmented and the set of points
associated to it is retrieved using the posterior probability. In each
iteration, the algorithm selects a Gaussian x(µ, Σ) from Θ with
the greatest quantified change dGMM , computed by the function
GreedySelectGMM. Furthermore, this function returns both the
dGMM and the new set Π . It works by computing EMD between
Γ and the new sets. These new sets are generated by removing
one Gaussian at a time from Θ . The best Gaussian is removed from
the initial mixture Θ and is also included in the new Gaussian
mixture model Π . The distance dGMM is compared iteratively
with the previous EMD distance. The algorithm returns a list of
sets of points S. Each set represents the segmented region by
one Gaussian, using the posterior probabilities computed by the
function ChoosePtsfromGaussian that has as arguments a point
cloud P used for generating the novelty GMM and a Gaussian x.
If S = {∅}, the algorithm assumes that there are no novelties,
implying that the two GMMs are similar. Moreover, the posterior
probability allows the system to identify the topological relation
between the segmented regions. This kind of information could
be useful both for recognition and for identification, providing the
means to build a semantic representation of the environment.

Algorithm 2 Novelty Detection algorithm - Input: GMMs Θ and Γ

1: dGMM ← EMDdistance(Θ, Γ )
2: Π ← ∅

3: repeat
4: dGMMold ← dGMM
5: [x(µ, Σ), Π, dGMM ] ← GreedySelectGMM(Θ, Γ )
6: until (dGMMold < dGMM)
7: Π ← Π − x(µ, Σ)
8: S ← {∅}
9: for all x(µ, Σ) ∈ Π do

10: S ← S ∪ ChoosePtsfromGaussian(P, x(µ, Σ))
11: end for
12: return S

2.4.2. Structural matching algorithm
The EMD-based algorithm described in Section 2.4.1 is strongly

dependent on the number of Gaussians. Furthermore, that algo-
rithm only deals with absolute constraints, i.e. the Euclidean dis-
tance between the mean vectors of Gaussian functions. However,
valid pairwise associations between Gaussian functions of two
GMMs, i.e. relative constraints, are also worth considering in order
to attain amore robust novelty detection.With this purpose, Núñez
et al. [4] have recently proposed an alternative novelty detection
and segmentation algorithm which takes into consideration both
absolute and relative constraints.
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Fig. 5. GMM computation for a synthetically generated corridor: (a) cloud of points representing an ideal 3D corridor where a new object was placed inside; (b) GMM
representing the corridormapwithout the object placed inside; (c) GMMassociated to the cloud of points (a). The Gaussian function representing the novelty is labeled by ‘1’ .

Fig. 6. In the proposed approach, nodes represent tentative matchings when
considered individually. Edges indicate compatible pairwise associations between
Gaussians. A clique is a set of mutually consistent associations, e.g. the clique
marked in red implies that the matching may coexist. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of
this article.)

In this alternative approach, the matching problem is formu-
lated as a graph-theoretic data association problem. Thus, the fun-
damental data structure of this step is a correspondence graph [20]
representing valid pairwise associations between Gaussian mix-
tures, as it is depicted in Fig. 6. Cliques in this graph indicatemutual
associations compatibility and, by performing a maximum clique
search, the joint compatible association set is emanated from the
best matchings of Gaussian mixtures that can be found. In the pro-
posed approach, the correspondence graph is built through the ap-
plication of both absolute and relative constraints. The nodes of the
graph indicate individual association compatibility and are deter-
mined by absolute constraints. Conversely, edges of the correspon-
dence graph indicate joint compatibility of the connected nodes
and are determined by relative constraints.

As before, let Θ and Γ be two GMMs associated with two 3D
point clouds of the same section of an environment, acquired at
different times. Moreover, let θi(µi, Σi) ∈ Θ and γj(µj, Σj) ∈ Γ

be Gaussian functions, where (µk, Σk) is a vector containing all the
coordinates of the means µk and all the entries of the covariance
matrix Σk. The method to compute the correspondence graph

comprises of two major steps [4]: the definition of the nodes of
the correspondence graph and the definition of the edges of the
correspondence graph. These steps are detailed below. Afterwards,
it is also described how the correspondence graph can be used to
reliably detect novelties.

• Definition of the nodes of the correspondence graph. The nodes
of the graph represent tentative matchings of Gaussian distri-
butions from two GMMs, Θ and Γ , after applying an absolute
constraint. Let |Θ| = n and |Γ | = m be the number of Gaussian
functions belonging to the two GMMs, respectively. Firstly, the
algorithm generates the n×mmatrix Tt for all pairwise combi-
nations, by calculating the distance between the two Gaussian
functions:

dθi,γj = max(dµij , dΣij), (9)

where dµij is the Euclidean distance between the two Gaussian
functions using the Cartesian coordinates of the mean vector,
and dΣij is the distance between the covariance matrices asso-
ciated with the Gaussian functions. According to [34], this dis-
tance can be defined as:

dΣij =

 N
k=1

ln2 λk(Σi, Σj), (10)

where λ represents the generalized eigenvalues of Σi and Σj,
and N is the matrices’ dimensionality.

The matrix entry associated to the matching of two sim-
ilar Gaussian functions presents a small value. On the other
hand, large values of Tt correspond to dissimilar features. Pair-
wise matched features, whose matrix values are smaller than a
fixed thresholdU t

T , constitute the set of tentativematches. Thus,
graph nodes are defined as the set of all possible combinations
of these pairwise descriptors. Fig. 7 shows the process achieved
in order to obtain the nodes of the graph for a simple real ex-
ample. Fig. 7(a) illustrates two sets of Gaussians associated to
two different instant of time (Θ and Γ ). This kind of represen-
tation for theMixture of Gaussians is common along this paper.
The ellipsoids are associated to each Gaussian (mean and co-
variance matrix) and they are drawn using different colors and
with 1.5 standard deviation as diameter. The use of different
colors is only for improving the visualization of the mixture.
In the figure, firstly, the algorithm calculates the distance be-
tween the pair of Gaussian θ1a and γ1b . If this distance is lower
than the threshold, the algorithm generates the node (1a, 1b)
(Fig. 7(b)). The algorithm calculates the distances between the
pair of Gaussian in a similar way (Fig. 7(c–e)).
• Definition of the arcs of the correspondence graph. For all pair-

wise combinations of matchings in Tt , the relative constraint
matrix Rt is computed through the use of relative constraints
on the mathematical space of GMMs. A pair of matched Gaus-
sian functions (θ i, γ i) and (θ j, γ j) is consistent iff they satisfy
the relative constraint:

max(ωdµ , ωdΣ
) ≤ U t

R, (11)
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Fig. 7. Nodes represent tentativematchings when considered individually: (a) two
set of Gaussians associated with two different instant times (Θ and Γ ); (b)–(e) the
algorithm calculates the distance between the pair of Gaussian and generate the
nodes if the distance is lower than the threshold.

with

ωdµ =

(dΘ
µij

)2 − (dΓ
µij

)2
 and

ωdΣ
=

(dΘ
Σij

)2 − (dΓ
Σij

)2
, (12)

where U t
R is a threshold defined by the user. Thus, the corre-

sponding entry in the relative constraint matrix Rt contains a
‘1’ if the constraint is satisfied (an edge is added to the graph),
and ‘0’ otherwise. Fig. 8 shows an example of the arc definition
algorithm for the examples described in Fig. 7. For instance, in
Fig. 8(a), the relative constraint between (1a, 1b) and (2a, 2b)
matches, and then node (1a, 1b) is connected to node (2a, 2b)
through an edge Fig. 8(b). The process is repeated for all the
pairwise Gaussian (Fig. 8(c–d)). The relative constraint between
(2a, 5b) only matches with (2a, 2b).
• Maximumclique detection andnovelty identification. The set of

mutually consistent matches which provides the largest clique
is calculated. This is equivalent to finding the maximum clique
on a graph with adjacency matrix Rt (see [4]). After the compu-
tation of the maximum clique of the correspondence graph, a
set of mutually compatible associations is obtained, i.e. a set of
matched Gaussian functions (see red lines in Fig. 9). In this way,
the algorithm takes into account structural relationships to de-
tect correct associations, which result in 3D points in the en-
vironment that are not associated with changes in the robot’s
surroundings. Thus, the set of Gaussian functions in Θ that
are not included in the clique represents detected novelties. In
Fig. 9, the only nodewhich is not included in the clique, (2a, 5b),

Fig. 8. Nodes represent tentative matchings when considered individually. Edges
indicate compatible pairwise associations between Gaussians. A clique is a set of
mutually consistent associations, e.g. the clique marked in red implies that the
matching may coexist. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 9. A clique is a set ofmutually consistent associations, e.g. the cliquemarked in
red implies that the matching may coexist. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

represents the novelty that is detected in this example within
the robot’s workspace.

3. Experiments

The proposedmethods have been evaluated using real data. The
algorithms were developed in C++ and the benchmark tests were
performed on a notebook with a 2.0 GHz AMD Turion X2 Ultra CPU
and 3Gb RAM running using GNU/LinuxUbuntu 10.0. Real data has
been acquired using three different platforms.
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Fig. 10. Experimental platforms: (a) platform using Hokuyo URG-04LX laser range
finder and a pan-tilt unit; (b) mobile platform using Pioneer robot and two SICK
laser orthogonally mounted; and (c) robot Robex and its 3D perception system
based on a Hokuyo URG-30LX laser finder.

The first experimental platform was static comprised of a
Hokuyo URG-04LX laser range finder mounted on a Directed Per-
ception PTU-D46 pan-tilt. A set of experiments was carried out
with this platform in three different environments. For any of these
environments, the experiment comprised three steps. Firstly, a 3D
map was acquired to obtain a representation of the environment.
Afterwards, a novelty was introduced. Finally, in order to obtain
statistically significant results, the experiments were repeated ten
times for each test area. The same procedure was used in two dif-
ferent mobile robotic platforms. First, a Pioneer P3-AT with two
SICK LMS-200mounted orthogonallywas used in the experiments.
The robot is located using a SLAM algorithm (DP-SLAM) [35] with
the information acquired from the frontal laser andwheels odome-
try. The localization information from SLAM together with the sec-
ond laser allows the robot to generate 3Dmaps. In the othermobile
robotic platform, a 3D capture system mounted on a Robex robot
was used [36]. This sensor consists of a Hokuyo URG-30LX laser ro-
tated by a step motor, where its resolution is configurable by the
active perception system that the robot is equipped with. Fig. 10
illustrates the three platforms used in our experiments. Fig. 10(a)
shows the static sensor platform and Fig. 10(b) shows the mobile
platformequippedwith twoorthogonal laser range finders. Finally,
Fig. 10(c) illustrates the robot Robex and its low-cost 3D sensor
based on a 2D Hokuyo laser range finders.4

3.1. Quantitative assessment

In order to validate the proposed method, contingency tables
were built relating the system response to ground truth infor-
mation. The ground truth data was manually segmented using a
dataset edition tool developed by the authors, where the points
that represent the changes are selected. Statistical significance of
the association between the ground truth (points related to the
novelty) and the novelty detection algorithm response was es-

4 A simple USB camera is used for acquiring RGB information of each 3D point,
but it is was not used in the experiments described here.

Table 1
κ intervals and corresponding levels of agreement be-
tween ground truth and novelty filter response [24].

Interval Level of agreement

κ ≤ 0.1 No
0.1 < κ ≤ 0.4 Weak
0.4 < κ ≤ 0.6 Clear
0.6 < κ ≤ 0.8 Strong
0.8 < κ ≤ 1.0 Almost complete

tablished as in [24]. They use three different statistical indicators
based on χ2 analysis of the contingency table. These metrics are
used as a reference to evaluate the GMM-based method proposed
herein.

The Cramer’s V (0 ≤ V ≤ 1) and the uncertainty coefficient U
(0 ≤ U ≤ 1) are used to quantify the strength of the association,
and they are computed as proposed in [24]. Smaller values for these
statistics indicate weaker associations, and values closer to one
represent stronger association.

Another metric that is used is the index of agreement κ , which
is used to assess the agreement between actual novelty status and
the algorithm response, in way similar to V and U . However, the
κ statistic may yield negative values. The valid range for κ is κ ∈
[−1, 1], where negative values represent the level of disagreement
between the system response and the ground truth. Table 1 ex-
plains the relation between the κ intervals and the corresponding
level of agreement.

3.2. Estimation of parameters

The proposed method requires choosing values for a set of
parameters. These parameters are:
1. The threshold value σmax, which determines the maximum

surface variation for splitting a cluster of points in the pre-
processing stage. In the experiments conducted here this value
was set to 0.1. It is empirically selected for a typical commercial
laser data density. However this is not a critical parameter, since
its value implies only the number of points used in the next
stages.

2. The maximum number of Gaussian functions in the Gaussian
Mixture Model, Kmax. This parameter depends on the environ-
ment and the size of the map. In this article, this parameter
is changed from 10 to 20 in order to validate its effect on the
change detection algorithms results (see Fig. 18).

3. There are two thresholds used in the generation of the corre-
spondence graph. First, the minimum distance between two
Gaussian functions for being considered a tentative match, U t

T
(absolute constraint). Second, the threshold value U t

R which is
used in the definition of the arcs of the graph. It represents the
minimum value in the relation between two pairs of tentative
matches for a match to be considered as coherent. The bench-
mark used to set them correctly was similar for the two stages.
This step is based on the work of Blanco et al. [37]. Optimal
thresholds are calculated by minimizing the probability Perr of
misclassifying a association as a valid (v) or an invalid (ω) can-
didate. It is described as:

Perr(U t
T ,U

t
R) = P(ω)Perr(U t

T ,U
t
R | ω)+ P(v)Perr(U t

T ,U
t
R | v)

= P(ω)P(dij < U t
T , δij < U t

R | ω)

+ P(v)

1− P(dij < U t

T , δij < U t
R | v)


,

where a misclassification will occur if: (i) a distance dij is less
than both thresholds U t

T and U t
R, and it was a wrong correspon-

dence; or (ii) a valid pairing does not generate values that are
larger than the thresholds U t

T and U t
R.

Considering no a priori information about the probability of
being in a valid or invalid association, that is P(v) = P(ω) =
1/2, the method evaluates the joint conditional densities
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Fig. 11. Experiments in indoor environments: (a) test sites – a door in the corridor has been opened (top), a person appears in the corridor (middle) and the room’s door has
been closed (bottom); (b) real observations from Hokuyo laser range sensor (novelties manually segmented in blue); (c) the GMM representations of the maps containing
the novelties (black box); (d) Gaussian functions and sets of points representing the segmented novelties. (For best interpretation of this figure due the colours, the reader
is referred to the web version of this article.)

P(dij, δij ∥ v) and P(dij, δij ∥ ω) from histograms according to a
set of 3D maps where the ground truth is known (N = 40).

Finally, the values U t
T = 3.5 and U t

R = 1.0 were selected.
These two values allow the algorithm to reduce the number of
false positives and to improve the precision at the end of the
change detection process.

3.3. Experimental setup with 3D mapping

Fig. 11 depicts three experiments in an indoor environment
located at Institute of Systems and Robotics—Coimbra, where the
platform depicted in Fig. 10(a) was used. In each one of these
experiments, therewere two acquisitions: in the first one, an initial
3D map of the test site was processed. In the second one, a new
3D map of the same test site was processed after introducing a
novelty. These new maps are shown in Fig. 11(b). They are an
opened door, a person in the corridor and a closed door inside the
room, respectively. This is illustrated by a picture from the test
site in Fig. 11(a). Fig. 11(c) depicts GMM representations from the
new 3D map, where the point clouds are shown in blue dots. The
Gaussians that represent the segmented novelties in the GMMs
space is shown in Fig. 11(d). These results demonstrate the ability
of GMMs to model the environment with different complexities
and the proposed algorithm for detecting changes in them. For all
of these experiments, parameter Kmax was set to 20.

In a second experiment, the robotic platform depicted in
Fig. 10(b) was used to test the proposed novelty detection and seg-
mentation method in an office building located in the Computer
Science Department of the Federal University of Minas Gerais,
Brazil, as it is shown in Fig. 12. For the experiments depicted in
Fig. 12, three different novelties were included in order to evalu-
ate the results of the algorithm: a cylinder, a person and a box (see
Fig. 12(a)). Fig. 12(b) illustrates the 3D laser data acquired with the
novelties by the robot, after the pre-processing stage. The GMMs
associated to these 3D maps is shown in Fig. 12(c), and the actual
novelty is marked in the figure. Results of the proposed method
are drawn in Fig. 12(d). As it is shown in the figure, the Gaussian

functions associated to the novelties introduced in the environ-
ment were successfully extracted with the proposed method.

3.4. Comparison with Loménie’s method—Gaussian mixture models
vs. K-means clustering

In this section, the use of Gaussian Mixture Models (GMMs) as
a representation model of 3D maps is validated. Moreover, it is
compared with the technique for partitioning 3D maps described
in [8], which mainly consists of a specific K-means algorithm
denoted as UFP-ONC [38]. Results obtained with the two methods
(GMMs and UFP-ONC) are compared in order to deal with the
change detection problem. Thus, in order to detect these changes,
one important feature is the capability to previously segment
the environment in different parts associated to changes or non-
changes. Furthermore, another important aspect is related with
the computation cost of these. Thus, three results are calculated
for each dataset. First, the results from Loménie’s method using
the automatic choose of the best representation, considering the
maximumnumber of partition as 9. Second, due to the poor quality
of these results, the 3D map partition is enforced to be divided
into 9 clusters. Finally, the same results were obtained using our
approach for clustering using GMMs, with Kmax = 9. Loménie’s
method uses fuzzy inference in order to select the points related to
each cluster. For our experiments, S = 0.2 is used to associate all
points to the cluster. For larger values, the method does not make
association between points and a cluster.

The datasets used in this comparison are three indoor experi-
ments. They have approximately 30,000 points and are illustrated
by Fig. 11. Results are shown in Fig. 13, wherein the segments
are drawn in different colors. Fig. 13(a–c) illustrates Loménie’s
results considering the automatic best solution between 1 and 9
clusters. The method is fast, but it did not generate good segmen-
tation. As it is shown in Fig. 13(a–c), it selected three clusters in
the first case and two in second and third experiments. The time
spent is about 2 min for a Java implementation for all of them. In
Fig. 13(d–f) the number of clusters was forced to be equal to 9.
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Fig. 12. Experiments using robotic 3D maps. Induced novelties were a cylinder (a-top), a person (a-middle), and a box (a-bottom). In (b), the acquired 3D maps are shown.
The GMM representations of the maps containing the novelties are depicted in (c). The segmented novelties are depicted in (d).

It generates similar results to the GMMs, but the time consumption
is much greater. Results after using GMM segmentation are shown
in Fig. 13(g–i). The computation time of Loménie’s method is about
one hour. Conversely, the GMM-based method spent 1 min, there-
fore it was faster than the first approach applied to Loménie’s
method but presenting similar results to the second one.

The results shown in Fig. 13(f) and in Fig. 13(i) do not allow
detecting the change in the scene (i.e. the door), because it
clusters the door and the wall in the same segment. Due to the
large computational time of Loménie’s method, it is unfeasible
to increase the number of clusters in order to evaluate it. Our
methodology computes GMMs with Kmax = 20 and obtains a good
representation in 60 s, as depicted in Fig. 14. This elapsed time is
approximately the same time spent to acquire the maps by the
robot using the described acquisition system. Similar to Fig. 13,
it shows the representation based on mixture of Gaussians from
the dataset by color division. One interesting issue is related to
the possibility of detecting the door in the dataset with a good
precision (marked in the figure as a white box), due to the good
approximation by a Gaussian.

3.5. Evaluation of the robustness

In this section, both methods for detecting changes in the
environment using the mathematical space of Gaussian functions
described in this article have been compared and their results
analyzed in terms of robustness and computational cost.

With this aim, sets of 3D laser range data collected by Pioneer
robot (see Fig. 10(b)) have been used. These datasets are shown in
Fig. 12. For each 3D point, the GMM was calculated. Afterwards,
each change detection algorithm was executed and the contin-
gency tables (Table 1) were built. The results are shown in Table 2.
In this table, ‘‘cylinder’’, ‘‘person’’ and ‘‘box’’ correspond to the first,
second and third row in Fig. 12, respectively.

Table 2 shows the results obtained with the maps shown in
Fig. 12, where the number of Gaussians selected by the methods

Table 2
Performance comparison for the experiments with different novelty detection
algorithms, considering the full area and area of interest in the dataset. All results
correspond to a statistically significant correlation between the system response
and the actual novelty status (χ2 analysis, p ≤ 0.01).

Complete dataset Area of interest
EMD Str. Matching EMD Str. Matching

Cylinder
V = 0.570 V = 0.474 V = 0.98 V = 0.98
U = 0.381 U = 0.238 U = 0.987 U = 0.987
κ = 0.254 κ = 0.237 κ = 0.987 κ = 0.987

Person
V = 0.991 V = 0.967 V = 0.983 V = 0.983
U = 0.996 U = 0.883 U = 0.992 U = 0.992
κ = 0.996 κ = 0.848 κ = 0.992 κ = 0.992

Box
V = 0.621 V = 0.543 V = 0.968 V = 0.968
U = 0.571 U = 0.479 U = 0.991 U = 0.991
κ = 0.503 κ = 0.465 κ = 0.991 κ = 0.991

is equal to 16. Both change detection algorithms have a low level
of association strength (Cramer’s V and uncertainty coefficient U
less than 0.6) in both cases, the cylinder and the box, respectively.
Moreover, the EMD-based algorithm showed slightly better results
than the Structural matching one. This weakness of associations is
due to the 3D map acquisition process: the ceiling suffers with the
parallax problem depending on the robot’s path during the data
acquisition stage. This produces a poor segmentation result using
GMMs. Fig. 15 illustrates the GMM obtained using Kmax = 16 for
one of the experiments.

As it is shown in the first two columns in Table 2, the EMD-based
method has advantages over the structural matching algorithm.
It is interesting to point out that changes in the robot scene are
detected even in difficult conditions of the selected dataset. As it
is shown in Fig. 15, the ceiling is segmented using the most of the
Gaussians. However, the proposed method allows the detection of
changes in a discriminative way, i.e. the changes are represented
by different Gaussians. It is possible to see that bothmethods were
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Fig. 13. Comparison between K-means-based method and Gaussian Mixture Models in real datasets, in order to evaluate the ability of these methods to detect changes in
3Dmaps: (a–c) results using Loménie’s method, considering the best result between 1 and 9 clusters; (d–f) results from Loménie’s method but forcing 9 clusters; (g–i) GMMs
results using the approach proposed herein with Kmax = 9. (For best interpretation of this figure due the colours, the reader is referred to the web version of this article.)

Fig. 14. Results of the environment segmentation based onGaussianMixtureMod-
els using the described approach with Kmax = 20, considering the maps illustrated
in Fig. 11(a) (bottom). It allows detecting changes in the environment after applying
the algorithm proposed in this article (box delimits the position of the door). (For
best interpretation of this figure due the colours, the reader is referred to the web
version of this article.)

able to detect changes with a few outliers in two cases (cylinder
and box).

In order to improve the results, 3D points with Z coordinate
larger than 1.5 m were removed from the dataset, i.e. a distance
constraint was used for removing points associated to the ceiling.
In this way, the results are expressive and identical due to the seg-

Fig. 15. Frontal view of the Gaussian mathematical space obtained from the
complete datasets shown in Fig. 12(b) using Kmax = 16. The black rectangle is used
to indicate the change.

mentation obtained by GMMs, allowing both methods detecting
correct changes. The last two columns in Table 2 show the results
obtained in this case, where the algorithm estimates GMMs using
Kmax = 20 and the number of Gaussians selected by the proposed
algorithm is 12. The change detection is not ideal (κ = 1) because
Gaussians that represent the changes do not segment all points in
the ground truth.
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Fig. 16. Experiments with two boxes of different sizes: (a) test sites—an office environment with a box (novelty) in two different sizes; (b) real observations from the Robex
platform (novelties manually segmented in black boxes); (c) the GMM representation of the maps containing the novelties (black box); (d) Gaussian functions and point set
associated to the segmented novelties.

Fig. 17. Experiments with two different view points: (a) test sites—an office environment with a person as a change; (b) real observations from the third platform (novelties
manually segmented in black boxes); (c) GMM representations of the maps containing the novelties (black box); (d) Gaussian functions and point set representing the
segmented novelties.

3.6. Sensitivity to different conditions and parameters

In this section, the sensitivity of the proposed detectionmethod
to different situations and parameters is evaluated. Specifically, the
approach is evaluated varying the size of the object that represents
the change in the scene. Besides, the robot’s point of view is
modified in the data acquisition stage. For each situation, the
number of Gaussians K was varied between 8 and 20.

Firstly, the robotic platform depicted in Fig. 10(c) was used
to evaluate the method in an office environment with boxes of
different sizes, but in a similar position with respect to the robot.
Twelve maps were acquired with the robot. Fig. 16 shows the
real scene used for two of these experiments (Fig. 16(a)) and the
results calculated by the algorithm (Fig. 16(d)). Intermediate steps
(i.e. 3D maps after acquisition stage and GMM representations)
are illustrated in Fig. 16(b) and (c). For these experiments, the
number of Gaussians selected by our method is equal to 8 and 12,
respectively. A comparative study using the metrics presented in
Section 3.1 was done. The average values V ,U and κ are shown
in Fig. 18(a) and (b) for the greedy EMD-based and the structural

matchingmethods, respectively. Bothmethodswere able to detect
changes in the scene (see Table 1), though the number of outliers is
significant. For bothmethods, the best change detection is attained
using K = 8 and K = 12 Gaussians. For other values of K , the
approach is able to detect changes but with some outliers. On the
other hand, the greedy-EMD algorithm and structural matching
has similar average results for all values of K . Afterwards, in order
to evaluate the influence of the robot’s point of view with respect
to the position of the change, a new experiment was carried
out. Similarly to previous experiments, the map including the
novelty (a human being) was acquired 12 times from different
point of views (the robot’s localization is considered to be solved).
In Fig. 17(a), the real scene of the environment is illustrated for
two different experiments. Then, 3D maps are shown in Fig. 17(b).
Fig. 17(c) illustrates the GMM associated to the map. Finally,
Gaussians and the points that represent the segmented novelties
in the GMMs space are shown in Fig. 17(d). The same metrics
were used to evaluate the performance of the algorithms. Results
are shown in Fig. 18(c) and (d) for greedy-EMD and structural
matching algorithms, respectively. Bothmethods are able to detect
changes for different points of view with similar average values
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Fig. 18. Statistical Results (average values) using Cramer’s V , the uncertainty coefficient U and the index of agreement κ metrics in two different datasets: (a–b) box as a
change shown in Fig. 16, using greedy EMD-based and structural matching algorithms, respectively; (c–d) person as a change shown in Fig. 17, using greedy EMD-based and
structural matching algorithms, respectively. (For best interpretation of this figure due the colours, the reader is referred to the web version of this article.)

(i.e. U, V and κ). However, the quality of the detection is sensitive
to the number of Gaussian and the results are largely dependent
on the segmentation algorithm.

4. Conclusion and future works

This article described two methods to detect changes in 3D
real environments for robot navigation. Real data acquired by laser
scanners is pre-processed in order to reduce the size of the point
clouds. Gaussian Mixture Models (GMMs) are used to obtain a new
representation of the point clouds. It was validated and compared
with a state-of-art algorithm in order to deal with real situations,
where a good representation of 3D point cloud (maps) is required.
A novel greedy algorithm based on Earth Mover’s Distance metric
and a structural matching algorithm are employed to quantify the
existence of a novelty in the scene.

Results of the proposed algorithm demonstrate the reliability
of themethod in several real scenarios. Furthermore, the proposed
techniques were compared in terms of robustness, accuracy and
sensitivity. The methods are evaluated using the χ2 analysis, as
proposed by Vieira Neto and Nehmzow [24]. The results of χ2

analysis show a small advantage of the EMD-based algorithm
over structural matching algorithm in very difficult datasets. The
proposedmethodmaybe easily extended to detect things removed
from the scene, which is achieved by simply using the current map
as the reference input.

The applicability in mobile robots was evaluated showing the
capabilities of the method to be applied in real robots located by
odometry and laser-based SLAM. In the present work, the robot
localization is an important constraint but has a smaller impact
in the performance of the method in relation to point-to-point
approaches. The features in the proposed method are based on
GMM, thus two independent sources of information are important:
shape and location. Therefore, it is robust to small localization
error. However, it could be interesting to take into account this
problem when the localization error is significant.

The techniques presented in this article open new oppor-
tunities to develop automatic processes for the surveillance of
infrastructures, by proposing a new and robust approach for
searching and detecting changes within large amounts of data.

Future work will be focused on the use of the current nov-
elty detection algorithm in real field robotic applications, like
surveillance or exploration of dangerous environments, where the
presence and modeling of novelties could be important. Also, an
extension of the Gaussian Mixture Models estimation method will
be developed to work iteratively, so that data can be captured and
processed online by the mobile robot. One possible approach is to
use the GMM method with online learning [39,40]. Furthermore,
an efficient implementation in GPU of the GMM estimation, the
computational bottleneck of the proposed framework, is being car-
ried out by the authors. Another important improvement is to in-
clude a registration module in the system. It will allow the system

to deal with over fitting volumes, and to avoid the strict need for
having maps expressed in the same reference coordinates frame.
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