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Abstract— Multi-robot patrolling is a problem that has im-
portant applications in security and surveillance. However,
the optimal task assignment is known to be NP-hard. We
consider evenly spacing the robots in a cyclic Traveling Sales-
man Problem (TSP) tour or partitioning the graph of the
environment. The trade-off in performance, overall team travel
cost and coordination is analyzed in this paper. We provide both
a theoretical analysis and simulation results across multiple
environments. The results demonstrate that generally cyclic-
based strategies are superior, especially when small teams
are used but at the expense of greater team cost, whereas
partitioning strategies are especially suitable for larger teams
and unbalanced graph topologies. The reported results show
that graph topology and team size are fundamental to determine
the best choice for a patrol strategy.

I. INTRODUCTION

Advances on autonomous mobile robots have been evident
in the last couple of decades. In particular, the patrolling
problem with a team of cooperative agents has received
much focus. The problem, which is also known as repet-
itive sweeping, has unquestionable utility in society and
finds its applications in surveillance systems, infrastructure
security and inspection, search and rescue, mine clearing,
military operations, environmental monitoring, intelligent
transportation, household cleaning, and several other areas.
Being monotonous, these tasks may also be dangerous. Thus,
improving safety and reducing fatigue is a major advantage
of multi-robot patrolling systems.

In this context, robots are required to continuously travel
in the environment, and the key challenge is to design
efficient routes in order to optimize a certain performance
criterion. Like most existing work in the literature [1–4], it
is assumed that robots are homogeneous, travel with constant
speed, and are expected to visit every strategic position of
the environment. Therefore, having adequate sensing range,
complete coverage of the environment is achieved by visiting
all the important locations in the area.

Despite several recent contributions to the problem, one
question still remains open: what is the optimal patrol
strategy for a given generic environment using R robots?
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Using the worst idleness criterion (cf. Section III), it has
been shown that the problem is NP-Hard. In this work,
four strategies based on the concepts of tours and graph
partitioning are analyzed. This allows us to understand which
approach best suits a given generic environment with an
arbitrarily high number of robots. We address the theoretical
results known so far and pose problems that are still open
in this area of research. In addition, we extract results and
examine graphs with different connectivity and different team
size in order to draw conclusions and discuss implementation
issues on real world robots.

II. RELATED WORK

Several strategies for teams of robots in patrolling missions
have been proposed in the last decade. Pioneering work was
done in [5], where many intuitive techniques using agents
that were guided towards places left unvisited for a long time
were described and empirically compared in simulations.
Graph-based coverage was considered and the notion of
idleness was introduced for the first time, being since then
widely used in the literature, along with visit frequency of
important locations [6].

A wide diversity of concepts have been applied to multi-
robot area patrol; e.g., Task Allocation [7], Gaussian Pro-
cesses Theory [8]; and lately, an effort for real-world vali-
dation of these systems has been evident [4]. Additionally,
different coordination methods for the team of agents have
been studied, such as centralized deterministic [10] and dis-
tributed probabilistic methods [9]. While the former methods
have the advantage of reaching near-optimal solutions, often
with performance guarantees due to the global knowledge
assumed, the latter provides interesting features derived from
the robots’ autonomy, like the potential to adapt to different
situations arising during the mission, being more robust to
failures and less predictable by an external observer. In
this article, we will focus on centralized and deterministic
coordination methods, where the routes of the robots are
computed prior to the mission, since we are concerned in
obtaining optimal patrolling performance.

To that end, important theoretical contributions on the
problem have been presented by [1] and [2]. Considering
the worst idleness criterion (cf. Section III), Pasqualetti et al.
showed that the multi-robot patrolling problem is NP-Hard,
and Chevaleyre proved that it can be optimally solved with a
single robot by finding a TSP tour in the graph that describes
the environment to patrol. As for the multi-robot case,
it was shown that partition-based strategies may perform
better than a TSP cyclic strategy “for graphs containing
long edges” [1]. Furthermore, Pasqualetti et al. addressed
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approximation algorithms to obtain known bounds related to
the optimal result and focused on specific graph instances.
Unlike [2], in this work we address generic graphs describing
real world environments and propose heuristics to obtain
near-optimal results. These heuristics consistently result in
superior trajectories (or at least equally good) to constant
factor approximation algorithms in all graphs tested.

Therefore, the main goal of this work is to further under-
stand how two classical types of strategies – graph partition
and cyclic-based techniques – perform in generic graphs, by
making use of efficient graph theory algorithms and analyz-
ing comparative results. We prove that graph connectivity is
not the only parameter that affects the suitable choice of a
strategy, and team size should also be considered. Moreover,
we discuss implementation issues on real world robots and
provide a testing tool to the community to extend the results
presented herein, in order to infer about the optimality on
any generic graph.

III. PRELIMINARIES AND PROBLEM FORMULATION

As referred before, it is common to represent the area to
patrol by a graph G = (V, E) with vi ∈ V vertices and ei,j
∈ E edges. Therefore, G corresponds to the topological map
for the patrolling mission, which is obtained from a metric
representation, assumed to be known a priori, by means
of a graph extraction algorithm [9]. In this representation,
vertices correspond to important places or landmarks and
edges represent the connectivity between those locations.
The cost of an edge |ei,j | is defined by the distance between
vertex vi and vj . A path x is composed of an array of vertices
in V and the cost of a path is given by L(x).

Seeing as the topological maps considered in this article
represent real world 2D environments, it is assumed that G
has the following properties:

• Undirected, where |ei,j | = |ej,i|, and the edge weights
satisfy the triangle inequality;
• Connected, where ∀vh, vi ∈ V,∃x = {vh, ..., vi};
• Simple, where two neighbor vertices vi and vj are
connected by a unique edge ei,j and no graph loops exist;
• Planar, where a pair of edges eg,h, ei,j ∈ E never crosses
each other.

As a consequence of these properties, G is usually non-
complete, i.e. for every pair vh, vi of V there may not exist
an edge |eh,i| connecting each pair of vertices. Additionally,
we address any generic planar graph, as opposed to specific
instances such as chain graphs, cyclic or acyclic graphs, tree
graphs, Hamiltonian graphs, etc.

The multi-robot patrolling problem is then reduced to find
R trajectories Π = {π1, ..., πR} for each robot in order
to visit frequently all vertices vi ∈ V with respect to a
predefined optimization criterion. Thus, the idleness of a
vertex vi ∈ V in time step t is defined as:

Ivi = t− tιi, (1)

where tιi corresponds to the last time instant when the vertex
vi was visited by any robot of the team. Consequently, the

worst idleness WI corresponds to the largest idleness value
for all vi ∈ V that occurred during the patrolling task that
lasted τ time units:

WI = max
vi∈V

max
t∈[0,τ ]

Ivi . (2)

Using WI as the optimization criterion, the multi-robot
patrolling problem is formulated as follows:

Problem 1 (Multi-Robot Patrol). Given a graph G = (V, E)
and a team of R robots, find a policy Π∗ such that:

Π∗ = arg min
Π

(WIΠ), (3)

wherein WIΠ is the Worst Idleness when using policy Π.

Remark 1 (Computational Complexity). It has been shown
that Problem 1 is NP-Hard by reduction from the Traveling
Salesman Problem (cf. Theorem II.1 in [2]).

Two classical types of strategies have been used previously
to obtain optimal or near-optimal results: cyclic-based and
partition-based strategies [1], [2]; and considering the worst
idleness criterion, superior approaches are still not known.
Using a variety of graph theory concepts, it is possible to
devise patrolling trajectories for the team of robots based on
these two classes of approaches, which are defined below.

Definition 1 (Cyclic-based Strategy). Given a closed walk
πCyc = {va, vb, ..., va} in G, such that ∀vi ∈ V : vi ∈ πCyc
and possibly visiting vertices more than once, a Cyclic-based
strategy ΠCyc places R agents, that move at the same speed,
equally spaced along πCyc, while keeping a constant gap
between them.

Definition 2 (Partition-based Strategy). Being Pr ∈ V a
partition of the environment assigned to robot r and given
a set of disjoint partitions P = {P1, ..., PR} in G, such that
∪Rr=1Pr = V and Pi ∩ Pj = ∅ with i 6= j, in a Partition-
based strategy ΠP , each agent r visits the vertices of a single
partition Pr, by following a strategy πr.

In the next two sections, we present two cyclic-based
and two partition-based approaches. In cyclic strategies, it
is necessary to compute a patrolling-effective closed walk
πCyc. As for partitioning strategies, we focus not only on
computing an effective set of partitions P , but also on
defining each agent’s strategy πr on each partition Pr.

For both cyclic and partition-based approaches, we test a
well-known method in the literature with a constant factor
approximation and propose one heuristic method as an
alternative. These heuristics are employed to obtain closer
results to the optimum and to further understand the potential
of each class of strategy in graphs with different connectivity
and using different team sizes.

IV. CYCLIC-BASED STRATEGIES

In a cyclic-based strategy, the time taken for an agent to
visit a vertex for the second time is at most L(πCyc)/c, where
c is the average agent’s speed and L(πCyc) is the length
of the walk πCyc. Without lack of generality, let us assume
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Fig. 1. Obtaining a closed walk using a MST (Algorithm 1).

that agents move at unitary speed. The worst idleness of any
cyclic based-strategy (WIΠCyc

, or simply WICyc), using a
single agent, is given by:

WICyc = L(πCyc), R = 1, (4)

since agents are equally spaced along πCyc, we can extend
(4) for a multi-robot situation with R robots:

WICyc =
L(πCyc)

R
. (5)

Clearly, by minimizing L(πCyc), i.e., finding the smallest
πCyc walk that visits every vertex of G, WI becomes
minimal in (5). Consequently, it becomes evident that the
Traveling Salesman Problem (TSP) solution for G is the best
possible solution among all cyclic-based strategies:

Π∗Cyc = ΠTSP . (6)

TSP is a classical NP-complete problem, and no polynomial
time algorithm is known to compute an optimal solution to
it. In this section, two different methods for approximating
a metric TSP tour1 in a generic graph G are discussed.

The first method is a well-known approximation for the
metric TSP tour, based on the Minimum Spanning Tree
(MST) concept, as shown in Fig 1. Consider the following
algorithm.

Algorithm 1 (MST Tour Approximation).
i) Find a Minimum Spanning Tree T in G.
ii) Conduct a depth-first search (DFS) to visit all vi ∈

T in a depth-first order.
iii) Build a closed walk πMSTt that visits all vertices,

following the order of DFS discovery.
iv) Equally space R moving robots along πMSTt.

Theorem 1 (Constant factor approximation). MST Tour is a
2-approximation for the metric TSP.

Proof. Let L(πTSP ) be the cost of an optimal TSP tour.
Recall that by removing an edge from πTSP , one obtains a
spanning tree. Therefore, the Minimum Spanning Tree pro-
vides a lower bound for the optimal tour: L(T ) ≤ L(πTSP ).
Notice that the length of a depth-first tour of the connected
tree T equals twice the sum of the length of the edges of T :
L(πMSTt) = 2L(T ). Hence, L(πMSTt) ≤ 2L(πTSP ).

1In the metric TSP, the edge costs satisfy the triangle inequality, i.e, for
any vh, vi, vj ∈ V, eh,j ≤ eh,i + ei,j .

Corollary 1. It immediately follows that the worst idleness
of the MST tour WIΠMSTt

with R agents is at most 2 times
the worst idleness of the optimal TSP tour WIΠTSP

with R
agents.

Algorithm 1 can quickly obtain a 2-approximate solution
for the TSP in feasible time. In fact, our implementation (cf.
section VI), uses Kruskal’s algorithm in step i to compute
the MST [12], which runs in O(|E| log |V|) time. Despite the
performance guarantees given by MSTt, Algorithm 1 does
not lead in general to an optimal TSP tour. This is clear in
the results reported in the next section. For a generic graph
G, we have tested an additional cyclic-based algorithm.

Algorithm 2 (Heuristic to approximate the TSP Tour).
i) Create a complete unique graph GC = (VC , EC),

by copying all vertices and edges of G, and for
all non-existing edges between pairs of vertices
vh, vi in G, create a unique edge eh,i in GC , where
|eh,i| = dijkstra(vh, vi).

ii) Compute an efficient heuristic for the TSP in GC .
iii) Convert the TSP tour obtained in GC into a mini-

mum cost closed walk πHTSP in G by translating
each edge |eh,i| ∈ [EC ∩ E ] of the TSP tour into a
shortest path of G in πHTSP .

iv) Equally space R moving robots along πHTSP .

Before proceeding, it is important to demonstrate that
solving the TSP in a complete graph GC is equivalent to
solving the minimum cost closed walk problem in a non-
complete graph G, where ocasionally repeating visits to
vertices is allowed.

Theorem 2 (Minimum Cost Closed Walk). The TSP tour of
the complete graph GC is equivalent to the minimum cost
closed walk in G.

Proof. When decoding a TSP tour of GC into a closed walk
πHTSP in G (step iii of Alg. 2), clearly all edge costs are
preserved. Assume now that there is a shorter closed walk
πs such that L(πs) < L(πHTSP ) in G. Translate πs into a
tour in GC by selecting the vertices in the order in which
they appear first. This would imply a tour in GC shorter than
the optimal TSP tour. Hence, we have a contradiction.

Algorithm 2 presents an heuristic solution ΠHTSP for
the minimum cost closed walk with R agents. It should be
noted that we use Dijkstra’s algorithm to obtain the shortest
path in G and, in our implementation (see section VI), the
heuristic chosen to approximate the TSP in a complete graph
(step ii) is a genetic algorithm named TSP GA2. Despite
not having performance guarantees, the results have shown
that the approach is able to quickly compute the optimal
solution for every graph tested in this work. The graphs
considered have several tens of vertices, similarly to those
that commonly represent real world buildings.

2TSP GA has been developed by Joseph Kirk. For more infor-
mation, it is openly available at: http://www.mathworks.com/
matlabcentral/fileexchange/13680
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V. PARTITION-BASED STRATEGIES

In the past, it has been shown [1–4] that partitioning
strategies may have superior performance than cyclic ones. In
fact, we recall two important contributions by Chevaleyre [1]:

i) The optimal partition-based strategy Π∗P is a dis-
joint partition, where each agent behaves optimally
inside each subgraph, by running a TSP tour on it
(i.e., a minimum cost closed walk).

ii) Cyclic strategies are not suited for graphs contain-
ing long edges, as shown by the following result:
WICyc∗ ≤ WIP∗ + 3 ·max |ei,j |.

These two contributions are of high importance in the multi-
robot patrolling literature. Nevertheless, they lead to two
important follow-up questions. In i), each agent’s strategy
πr becomes evident, however how should one optimally
compute a set of R partitions P in the first place? Moreover,
in ii), the inequality can be verified with WICyc∗ >WIP∗

orWICyc∗ <WIP∗ . So, which strategy should one choose
for a given graph G patrolled by R agents? In this section
we present two partition-based strategies to address the first
question. Later, we address the second question (section VI).

In a partition-based strategy, each agent follows a min-
imum cost closed walk πr in the subgraph induced by
partition Pr in G. Thereby, WI on each partition is given
by (4): WIπr

= L(πr). Note that all partitions are disjoint,
hence each vertex is always visited by the same robot. Since
partitions are patrolled in parallel, WI considering unitary
agent’s speed without lack of generality, is given by the
maximum length of any tour πr:

WIP = max
r∈R

L(πr). (7)

Clearly, by minimizing the partition tour πr with maximal
cost, we obtain the best possible solution among all partition-
based strategies Π∗P . However, classical graph-partitioning
is a NP-hard problem, being usually studied in the context
of parallel computing and clustering applications. For high
performance in such systems, regions should be identically
sized, i.e., each partition should have the same number
of vertices |P1| ' ... ' |PR|; and the link between
regions should be small, i.e., the edges that connect different
partitions should have minimal cost. While this may yield
a satisfactory solution for our problem, it is necessary to
consider two fundamental differences to such applications.

Firstly, due to (7), instead of identically sized partitions,
we aim at obtaining trajectories with balanced cost L(P1) '
... ' L(PR) so as to minimize the partition tour πr with
maximal cost and consequently, WIP . Secondly, since the
edges between partitions are not traversed by any robot, the
cut should ideally be conducted on long edges. Hence, the
following problem is defined.

Problem 2 (Min-Max Cost Closed Walk). Given a generic
graph G, find a set of disjoint partitions P = {P1, ..., PR}
in G such that:

P ∗ = arg min
P

(maxL(πr)). (8)

Fig. 2. Four optimal closed walks on a chain graph.

Theorem 3 (Computational Complexity). The min-max cost
closed walk problem is NP-hard.

Proof. When R = 1, this problem is equivalent to finding
the minimal cost closed walk, which in its turn, is equivalent
to the Traveling Salesman Problem (see Theorem 2). Since
the TSP is a NP-hard problem, by restriction the min-max
cost closed walk problem is also NP-hard.

Similarly as before, in order to solve Problem 2, we
test one algorithm with known performance ratio and an
evolutionary heuristic technique. For the first partition-based
algorithm, we will apply a previously known result. The
authors in [2] have proposed an optimal min-max cost closed
walk partition for the particular case of a chain graph, e.g.,
Fig 2, which was called an “Optimal Left-Induced partition”.
By extending this result to generic graphs, the following
approximation method has been proposed.

Algorithm 3 (Left-Induced Partition on Generic Graphs).
i) Find an open walk, with at most 2|V| − 4 edges,

that visits all vi ∈ V of G.
ii) Construct a chain graph Γ, equivalent to the open

walk in i).
iii) Compute the optimal left-induced partition with R

agents in Γ.
iv) In order to create a solution ΠLIP , assign a

partition Pr to each of the R agents and have them
patrolling each region back and forth.

Remark 2 (Performance Ratio). It has been shown that
Algorithm 3 leads to the following performance guarantee
with respect to the optimal solution [2]:

WILIP ≤ 8

(
|V | − 2

|V |

)
ηWIΠ∗ , (9)

with:

η =
max |ei,j |
min |ei,j |

.

Note that an open walk in G (step i) can be obtained
from a MST, by starting from any leaf of the tree and
stopping when all vertices have been visited. Nonetheless,
in our implementation we have considered instead the result
given by Algorithm 2, which corresponds to a TSP tour on
a complete graph GC . Clearly, an open walk with equal or
inferior cost can be obtained by removing the longest edge
of the TSP tour in GC and translating it into an open walk in
G. Moreover, with at most 2|V| − 4 edges, the performance
bounds indicated by Remark 2 remains.

Despite the performance guarantees of Algorithm 3, given
the high dependence on η, the previous algorithm is rarely
expected to reach an optimal solution. Thus, an additional
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partition-based evolutionary algorithm is proposed to solve
the multi-robot patrol problem.

Algorithm 4 (Evolutionary Heuristic to approximate the
Min-Max Cost Closed Walk Problem).

i) Compute a set of R initial partitions using a
classical multi-way graph-partitioning approach on
G and start a counter iter=0.

ii) Initially set global best = L(Pn) as the length
of the partition with maximal cost Pn =
arg maxL(Pinit).

iii) Swap a vertex from Pn with a random neighbor
partition Pm.

iv) Make sure Pn stays connected. Otherwise, ran-
domly keep one of the disjoint parts and swap all
the others to Pm.

v) Assign Pn = Pm, if |Pm| > 1 and Pm has not been
used before. Otherwise choose randomly for Pn a
partition that has not been chosen as Pn before.

vi) If maxL(Pi) > Φ maxL(Pinit) or all parti-
tions have already been used as Pn, reset Pn =
arg maxL(Pinit).

vii) Save solution global best = maxL(Pi) if
maxL(Pi) < global best. Increment iter.

viii) Repeat steps iii - vii, while iter ≤ MaxSteps.
xix) Build ΠEHP by considering the set of partitions

that generated global best and use Algorithm 2 to
compute a min cost closed walk for each agent r.

In Algorithm 4, vertex swaps in step iii) correspond to a
mutation mechanism on the current solution. Additionally,
the concept of “survival of the fittest” is applied, as the best
solution found is kept during run time. In step i), we make
use of METIS multi-way partitioning [13]. Furthermore, it is
necessary to dimension the exploration factor Φ. A low value
(Φ < 2.5) may not let the approach explore the search space
conveniently, possibly falling into local minima. High values
(Φ > 5) may lead the approach to spend too much time
generating solutions with low quality. In our experiments,
we have used 2.5 ≤ Φ ≤ 5.0 and MaxSteps ≤ 15000.

In the next section, we present a discussion of results using
this partition-based strategy and the three other previously
presented strategies in graphs with different connectivity and
teams of patrolling agents with different sizes.

VI. RESULTS AND DISCUSSION

In this section, the three topological maps Ga, Gb and Gc in
Fig. 3 are employed in order to test all previously described
strategies for multi-robot patrol. These present different
algebraic connectivity or Fiedler value [14], a well-known
metric of the connectivity of a graph. These topologies are
classified as: lowly (A), mildly (B) and highly (C) connected,
having a Fiedler value of λa = 0.0080, λb = 0.0317 and
λc = 0.1313, respectively. Note, for example, that Ga has
several dead-ends, i.e., vertices with degree one3. On the

3The degree (or valency) of a vertex of a graph is the number of edges
incident to the vertex [11].

other hand Gc is the most connected of the three, with a
maximum degree of 4. Despite being a highly connected
graph in the context of a patrolling mission, Gc is far from
being complete (each vertex would need to have degree 24)
and may eventually be considered a sparse graph in other
applications.

Even though cyclic-based and partition-based strategies
are expected to perform differently with the connectivity of
G, in this paper we also aim to analyze performance among
teams with different sizes. To this end, all approaches have
been tested with R ∈ [1, 20]. Our implementation consists
of building the routes for the MST Tour approximation
(ΠMSTt), the heuristic for the TSP tour (ΠHTSP ), the Left
Induced partition-based strategy (ΠLIP ) and the evolutionary
partition-based heuristic (ΠEHP ), and compute the worst
idleness WI for an arbitrary R, using (5) for cyclic-based
strategies and (7) for partition-based strategies. Furthermore,
all methods used in the paper are made available to let the
reader test other graph instances as desired4.

Table I presents the overall results. Since one of the main
goals of this work is to understand which class of strategy
is more suited given a generic graph G and team size R, the
best results over 25 trials for the partition-based strategies
were saved. This is because ΠLIP depends on the choice
of an open walk, which may differ in each trial and EHP
being an evolutionary algorithm may not always reach an
optimal solution. As for cyclic-based strategies, this was not
necessary because MSTt always returns a spanning tree
tour with minimal cost and HTSP , as seen before, easily
computes one optimal minimum cost closed walk in Ga, Gb
and Gc, given enough iterations (typically ' 1000).

The prior evidence shown in Table I is that the perfor-
mance of the cyclic-strategy HTSP is superior to all other
methods in 90% of the configurations tested. This confirms
that finding a minimum cost closed walk on the graph and
having robots equally spaced is usually the most effective
solution for the multi-robot patrolling problem in theory.
In particular, it should be noticed that in Gc, η = 1 since
all edges have the same cost of 5.70. Therefore, no other
strategy was able to overcome HTSP , which shows the
potential of the approach when edges are balanced.

Furthermore, it is also important to refer that team size
R plays a fundamental role when choosing a multi-robot
patrolling approach. Results show that when the number of
robots grows, partitioning strategies tend to approximate the
performance obtained by cyclic strategies, when η > 1,
as in Ga and Gb. In fact, it can be seen in those cases,
that when R ≥ 10, WIEHP ' WIHTSP and even
WIEHP < WIHTSP . Despite only being theoretically
superior to optimal cyclic-based approaches with high R, in
practice a partition-based strategy like ΠEHP may present a
great advantage over ΠHTSP . Seeing as each robot patrols a
disjoint subgraph of G, robots do not cross the paths of each
other and inter-robot coordination is not an issue. However,

4Matlab code of the four methods is available at: http://isr.uc.
pt/˜davidbsportugal/MRpatrol_toolbox

367



(a) Environment A. (b) Environment B. (c) Environment C.

Fig. 3. Environments used in the experiments with respective topological map.

TABLE I
WI RESULTS (IN SECONDS), CONSIDERING UNITARY SPEED AND USING THE FOUR DESCRIBED

ALGORITHMS IN THREE GRAPHS WITH DIFFERENT CONNECTIVITY AND DIFFERENT TEAM SIZES.

Graph A (Ga) Graph B (Gb) Graph C (Gc)
Cyclic Partitioning Cyclic Partitioning Cyclic Partitioning

R ΠMSTt ΠHTSP ΠLIP ΠEHP ΠMSTt ΠHTSP ΠLIP ΠEHP ΠMSTt ΠHTSP ΠLIP ΠEHP

1 516.75 507.75 889.80 507.75 380.10 313.65 548.10 313.65 273.60 148.20 273.60 148.20
2 258.37 253.87 441.15 273.15 190.05 156.82 267.90 193.35 136.80 74.10 136.80 79.80
3 172.25 169.25 294.30 178.35 126.70 104.55 177.00 133.20 91.20 49.40 91.20 57.00
4 129.19 126.94 215.40 141.35 95.02 78.41 123.90 98.10 68.40 37.05 68.40 45.60
5 103.35 101.55 175.50 107.25 76.02 62.73 104.10 76.20 54.72 29.64 45.60 34.20
6 86.12 84.62 144.30 100.65 63.35 52.27 86.40 62.40 45.60 24.70 45.60 34.20
7 73.82 72.53 120.60 83.85 54.30 44.81 68.10 56.70 39.09 21.17 34.20 22.80
8 64.59 63.47 104.25 65.85 47.51 39.21 57.60 43.50 34.20 18.82 34.20 22.80
9 57.42 56.42 96.00 61.35 42.23 34.85 52.20 40.20 30.40 16.47 22.80 22.80
10 51.67 50.77 84.90 52.20 38.01 31.36 45.90 37.20 27.36 14.82 22.80 22.80
11 46.98 46.16 76.95 47.85 34.55 28.51 40.20 32.10 24.87 13.47 22.80 22.80
12 43.06 42.31 67.95 45.45 31.67 26.14 37.20 31.80 22.80 12.35 22.80 22.80
13 39.75 39.06 62.10 39.60 29.24 24.13 34.20 25.50 21.05 11.40 11.40 11.40
14 36.91 36.27 59.10 39.30 27.15 22.40 32.70 23.10 19.54 10.59 11.40 11.40
15 34.45 33.85 53.85 36.15 25.34 20.91 28.80 21.90 18.24 9.88 11.40 11.40
16 32.29 31.73 48.45 36.15 23.76 19.60 25.80 19.20 17.10 9.26 11.40 11.40
17 30.39 29.87 46.35 28.20 22.36 18.45 25.50 18.60 16.09 8.72 11.40 11.40
18 28.71 28.21 44.40 27.90 21.12 17.42 23.10 16.80 15.20 8.23 11.40 11.40
19 27.19 26.72 41.70 27.15 20.00 16.51 21.90 13.80 14.40 7.80 11.40 11.40
20 25.84 25.39 40.80 26.85 19.00 15.68 21.30 12.90 13.68 7.41 11.40 11.40
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Fig. 4. Normalized distances for the cyclic (ΠHTSP ) and partition (ΠEHP ) patrol strategies for each environment. The partition strategies are more
resource efficient for larger robot teams.
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in a cyclic strategy, when a closed walk is computed, vertices
may be repeated and robot interference is an issue. As a
result, a mechanism must exist to avoid having robots visiting
the same vertex at the same time. Such mechanism will have
impact on the worst idlenessWICyc in the real world, unless
the considered closed walk does not repeat vertices. The
effect of robot interference has been shown previously [9].

Results also show that the heuristics considered were able
to outperform methods with known performance bounds,
thus reaching solutions with higher quality in all tested
graphs. Additionally, despite the α-approximations reported
in Theorem 1 and Remark 2, the performance of MSTt and
LIP was always within a factor of at most 1.85 to the best
solution. Despite that, the optimal solution was only reached
by LIP in one instance (R = 13 in Gc). As expected, the
MST-tour approximation has closer performance to ΠHTSP
when the connectivity of G decreases. On the other hand, the
dependency of ΠLIP in η is evident, seeing as its best result
was obtained in Gc.

As indicated by the results for these environments, the
cyclic strategy results in lower values of WI in most cases.
However, for longer running patrols, global resource usage
of the robot team may also be an important consideration.
For instance, it may be important to minimize the amount of
fuel used by the robot team or the total distance covered. We
expect that in the general case, the partition strategies would
have lower overall resource usage than the cyclic strategies
for the same environment. This is because the former are
able to make graph cuts on the long edges in the graph,
reducing the number of edges that must be traveled, while
in the cyclic strategy, all robots must travel the entire route.

We define the Normalized Distance per Patrol metric to be
the total distance traveled by the full robot team to perform
a single patrol, divided by the average number of vertices
visited on the patrol. In the cyclic case, all robots must visit
each vertex at least once, while in the partition case, robots
visit only the vertices in their assigned partition. The results
shown in Fig. 4 indicate that the partition strategies result in
lower normalized distances per patrol when the team size is
greater than about 3 robots, and are therefore more resource
efficient. This trend is present independently of the graph
connectivity.

On a final note concerning real-world implementation, all
the strategies tested rely on predefined trajectories for the
robots that are computed prior to the mission start, potentially
reaching an optimal solution. In some applications, this
may not be intended, for example in adversarial patrolling
scenarios, where an intruder may apprehend the robots’
routes and attack the system in an easier way. However,
in situations such as cooperative cleaning of infrastructures,
having near-optimal performance is highly desired.

VII. CONCLUSIONS AND FUTURE WORK

In this work, the multi-robot patrolling problem has been
studied. Considering an optimization criterion based on the
worst idleness, it has been shown that cyclic-based strategies
tend to generate solutions with high quality and should be

preferred when relatively small teams are used and/or the
edge costs of the graph G are balanced. Partition-based
strategies should be preferred when this is not the case.
Cyclic strategies may result in greater overall team cost,
while graph-partitioning may be desirable from a security
viewpoint, use fewer resources, and require less coordination
between robots. Thus, it is generally more suitable when
larger teams are involved. Furthermore, the results presented
show that both graph connectivity and team size play an
important role on the choice of a patrolling strategy.

It was also shown that heuristic methods work well in
practice, as the achieved results were superior to those of
algorithms with known performance bounds. Even though
we believe that the graphs used are generally representative,
it would be important to conduct further tests with additional
graphs. Thus, a simulation tool has been made available to
the community.

Prior work on performance in multi-robot patrols [7]
investigated an approach for reallocating vertices belonging
to poorly performing robots. However, the design of the
environment and partitioning strategy can affect the dynamic
task assignment strategy. In the future, the authors plan to use
the results to estimate the optimal size for a team of robots
in a patrolling mission, given some imposed constraints and
analyze which class of strategies should be preferred when
a subset of the robotic agents do not perform as expected.
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