
MSP Algorithm: Multi-Robot Patrolling based on Territory
Allocation using Balanced Graph Partitioning

David Portugal
Instituto de Sistemas e Robótica

Dept. of Electrical and Computer Engineering
University of Coimbra

3030-290 Coimbra, Portugal
davidbsp@alunos.deec.uc.pt

Rui Rocha
Instituto de Sistemas e Robótica

Dept. of Electrical and Computer Engineering
University of Coimbra

3030-290 Coimbra, Portugal
rprocha@isr.uc.pt

ABSTRACT
This article addresses the problem of efficient multi-robot
patrolling in a known environment. The proposed approach
assigns regions to each mobile agent. Every region is rep-
resented by a subgraph extracted from the topological rep-
resentation of the global environment. A new algorithm is
proposed in order to deal with the local patrolling task as-
signed for each robot, named Multilevel Subgraph Patrolling
(MSP) Algorithm. It handles some major graph theory clas-
sic problems like graph partitioning, Hamilton cycles, non-
Hamilton cycles and longest path searches. The flexible,
scalable, robust and high performance nature of this ap-
proach is testified by simulation results.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory — Graph
algorithms; Path and circuit problems; I.2.8 [Artificial In-
telligence]: Problem Solving, Control Methods, and Search
— Graph and tree search strategies; Heuristic methods; Plan
execution, formation, and generation.

1. INTRODUCTION
The advances in the robotic field have been massive in

the last decades. Issues like patrolling, map learning, au-
tonomous navigation, self-location, graph-exploration, coop-
erative dynamics, obstacle avoidance, pursuit-evasion, surveil-
lance and inspection have become very popular in recent
years and represent interesting challenges.

In the particular case of infrastructure patrol, which has
high utility and impact on society, every position in the en-
vironment (or at least the ones that require surveillance)
must be regularly visited, assuring a minimum frequency for
verifying the existence of intruders or other anomalies. Ac-
cording to [1], besides being monotonous and repetitive, this
task may also be dangerous, hence an alternative approach
for prevention of human beings is to allow technology to as-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

sist through the use of multiple mobile robots to pursuit the
mission, collaborating to guard the grounds from intrusion.

A fully-equipped autonomous mobile robot with various
sensors may accomplish the assignment adequately, but it
may also prove to be costly and have diminutive fault-tolerance.
On the other hand, Multi-Robot Systems are characterized
by distributed control, autonomy and greater fault toler-
ance. A team of cooperative agents may fulfil the task with
better performance than a single robot, because of the pos-
sibility of having many robots in different places and carry
out diverse tasks at the same time, i.e. space distribution.

Also, when solving complex problems, it is sometimes use-
ful to divide it in simpler subtasks and assign them to dif-
ferent robots of the team. The decomposition of complex
problems linked with effective cooperation is a major ad-
vantage of these systems.

In this work, it is assumed that the environment is known
and robots have the ability to self-locate and navigate within
the boundaries of the structures. The main aim is to address
the multi-robot systems’ problem of efficiently patrolling a
given environment.

The next section represents a brief survey of the work
previously done in the area. Section 3 states the problem
that is addressed in this paper and the subsequent section
presents the proposed algorithm. Later on, it will be shown
that the results prove its efficiency and it is discussed its
scalability as well as its possibility to use different team sizes.
Finally, the article ends with conclusions and future work.

2. STATE OF THE ART
Kaminka et al.[2] described an algorithm that places robots

uniformly along a predefined path obtained by computing a
minimal Hamiltonian cycle, ensuring the same optimal fre-
quency for every point of the graph.

Kolling and Carpin [3] uses robots equipped with range
sensors that assume edges and vertices contamination (possi-
bility of hosting intruders) and presents a strategy for clear-
ing an entire graph. The problem was called GRAPH-CLEAR
and was enhanced in [4] when the same authors proposed
an improved algorithm which requires solving a partitioning
problem and also in [5] by algorithmically extracting surveil-
lance graphs from occupancy grid maps.

Assignment of different areas for each robot is discussed in
[6] for exploration purposes. Each robot has a destination
target and locally examines its share to minimize overall
exploration time. On the other hand, free space environ-

1271

Figure 1: Required phases to obtain a patrolling
scheme from an initial metric representation of the
environment.

ment covering problems in the shortest possible time, using
strategies with indicators in the environment itself as a way
of communicating, have also become very popular like in [7]
and [8], the last one being inspired on ant-colonies, which use
pheromone trails in exploration. Strategies that are based on
communication are also popular when using teams of mobile
robots, [9] describes a method in which robots share infor-
mation about the environment and do their best to mutually
assist each other in achieving their goals.

A centralized strategy is presented in [10]. Robots firstly
map the environment; afterwards a motion planning algo-
rithm that takes the environment into account and assigns
patrolling regions to each agent is executed. Robots may
update their representation of the maps to follow environ-
ment changes during the patrolling task and may also switch
their operation mode in case of a threat scenario. Finally,
Almeida et al. [11] study and compare the performance
of already developed patrolling approaches using multiple
robots. Their conclusions assist the choice between different
strategies according to the environment, using a given num-
ber of robots and its objective is to serve as a guideline for
new approaches and improving the current ones.

3. PROBLEM FORMULATION
The main objective of this work is to develop a new pa-

trolling strategy to maximize the visiting frequency for ev-
ery point of the overall graph. The strategy is based on
balanced graph partitioning and assigning a region for each
robot. The local patrolling route of each robot hugely de-
pends on the subgraph topology. Firstly, Euler and Hamil-
ton circuits and paths search procedures take place. If these
optimal paths do not exist, our algorithm uses new methods
to search for non-Hamiltonian cycles and longest paths and
chooses which one is best suited. After the main path is
chosen, the patrolling route is modified to include the edges
that are not in the main path and, finally, if the main path
is not a cycle (Hamiltonian or not) returning to the route’s
first vertex is done by inverting the whole one-way path.
Note that if the main path is a cycle, this last step is not
needed since the first and last vertices of the route are the
same. All these steps will be carefully studied in the next
section.

It is assumed that a topological representation of the en-
vironment is available, which is modelled as an undirected
graph whose vertices represent places and whose edges rep-
resent connectivity between places. In our case, when build-
ing the simulator to develop and test our approach, this
was possible by incorporating the EVG-THIN tool devel-

Figure 2: Example of a coarsened graph.

oped by Patrick Beeson [12] to obtain the Voronoi Diagram
from the occupancy grid of the environment1. Having the
diagram, the graph is obtained by image processing, with
correct identification of vertices and edges. Figure 1 shows
all the required phases to obtain a patrolling route from an
initial metric representation of an environment. All of them
were included in the simulator, where our approach was also
compared to a classic cyclic approach [2]. The main results
are presented in section 5. In the next section, the MSP
Algorithm is described with more detail, assuming that the
environment’s undirected graph is already available.

4. MULTILEVEL SUBGRAPH PATROLLING
(MSP) ALGORITHM

4.1 Multilevel Graph Partitioning
In [13], a multilevel method for partitioning graphs was

presented. There are three main phases in this method:
coarsening, partitioning and uncoarsening. Basically, in the
coarsening phase, a sequence of smaller graphs, each with
fewer vertices is obtained by collapsing vertices and edges
into single vertices of the next level, which are called multin-
odes. An example of a coarsened graph is presented in figure
2. Then, in the partitioning phase, the coarse graph ob-
tained is bisectioned and lastly, in the uncoarsening phase,
the partitioning is refined while the original graph is re-
stored. The method used in our work was based on this
scheme with some minor changes in the partitioning phase,
which started by separating the largest multinode from the
rest, evaluate an equilibrium condition (cost of all edges in
both regions) and swap multinodes from one side to the
other only if the equilibrium condition improves.

4.1.1 Generalized Partitioning
As it was previously seen, the Multilevel Graph Parti-

tioning method creates a bisection of the graph, resulting in
two smaller subgraphs. To be able to create more than two
balanced regions, subgraph partitioning was also developed
based on the same method and unbalanced partition condi-
tions were also produced; For instance, a three region bal-
anced partitioning is done by firstly dividing the main graph
into two regions with an unbalanced partition condition of
33.3% and 66.6% of its dimensions. Then, the subgraph with
largest length is divided into two regions with a 50% - 50%
balanced condition. Three regions with 33.3% of the graphs
dimension is the aimed final result. The patrolling simulator
developed provides partitions from two up to eight balanced
graph regions. Logically, if the input is only one robot, then
no partition is needed and a patrolling scheme for the whole
graph is implemented.

1Moreover, it can be any grayscale representation.

1272

4.2 Local Patrolling Scheme
After having the graph partitioned in regions according to

the number of robots defined for simulation, the patrolling
strategy for each robot should be defined. A staged search
for a main patrolling path takes place and, afterwards, when
the main path is defined, the patrolling route is completed
by visiting the edges that are not included in the main path
and returning to the route’s first vertex.

The main path is a sequence of vertices and edges that
cover most of the subgraph, ideally all. There are no edge
repetitions in the main path and its choice is the most im-
portant factor for local patrolling performance.

4.2.1 Euler and Hamilton Circuits and Paths
The first stage of finding a main path is to search for Euler

circuits and paths, which are paths that visit all edges of the
graph exactly once. Euler circuits start and end on the same
vertex whereas Euler paths do not.

There are necessary conditions for the existence of Eu-
lerian circuits [14]2 and for Eulerian paths (either all ver-
tices have even degree or all but two, the endpoints). These
circuits and paths can be easily constructed using Fleury’s
Algorithm [15]. Even though testing and finding Eulerian
circuits and paths in a graph is relatively simple, most of the
graphs, especially the ones that represent topological maps
do not have these paths, because there are normally a high
number of vertices that only have one neighbour (a dead
end) or have an odd number of neighbours.

After checking the non-existence of Euler circuits and paths,
a search procedure for Hamilton circuits and paths take
place. Hamilton circuits and paths visit all vertices of the
graph exactly once, the difference being that Hamilton cir-
cuits start and end on the same vertex. Note that visiting all
vertices does not imply visiting all edges of the graph. De-
termining if these paths and circuits exist is a NP-complete
problem and solutions are normally based on heuristics. In
this work, it is used the UHC, a fast algorithm proposed in
[16] for finding Hamiltonian paths and circuits in undirected
graphs. Again, most of the graphs do not have these paths,
because there are normally a high number of vertices that
only have one neighbour (a dead end), which means that,
when the edge connecting those vertices is visited, there is
no edge connecting to a different vertex to be visited next.
In these cases, further solutions for a main path are com-
puted as alternatives of Euler and Hamilton circuits and
paths (explained below).

4.2.2 Longest Path
After ruling out Euler and Hamilton circuits and paths,

a longest path search procedure is done. The longest path
problem is also NP-complete, so an approximate and sim-
plified search was conducted to find the longest path from
any vertex to another in the considered graph. Firstly, from
analysing all of the graphs formed after the Voronoi Diagram
computation and consequent processing, it was possible to
observe that it is common to have a substantial number of
dead ends in the graphs, i.e. vertices with only one neigh-
bour (degree one), also called leaf vertices. For this reason,
the longest path search procedure was simplified to start and
end in one degree vertices, leaving the vertices with higher

2All vertices in the graph must have an even degree, i.e.
even number of neighbour vertices.

Figure 3: Longest Path and Non-Hamiltonian Cycle
obtained for a patrolling scheme of one robot in a
graph.

degree for the Non-Hamiltonian cycle procedure, which will
be analysed in the next section. An algorithm for search-
ing and approximating the longest path was created and its
pseudo-code is presented on the next page (see Algorithm
1). Note that its simplifications and its own nature enables
us to find a good solution relatively fast. For our case, it
is enough and, although it does not guarantee finding the
longest existing path, it will always return an option for
main path.

The first step is to build a list of all the vertices with
degree one, then go through them and choose a source vertex
and a destination vertex, run the algorithm in the pseudo-
code and save the final path. The algorithm is run with
different sources and destinations and every time a longer
path is found, it should be kept. There is a tag in each edge
to check whether it was visited or not, and the find_dest

variable allow us to delay the arrival to the final destination
from the source vertex. In the end, the best path found by
the algorithm is selected, for example, the one on the left in
Figure 3.

4.2.3 Non-Hamiltonian Cycles
Sometimes graphs include cycles that are not Hamilto-

nian. These cycles may or may not be a good main path,
depending on the number of elements and overall algorithm
performance when compared to the longest path found for
the same graph. Small cycles with few elements are com-
mon but not desirable. On the other hand, large cycles are
very appealing, since they have the advantage of returning
to the starting point without needing to compute a return
path, which means that a cycle with a lower number of edges
may be a better choice for a main path than the longest path
found. When there is no cycle in the graph, the longest path
is assumed as the main path, and when there is one or more
cycles, they are only accepted if they include at least half of
the vertices of the graph. This was due to simulation com-
parisons between cycles and longest paths in some graphs.
The simplified method used to find cycles is also new and
is very similar to the one used for longest paths, the dif-
ferences being that a list of vertex with degree higher than
one is computed and the while loop stops when we reach the
source vertex again (a cycle was found or no cycle exists).
The algorithm should be run with distinct vertices and if a
longer cycle is found, it should be saved. Finding the same
cycle more than once, with different starting points, is ex-
pected. As an example, on the right side of Figure 3, the
best cycle found for a given graph is shown.

1273

/* Inputs */

source: Source Vertex
dest : Destination Vertex
list : Degree One Vertices List

All edges connected to degree one vertices ← visited;1

// This will avoid visiting them.

source and dest connected edges ← unvisited;2

// Except for these.

find_dest ← false;3

last_element ← source;4

path ← add_to_path(source);5

while true do6

last_element ← current last path element;7

num ← number of unvisited edges of8

last_element;

if num = 0 then // No Available Neighbours.9

find_dest ← true;10

forall neighbours of last_element do11

if degree > 1 and not included in path12

and edge(last_element,neighbour) =
visited then

edge(last_element,neighbour) ←13

unvisited;
end14

end15

path elements - -; /* Withdraw last16

element of the path. It will not

comeback to the same, because its edge

is marked as visited. */

else17

if dest is a neighbour then18

if find_dest or num = 1 then /* There19

is only one vertex left. We have

reached the destination. */

path ← add_to_path(dest);20

break; // The End.21

else22

Withdraw dest from the list of23

neighbours to consider;
end24

end25

if none of the neighbours has degree >= 426

then
Choose next neighbour randomly;27

else28

Choose first neighbour with degree >= 4;29

end30

if find_dest then31

find_dest ← false;32

end33

edge(last_element,neighbour) ← visited;34

path ← add_to_path(neighbour);35

end36

end37

return path;38

Algorithm 1: Longest Path Approximation Algo-
rithm.

Figure 4: An example of a graph patrolled by four
robots, each in one region. The green lines represent
the vertices where the graph partitioning was done.

4.2.4 Detours
Now that the main path is defined, it is necessary to com-

plete the patrolling route by visiting the edges that are not
included in the path, except for the case of Euler circuits
and paths, in which every edge is already covered.

All of the main path vertices will be visited in order and
detours will be computed and included in the final patrolling
route. This is done by inspecting whether the vertex has
other neighbour vertices left unvisited. If so, a detour is
started with a maximum allowed number of edges to visit.
Edges are added to the detour route, the ones linking ver-
tices with inferior degree first, because they have less prob-
ability of being visited later by other detour routes. Also,
it returns, when it arrives at a vertex that is already in the
main path. The detour route should include all of the edges
accessible from the original vertex of the main path as long
as it does not reach the maximum allowed number of edges
to be visited. When it does, it checks if there is a direct
edge linked to the original vertex and if not, it returns to
the original vertex by a returning path that is computed and
updated for every vertex that is visited in the detour. When
the detour route(s) for this vertex is done, we move on to
the next vertex of the main path until we reach the final
vertex. Finally, if not all of the edges in the subgraph were
visited, the maximum number of edges to be visited in the
detour is increased and the process is repeated.

The idea is to have, in the end, a patrolling route that cov-
ers all edges and vertices with the least possible maximum
number of edges allowed to visit by the detour route. The
algorithm described is adaptive and the number of times
required to repeat this process can be minimized by estab-
lishing lower quotas and upper quotas; For instance, check
if all edges are not covered when a maximum of one edge de-
tour is allowed (actually, this is enough when an Hamilton
circuit or path is detected). This will be your starting lower
quota. Afterwards, check an upper quota of half the number
of edges in the graph, which is a pessimistic number. If all
vertices were covered, than the next test number of edges
should be between the lower and upper quota interval, if
not, the previously considered upper quota should become
a lower quota and a new upper quota should be established.
Using this approach the correct value is found much faster
than a pure incremental approach.

1274

Figure 5: Frequency comparison for six different
topological maps.

4.2.5 Returning to the route’s initial vertex
The route’s initial vertex is the starting point for each

robot, defined by the source vertex of the main path in each
region. If the main path is not an Euler, Hamiltonian or
non-Hamiltonian circuit/cycle, it is necessary to return to
the route’s initial vertex. Two ways were considered to do
so: Inverse Path and Shortest Path. While the former is
done by inversing the patrolling route back to the first ver-
tex, the latter one simply computes the shortest path (with
Dijkstra’s Algorithm [17]) from the last vertex to the initial
vertex. Both were compared and the former showed better
results in terms of overall patrolling frequencies for every
point in 96% of all studied cases, becoming the chosen one
for this purpose.

5. RESULTS AND DISCUSSION
The MSP Algorithm was compared with the so-called

Cyclic Algorithm that searches for Hamiltonian cycles in
a graph and places the robots along the path [2]. When
there are no Hamilton cycles, it uses the same methods as
ours for computing the best possible path. Thus, both ap-
proaches are usually equivalent when only one robot is used.
Note that with the Cyclic approach, all the robots follow the
exact same route uniformly lagged in time. A large set of
maps were used to compare average point frequency for both
approaches. Results for six different maps are shown in fig-
ure 5. Map A corresponds to the one on figure 4 and due
to minimum size dimension constraints, for each subgraph
there is a maximum number of partitions according to the
graph complexity, in this case four. Map B, C and E are
medium graphs with relatively defined paths. B has 70 ver-
tices, C has 41 and E has 74. Despite this, each map has
distinct frequency intervals due to their different Euclidean
dimensions. Map D represents a more complex graph with

Table 1: Comparison results for map D
nr

∑
dT [C]

∑
dT [MSP] F[C] F[MSP] �[C] �[MSP]

1 21949 21949 0.13 0.13 0.06 0.06
2 21949 20923 0.26 0.27 0.13 0.13
3 21949 20039 0.39 0.41 0.19 0.21
4 21949 20037 0.52 0.55 0.25 0.29
5 21949 19375 0.66 0.68 0.32 0.38
6 21949 18951 0.79 0.80 0.38 0.44
7 21949 18403 0.92 0.94 0.44 0.51
8 21949 18269 1.05 1.08 0.51 0.64

nr - Number of patrolling robots.∑
dT - Total patrolling distance travelled (m).

F - Average point frequency of passage (×10−3s−1).
� - Standard Deviation (×10−3s−1).

[C] - Cyclic Algorithm.
[MSP] - MSP Algorithm.

268 vertices and Map F is a completely different case, due
to the existence of a main Hamilton cycle in the graph and
Hamilton paths in the generated subgraphs. This is a much
simpler graph with 12 vertices and very good connectivity
between vertices. Again, there is a partition number limita-
tion like the one mentioned for map A.

The MSP Algorithm got better results with arbitrary num-
ber of robots for maps A and D. The Cyclic Algorithm got
higher frequencies in map C’s case. For map B, the MSP
Algorithm was only better for the cases of two, five and eight
robots, being overly very close to the Cyclic Algorithm in
the other tests. Similarly to map B, in map E’s case, the
MSP Algorithm got close results to the Cyclic Algorithm
up to six robots (being actually better for the six robots’
case). For seven and eight robots the results were not so
good, mostly due to low quality partitions as a consequence
of graph limitations. As for the special case of map F, the
MSP was globally better, having only lower frequency for
the case of 3 robots.

General results show that point frequencies with the MSP
Algorithm are better in graphs where there are high-quality
partitions and/or the global cyclic path has too many edge
repetitions, while the addition of the local patrolling paths
in each region is globally less repetitive. Note that the pre-
sented results are normalized and constant speed for each
robot of 1m/s is considered, also each pixel in the Voronoi
Graph is considered equivalent to a meter. Assuming this,
results show that in 97,2% of cases, the MSP approach point

frequencies are within the interval
[

nr∑
dT
, 4nr∑

dT

]
×10−3, with∑

dT being the sum of all the distances travelled by robots in
the MSP approach in meters, which is equivalent to the time
(in seconds) that the robots would take to cover all the map,
in separated time schedules, with a 1m/s constant speed and
nr being the number of robots patrolling the graph. Note
that

∑
dT hugely depends on graph complexity and vertices

number. Frequencies not within the interval occurred only
in some cases where the global complexity of the graph re-
sulted in unbalanced partitions (generally with high number
of regions) or not so satisfactory main paths.

The standard deviation is generally lower for the Cyclic
Approach, as shown in table 1, because the MSP approach
has global frequency values less close to the average values,
mostly due to the inversed path followed when no repre-
sentative cycles exist in the subgraph. Inverting the path
will result in better frequencies for points in the middle and
worse for points near the path extremities. However, the to-

1275

tal distance travelled by robots is much smaller than in the
cyclic approach, because in our case there is no redundancy.

6. CONCLUSION AND FUTURE WORK
In this article, a new multi-robot patrolling algorithm

based on balanced graph partition was proposed. This ap-
proach decreases redundant work and robot detritions when
compared to a cyclic approach. It is also relatively simple,
effective, scalable, distributed and robust. Fault-tolerance
can be easily implemented, when a robot fails, by just rerun-
ning the algorithm with fewer robots and send them to their
new starting positions. There is no need for a communica-
tion system or expensive sensors. The interference between
robots is minimal; they may only be near each other in ver-
tices of the boundaries of their regions. A collision avoidance
mechanism to forbid two or more robots being in the same
border vertex at the same time was also developed. On the
other hand, for a cyclic approach when there are no main
cycles, it is much harder to employ such a mechanism, since
robots may be coming and going through the same path.
Also, for an intelligent intruder it is easier to attack an envi-
ronment, which is patrolled using a cyclic approach because
robots follow the same route over and over again, while in
our approach, although being deterministic, each robot fol-
lows its own patrolling cycle and completes it in different
periods of time, so it is much more difficult to track every
robot’s path and predict which areas of the environment are
better for intrusion, because the global robot disposition is
continuously changing. Possible disadvantages of this ap-
proach are the longer time that robots take to cover points
on the extremities of the patrolling route when there are no
cycles, the need to redefine the paths when an agent fails
and, even though it is a difficult task for an observer, its de-
terministic nature makes it possible to calculate and predict
robots disposition in a given point in time.

As for future work, some issues are still left open. An
even more precise method to define when to use a non-
Hamiltonian cycle main path instead of a longest path and
vice-versa could be implemented, as well as the fault-tolerance
approach mentioned before and an intruder detection sys-
tem. Finally, it would be worth taking this approach fur-
ther than simulation and test with mobile robots in real
world scenarios, consequently dealing with some related is-
sues not addressed like decentralized planning integration,
robots self-localization, energy refills, global fault detection,
real world obstacle avoidance and intruder detection.

7. ACKNOWLEDGEMENTS
This work was financially supported by the Institute of

Systems and Robotics - Coimbra under its regular funding
by the Portuguese Government’s department FCT - Fun-
dação para a Ciência e a Tecnologia.

8. REFERENCES
[1] R. Rocha. Building Volumetric Maps with

Cooperative Mobile Robots and Useful Information
Sharing: a Distributed Control Approach based on
Entropy. Ph.D. Thesis, Faculty of Engineering of
University of Porto, Portugal, October, 2005.

[2] Y. Elmaliach, N. Agmon and G. Kaminka.
Multi-Robot Area Patrol under Frequency
Constraints. IEEE International Conference on

Robotics and Automation (ICRA 07), 385-390, Rome,
Italy, Apr. 10-14, 2007. ISBN 1-4244-0601-3.

[3] A. Kolling and S. Carpin. The GRAPH-CLEAR
Problem: Definition, Theoretical Properties and its
Connections to Multirobot Aided Surveillance.
IEEE/RSJ International Conf. on Intelligent Robots
and Systems, 1003-1008, San Diego, California,
U.S.A., Oct. 29-Nov. 2, 2007. ISBN 978-1-4244-0912-9.

[4] A. Kolling and S. Carpin. Multi-robot Surveillance: an
Improved Algorithm for the GRAPH-CLEAR
Problem. IEEE International Conf. on Robotics and
Automation, 2360-2365, Pasadena, California, U.S.A.,
May 19-23, 2008. ISBN 978-1-244-1646-2.

[5] A. Kolling and S. Carpin. Extracting Surveillance
Graphs from Robot Maps. International Conf. on
Intelligent Robots and Systems, 2323-2328, Nice,
France, Sept. 22-26, 2008. ISBN 978-1-4244-2057-5.

[6] K. Wurm, C. Stachniss and W. Burgard. Coordinated
Multi-Robot Exploration using a Segmentation of the
Environment. International Conference on Intelligent
Robots and Systems, 1160-1165, Nice, France, Sept.
22-26, 2008. ISBN 978-1-4244-2057-5.

[7] M. Batalin and G. Sukhatme. Multi-Robot Dynamic
Coverage of a Planar Bounded Environment.
Technical Report, Robotic Embedded Systems
Laboratory, University of Southern California, 2002.

[8] M. Miazaki. Sistema de controle multi-robô baseado
em colônia de formigas artificiais. Master Thesis,
Instituto de Ciências Matemáticas e de Computação -
University of São Paulo, Brazil, February, 2007.

[9] A. Sgorbissa and R. Arkin. Local Navigation
Strategies for a Team of Robots. Robotica, 461-473,
21(5), Cambridge Univ. Press, 2003. ISSN 0263-5747.

[10] Y. Guo, L. Parker and R. Madhavan. 9 Collaborative
Robots for Infrastructure Security Applications.
Studies in Computational Intelligence, 185-200, Vol.
50, Springer-Verlag Berlin Heidelberg, April 22, 2007.

[11] A. Almeida, G. Ramalho, H. Sanana, Y. Chaveleyre et
al. Recent Advances on Multi-Agent Patrolling.
Brazilian Symp. on Artificial Intelligence, 474-483,
3171, São Lúıs, Brazil, 2004. ISBN 3-540-23237-0.

[12] P. Beeson, N. Jong and B. Kuipers. Towards
Autonomous Topological Place Detection Using the
Extended Voronoi Graph. Int. Conf. on Robotics and
Automation, 4373-4379, Barcelona, Spain, 2005.

[13] G. Karypis and V. Kumar. A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs.
Society for Industrial and Applied Mathematics
Journal of Scientific Computing, 359-392, 20(1), 1998.

[14] C. Hierholzer. Über die Möglichkeit, einen Linienzug
ohne Wiederholung und ohne Unterbrechnung zu
umfahren. Mathematische Annalen 6, 30-32, 1873.

[15] Fleury. Deux problemes de geometrie de situation.
Journal de mathematiques elementaires, 257-261,
1883.

[16] D. Angluin, L. Valiant. Fast Probabilistic Algorithms
for Hamiltonian Circuits and Matchings. Journal of
Computer and System Sciences, 155-193, 18(2), April
1979.

[17] E. W. Dijkstra. A Note on Two Problems in
Connection with Graphs. Numerische Math, 269-271,
Vol. 1, 1959.

1276

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Table of Contents

