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This paper describes a methodology for autonomous robot navigation, based on log-polar
transform of images and optical flow. The navigation task for robots involves the detection
of obstacles in the traversable path. This is considered as basic capability for mobility that
includes the measurement of the height of objects to classify them as to be avoided or to be
ignored. The vanishing point in the image corresponds to the Focus of Expansion (FOE) since
we are assuming that the mobile robot moves with a translational velocity parallel to the ground
plane. The FOE is determined from the optical flow field using a phase-based approach. From
the FOE in the images and assuming the robot moves in the levelled ground, the planar ho-
mography H, is recovered and any object on the floor can be detected. In this paper we prove
that it is not necessary to recover the homography H explicitly but sufficient to evaluate the
displacement of tracked points along epipolar lines in the image. This article describes how
these epipolar lines are computed and their relation with the FOE, when the robot moves with
translational velocity.

1 Introduction
Robotics field is facing the challenge to develop robots that share an environment with humans.
The two basic skills social robots need to have is to interact with the persons and to navigate in
the world. To study possible solutions and feasible techniques we started the development of
the robot guideNicole. Nicole will guide visitors through the Institute of Systems and Robotics
(ISR), talk about the research and react on gestures performed by persons recognized as ”god-
fathers”. The interaction part as well as the navigation part will strongly rely on visual cues.
This paper is concerned with the navigation part.

Navigation based on vision needs to segment the traversable path and distinguish it from
objects that need to be avoided. The method we propose will solve the problem of obstacle
detection. Nicole starts from her initial position facing along the corridor with an initial move-
ment straight along the corridor, while capturing images from the corridor. From the images we
compute the optical flow which is further used to initialize the Focus of Expansion (FOE). To
get an initial guess for the FOE we also tested an approach using the intersection of the horizon
line and lines parallel to the corridor. The benefit of the latter method was that is did not require
any initial translational movement.



As Nicole moves with constant speed straight along the corridor we start detecting corners
and interesting points in the images. Local features have been shown to be well suited to
tracking as they are robust to occlusion, background clutter and other content changes [1].
The main idea is to distinguish between features belonging to the traversable ground plane and
features that belong to obstacles to be avoided. We calculate their spatial position from the
cartesian coordinates using the initial FOE as the center. The corners are tracked and their
trajectory in cartesian coordinates can be used to update the FOE. Their trajectory in spatial
coordinates will provide us with the information we are searching for: ground plane or obstacle
to avoid.

In the field of feature detection the recent research is aiming on obtaining invariance to
viewing conditions like in the work of Mikolajczyk and Schmid [1]. In the field of navigation
using vision Liang et al. [2] use a reciprocal-polar representation of images with the origin on
the FOE. Assuming a 3D motion parallel to the ground plane the corresponding image motion
of a set of co-planar points is a pure shift. The interpretation of the shift signal allows the
estimation of the ground plane homography. This estimation used to calculate the affine height
of non-ground plane pixels (obstacles).

In section 2 the geometric model is discussed. The section 3 deals with log polar transfor-
mation and how its properties are used in this article. Section 4 presents the implementation of
the vision based obstacle detection and describes the algorithm for the calculation of the optical
flow. Section 5 shows the results and Section 6 closes with a discussion and conclusions.

2 Geometric Models
The task of navigation and avoiding obstacles using vision can be described as the recovery
of the spatial layout of a scene to a certain extend. This implies the application of a basic
conceptual approach for two view reconstruction as presented in [3]:

1. Compute the fundamental matrix from point correspondences.

2. Compute the camera matrices P from the fundamental matrix.

3. For each point correspondencexi ↔ x′i compute the point in spaceXi that projects to
these two image points.

Due to ”noisy” images the implementation of such a reconstruction method lacks in practice of
robustness.

Recent approaches [2] renounce the reconstruction of the scene and concentrate on the detec-
tion of points on the ground plane as the first step. As shown in [3] there is a planar homography
Hπ that maps an homogenous image pointx1 to an homogenous pointx2 in the other image.

x1 = Hπx2 (1)

Liang et al. further simplified the recovery ofH by creating the multiple views by a pure
translational movement. In [4] it is shown the H matrix can be recovered from the vanishing
point, the horizon line and a corresponding point pair.

Our approach sets the same constraint on the movement but goes one step further by re-
nouncing the calculation of theH matrix explicitly. From Fig. 1 it can be seen that the line
passing by the image centers{C1} and{C2} usually baseline, intersect the imagesI1 andI2
in two pointse1 ande2 named epipoles. These points also represent:



Figure 1: Robot in pure translational motion.

• Vanishing points of the ground plane, since the translational motion is parallel to the
ground.

• Vanishing points that lie on a planeπ parallel to the ground plane

• The Focus of Expansion (FOE) generated by the translational motion

The baseline, the 3D pointX and its imagesx1 andx2 define a plane. This plane contains the
epipolese1 ande2 and it is named epipolar plane. The intersection of that epipolar plane with
the image planesI1 andI2 define the epipolar linesl1 andl2. As the direction of the translation
lies on the epipolar plane, the correspondent epipolar lines will coincide in the image plane and:

l1 = l2 = l (2)

Thus, along the trajectory of the robot the correspondent images of the 3D pointX move along
the epipolar linel, as long as the robot maintains a translational motion.

We can express the central projectionP1 with the (unknown) intrinsic camera calibration
matrixK and the normalized image pointx1 asλx1 = P1X = K[I|0]X.

The plane restriction is[n>d1] · X = 0 with π being a plane not containing the cameras
optical centers and defined by its normal vectorn and perpendicular distanced1 to the optical
center of camera 1{C1}.

X = λ

[
I
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d1

]
K−1 · x1 (3)

The central projectionP2 is x2 = λ(x, y, 1)> = P2X = K[I|t]X with the translation vector
t. It follows that the mapping from an image pointx1 to an image pointx2 is:

x2 = λK ·
[
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]
·
[

I
n>

d1

]
·K−1 · x1 (4)

Expressing the movement as with the scalar factorλ:

x2 = x1 + K

(
λt · n

>

d1

)
K−1 · x1 (5)



The projection of the translational vectort (by multiplication withK) on the image plane is the
epipolee.

x2 = x1 + λ
1

d1

e
(
n>K−1x1

)
(6)

As the multiplication ofn>, K−1 andx1 also results in a scalar we invent the scalarλ′ and
write:

x(λ′) = x1 + λ′
1

d1

e (7)

The equations describes the movement of a pointx in the image. Starting at pointx1 it will
move along the line defined byx1 and the epipolee. The magnitude of the movement is pro-
portional to the magnitude of the velocity and has a reciprocal relationship to the perpendicular
distanced1 to the optical center of the camera in the first frame.

Fig. 2 shows the movement ofx starting at pointx1 along the epipolar linel2. As known

Figure 2: Motion ofx along the epipolar lines. a) in the syntectic image b) in the real sequence

from [3] we have a pencil of epipolar lines radiating from the FOE. As shown in Fig. 2 the
images of the 3D points move along the those lines. Now we only need to track the features
along the pencil of epipolar lines. We can further speed up the tracking process by transforming
the rays to parallel lines. A technique which will transform an image in a way that makes this
possible is the Log-Polar transform shown in section 3.

3 Space Variant Methods - the Log-Polar transform
The implementation of visual behaviors in artificial systems is strongly related to the perfor-
mance of the image analysis algorithms used[5]. To achieve a good performance of the system
it is necessary to develop fast algorithms for image processing and control, but exhibiting stabil-
ity and robustness, to fit the goals of the vision system activity. This section describes algorithms
based on the principles of log-polar transformation its properties and potentialities.

One interesting feature of the human visual system is the topological transformation [6][7]
of the retinal image into its cortical projection. I our own human vision system, as well as in
those of animals, it has been found that the excitation of the cortex can be approximated by a
log-polar mapping of the eye’s retinal image. In other words, the real world projected in the
retinas of our eyes is reconfigured onto the cortex by a process similar to log-polar mapping
before it is examined by our brain[7].

In the human visual system the cortical mapping is performed through a space-variant sam-
pling strategy, with the sampling period increasing almost linearly with the distance from the
fovea. Within the fovea the sampling period becomes almost constant. This retino-cortical map-
ping can be described through a transformation from theretinal plane(ρ, θ) onto thecortical
plane(log(ρ), θ). This transformation is applied just on thenon-fovealpart of a retinal image.



Figure 3: The log-polar mapping applied to regular patterns. Concentric circles are mapped to
vertical lines, radial lines to horizontal lines.

3.1 Log-Polar Mapping and its Properties

3.1.1 Log-Polar Mapping

Log-polar mapping can be performed from regular image sensors by using different space-
variant sampling structures [8],[9]. The spatial variant geometry of the sampling points is
obtained through a tessellation and a sampling grid formed by concentric circles withNang

samples over each circle [5].

3.1.2 Log-Polar Properties

The log-polar mapping has number of important properties that make it useful as a sampling
structure. The mapping of two regular patterns as shown in Fig. 3 results in similarly regular
patterns in the other domain. From the Fig. 3(a) the concentric circles in the image plane
become vertical lines in thecortical plane. A single circle maps to a single vertical line since the
constant radiusr at all anglesθ of the circle gives a constantρc coordinate for allθc coordinates.
Similarly an image of radial lines which have constant angle but variable radius, result in a map
of horizontal lines.

These mapping characteristics are fundamental for some properties such as rotation and scal-
ing invariance. Rotation and scaling result in shifts along theθc andρc axis, respectively. For
rotation invariance notice that all possible angular orientations of a point at given radius will
map to the same vertical line.

Scaling invariance is another characteristic of this log-polar mapping. From the Fig. 3(b) we
seen that as point moves out from the origin along a radial line, its mapping stays on the same
horizontal line moving from the left to the right. The mappings of the concentric circles remain
vertical lines and only move horizontally as the circles change in size.

Another property is related with projection of the images when the sensor translates. The
images of Fig. 4 show the mapping of the optic flow vectors for different types of translational
motion of the sensor. Notice that when the sensor translates in same direction as the optical axis
the optical flow generated appears as vectors diverging from the image center. The effect in the
cortical plane is a set of lines with vectors with the same orientation, as illustrated in Fig. 4 (a).

Fig. 5 a) shows the centering of the cartesian image to the FOE and the sampling structure
formed by 256 samples over each circle and a radius related with the fovea of 2 pixels. Fig.
5 b) shows the Log-Polar image with the epipolar lines superimposed to support the above
mentioned properties.



Figure 4: The optical flow vectors for different types of translational motion. (a) Forward
motion. (b)+(c) Lateral motion

Figure 5: LogPolar transformation of the image. a) Logpolar sampling b) Logpolar representa-
tion

4 Vision-based Obstacle Detection
The task of vision-based obstacle detection may be split in those for a (unstructured) outdoor
environments and indoor environments. Solutions for the former have been reported by Snor-
rason et al. [10] using a color-contrast approach and 3D data for NASA’s Mars rovers as well
as by Lorigo et al. [11] using three independent vision modules based on brightness gradients,
RGB (Red, Green, Blue) color, and HSV (Hue, Saturation, Value) color, respectively.

For indoor navigation we can expect a planar surface (ground plane) with obstacles above
ground level. Thus, we are able to solve the problem of obstacle detection by detecting features
which do not lie on the ground plane.

To detect features above ground plane we will track them along the time while performing a
translational movement on the ground plane. As shown in section 2 we are able to distinguish
ground plane features and non ground plane features by their trajectory along the epipolar lines.
To construct the epipolar lines we need to specify their center, the FOE. We tried two techniques
to find the position of the FOE. The first one used the well known Canny edge detector, a
line segmentation algorithm and discriminator for those lines parallel to the corridor. In the
second approach we used the optical flow field to search for the common intersection of the
flow vectors. This technique is described in more detail in the following section.

4.1 Optical Flow Field and FOE

Solving the task to compute 2D component velocities, Fleet and Jepson showed that phase
contours are more robust with respect to smooth shading and lighting variations, and more
stable with respect to small deviations from image translations [12]. To calculate the optical
flow field we used the phase-based approach suggested by Gautama and Van Hulle [13] who
made their Matlab implementation publicly available.
(http://www.mathworks.com/matlabcentral/files/2422/opticalflow.tar.gz)



4.1.1 Principle of the algorithm

In their approach the image sequence is spatially filtered using a bank of quadrature pairs of
Gabor filters which are characterized by their center frequencies,(fx,fy) , and the width of the
enveloping (spatial) radially symmetric Gaussian,σ. Using constant bandwidths ofβ octaves,
results in a spatial width of

σ =
2β + 1

(2β − 1)2π
√

f 2
x + f 2

y

(8)

and the temporal phase gradient is computed, yielding estimates of the velocity component in
directions orthogonal to the filter pairs’ orientations. The component velocityvc is computed
by

vc = projφn
x
(v)φn

x =
−φt(x)

2π(f 2
x + f 2

y )
(fx, fy) (9)

where the spatial phase gradientφn
x denotes the normalized version of vectorφx andφt(x) the

temporal phase gradient.
A component velocity is rejected if the corresponding filter pair’s phase information is not

linear over a given time span. Finally, the remaining component velocities at a single spatial
location are combined and a recurrent neural network is used to derive the full velocity.

Gautama and Van Hulle used the estimation of the phase nonlinearityεl as the confidence
measure. Exceeding a certain threshold (nonlinearity criterionτl) leads to rejections of the
component velocities. The 2D full velocity is determined by several component velocities using
a bank of eleven spatial quadrature filter pairs (Gabor). The 2D velocities were computed only
if Nmin valid component velocities were available.

4.1.2 Performance of the algorithm

The performance of the algorithm depends mainly on four parameters:

• The nonlinearity criterionτl

• The minimum number of valid component velocitiesNmin

• The time span of the image sequence

• The speed of the image sequence

In the ideal case the algorithm should produce a dense flow field with flow vectors which
intersect with the horizon at one point: The Focus of Expansion (FOE). In reality we have
intersections all along the horizon line in the image with a center of gravity close to the FOE.
We also have a certain number of flow vectors that have no valid intersection with the horizon
line within the image. Those will be rejected and not used for the FOE computation.

Starting from the values suggested by Gautama and Van Hulle forτl andNmin we could
certify their results on the density of the flow field. The density increased considerably as
the nonlinearity criterion was relaxed or the minimal number of valid component velocities was
decreased. On the other hand the rejection rate grew with the number of calculated flow vectors.
For densities around 95% we had a rejection rate of 20%. For densities below 50% our rejection
rate did decrease in all cases. This suggests that values around 6 and 7 forNmin and 0.01 and
0.005 forτl are a good choice. They breakdown in performance for the filter bank for speeds
higher 3.5 pixels per frame mentioned by Gautama and Van Hulle was also observed in our
tests.



4.1.3 Tracking

The tracking of the corner features is done in the Log-polar image. From Fig. 5 it can be
seen that features that lie along the epipolar line can be easily found along vertical (or hori-
zontal) scan lines in the Log-polar image. For the algorithm itself we use the normalized cross
correlation known from stereo matching. Fig. 6 shows the expected vertical position of the

Figure 6: Vertical trajectories for different heights.

tracked features for a translational movement of the camera and two featuresX,X′ with differ-
ent heights.

4.2 Implementation

The software architecture is shown in Fig. 7. From the first image we calculate an initial guess
for the FOE by applying a Edge corner detection, a line segmentation algorithm and finally we
discriminate the lines parallel to the corridor. The FOE is the intersection of those lines while
the horizon line given by the IMU will put an additional constraint. The further update of the
FOE will be done by calculating the optical flow field and the intersection of the flow vectors
with the horizon line.

Figure 7: The software architecture.



The detection of our main features, the edges are performed directly on the images and
provides us with cartesian coordinates for the edge features. For the tracking of the edges we
first transform the image to a log-polar representation using the FOE as the center. We will
benefit from the fact that the edges will move along the epipolar lines, thus we only need to
search along horizontal scan lines in the log-polar image. The correspondence is performed
using the cross-correlation algorithm well known from stereo matching. The output of the
tracker gives the trajectory of the features from which we finally discriminate ground and non
ground features.

5 Results
Fig. 8 shows the trajectory of some features over a sequence of 15 frames. The corners 1,2,3,4,7
and 8 belong to the ground plane the corners 5 and 6 to the middle and upper part of the socks.
In Fig. 8 a) it can be seen that all features follow a trajectory along the epipolar lines intersecting

Figure 8: Trajectory of the corner features. a) in the image plane b) along the image sequence

at the FOE. In Fig. 8 b) the movement of the features along the image sequence can be seen. It
is obvious that the two features belonging to an obstacle above ground plane (middle and upper
part of the socks) follow a trajectory which can easily be distinguished from the ground plane
features. As presented in Fig. 6 features above ground plane follow a trajectory with a higher
gradient.

6 Discussion and Conclusions
We showed in this article that it is possible to develop an algorithm for obstacle avoidance based
on projective geometry. We used the equations for the homographyH to distinguish between
ground plane features and non ground plane features. We presented an approach without solving
the equation explicitly but emphasizing that the features move along the epipolar lines described
by equation 7. We used optical flow to get the FOE and assigned the former as the central point
of a logpolar transform. We showed that the features follow parallel lines in the logpolar domain
which could facilitate feature tracking.
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