Towards Robot Instruction through Bayesian Approaches to Laban-based Manipulative Action Characterization

Goals:
- To research Bayesian networks to deal with perception of manipulative actions
- To develop a novel manipulative movement descriptor based on the so-called Laban Movement Analysis (LMA)
- To reproduce and replicate the human manipulative actions onto either a humanoid or simulated robot hand

Expected Activities:
Laban-based Hand Movement Analysis (LHMA), Multi-modal (eventually, visuo-haptic) Perception using Hierarchical Bayesian Models, Human Grasp Behaviour Learning and Imitation using Computer Vision.

Motivations
- As LMA lacks the extension to grasping and handling movements, we plan to re-formulate the basic concepts of LMA so as to drive a new descriptive language for hand motions, named Laban-based Hand Movement Analysis (LHMA).
- Important key points to understand the grasping behaviour are the relationship between object size and grasping parameters and other properties (fragility, size of the contact surface, texture and weight).

Challenges
- **Recognizing Motion Primitives**
 - Recognizing the demonstrator’s hand manipulative gestures motions, specifically when and how objects are grasped, is a first step towards Learning by Imitation and has been commonly addressed in the respective literature.
 - Developing a novel approach called Laban-based Manipulative Action Perception (LMAP) founded on probabilistic frameworks (Hierarchical Bayesian Models, Hidden markov Models)

- **Learning by Imitation**
 (Programming by Demonstration (PbD))
 - Humans often learn to manipulate objects by observing other people. In mush the same way, robots can use imitation learning to pick up useful skills.
 - Developing control algorithms to implement PbD frameworks through vision alone.
 - Visual segmentation / recognition / localization of different objects

We propose a generative language named Structural Description Language (SDL) which is a framework consisting of a set of rules and signs that enable us to graphically describe and represent various postures and motions of the hand, which a human being can perform naturally.

As an underlying concept, Laban Movement Analysis (LMA) is re-defined in a way that helps create a novel framework called Laban-based Hand Motion Analysis (LHMA) which is adapted to describe and characterize the movements performed by the hand.

We seek to develop a hierarchical Bayesian framework to model human-like grasp behaviors and corresponding action sequences given labeled data resulting from LHMA components. This framework will allow a robotic system to learn by demonstration how to classify the different grasps employed to manipulate different objects and consequently reproduce them using computer vision and an artificial hand.

System Sketch

Contact Person: Seyed Jafar Hosseini
PhD Student at University of Coimbra – Faculty of Electrical and Computer Engineering

Email Address: jafar@isr.uc.pt