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Abstract— This work intends to contribute to the develop-
ment of autonomous dexterous robotic hands by presenting
an approach to describe the mechanisms underlying the hu-
man strategies during the execution of in-hand manipulation
tasks. The work proposes a symbolic decription of the in-
hand manipulation tasks. The in-hand manipulation tasks are
demonstrated by a subject wearing an instrumented glove
with a tactile sensing array on the palm and fingers region.
The description of the manipulation movement consists on a
sequence of hand contact states primitives with the object. The
set of possible contact state primitives is defined previously to
the demonstration.

I. INTRODUCTION

Nowadays, different types of robotic platforms are starting
to be massively introduced to new environments (domestic,
healthcare, entertainment, education) where the robots have
to deal with different challengs such as the ability to interact
with persons and with objects on the environment. These
new environments are dynamic, unpredictable and can not be
completely known in advance, what has led to the develop-
ment of mobile robotic platforms with multimodal systems:
active vision systems, audition, multi-articulated arms and
dexterous robotic hands. These multimodal modules provide
a framework to develop artifical perception systems to au-
tonomously deal with the dynamic of the environments, wide
variety of objects and interact safely with humans.

One of the key elements of the performance of the robotic
platforms is the ability to perform autonomous grasping,
manipulation, explorationa and characterization of not com-
pletely known objects. To achieve these objectives there is a
tendency on the field of robotic research to move the develop-
ment of robotic hands from simple grippers towards human
inspired articulated hands (mechanical stucture and number
of degrees-of-freedom) and introducing on the robotic hand
sensing devices such as tactile, temperature, force/torque
sensors. The introduction of these new generation robotic
hands places new challenges concerning the motion (fin-
gers, palm, coordination fingers-fingers, fingers-palm) of the
robotic hand, with such number of degrees-of-freedom, that
will be executed to perform the intended task.

In order to provide robotic hands with human-like ca-
pabilities for handling objects and interact with the en-
vironment, one possible aaproach is to encode and learn
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those manipulation strategies from human demonstrations.
The current approaches proposed in the literature, described
on the next section, focus on developing algorithms that
create generic representations of several classes of tasks.
The generalization process consists on the extraction of the
task essential components (constrains, regularities) across
multiple demonstrations.

The neuroscience literature [1] proposes a decomposition
of a typical human manipulation movement on different
stages: reach, load, lift, hold, replace and unload. On in-
hand manipulation tasks, the static hold phase is replaced
by a segment designed by in-hand manipulation. On this
segment, depending on the type of in-hand manipulation
performed [2], it’s possible to identify several movements
that involve the internal consecutive regrasping and release
of the object to perform its reorientation, fine positioning or
a more complex interaction such as sequential rotation of the
object. On this work we focus our attention on this segment.

II. RELATED WORK

Several approaches to solve the motion learning problem
on different contexts and applications fields, such as human
behavior modelling, learning by imitation are described on
the literature. A simple approach was presented by Delson
[3]. The authors simple make a statistical analysis of human
demonstrations of a pick and place task and define the range
of cartesian trajectories that can be performed to achieve that
task. Tso [4] applies Hidden Markov Moddels to encode
a trainning dataset built from a set of human demonstra-
tions. Given a human demonstration as input, the system
reproduces the trajectory of the trainning dataset with the
highest likelihood. Calinon [5] proposes to extract continuous
constrainsts from a set of demonstrations performed using
different initial positions of the object. The cartesian trajec-
tories of these demonstrations are projected using Principal
Component Analysis and then the constraints are represented
through Gaussian Mixture Models. To reproduce the task,
the constraints are reprojected on the original data space and
the generalized version of the cartesian trajectory is found
by estimating the trajectory that satisfies all the constraints.
The approches described previously propose the learning and
encoding of movements at the trajectory level.

Other approches propose a symbolic learning and encod-
ing of movements based on the supervised labelling and seg-
mentation of the primitives during the learning stage.Kondo
[6] proposes a method to describe in-hand manipulation
demonstration movements by recognizing a sequence of
contact state transitions between the human hand an the
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manipulated object. The recognition algorithm is based on a
Dynamic Programming approach by comparing the similarity
of the contact state transition between an input sequence and
template manipulation primitives. Bernardin [7] describes a
technique to recognize continuous human grasping sequences
using Hidden Markov Models. Twelve different grasp primi-
tives are recnognized using combining data from hand palm
tactile sensors and hand joints flexure levels from a data
glove.

The work by Krugger [8] presents the automatic ex-
traction of action primitives (without the necessity of pre-
segmentation and manual labeling) and the corresponding
grammar from continuous movements of several human
demonstrations of grasping tasks. This approach considers
that all the actions can be described by a set of elementary
build blocks (action primitives) and there are a set of rules
(grammar) that define how these actions primitives can
be combined. The action primitives are represented by an
extension of Hidden Markov Models, parametric Hidden
Markov Models. The extraction of the motion primitives
from the movements also take into account the changes in
object state.

III. APPROACH OVERVIEW

The approach proposed on this work follows the principle
presented and described by some previous works referred
previously that a human movement can be decomposed
in a sequence of elementary primitives. Depending on the
phase (reach, load, lift, hold, replace, unload, in-hand ma-
nipulation) of a typical manipulation movement, different
types of signals (position/orientation of the fingers distal
phalanges and wrist, joints flexure level, tactile sensing)
dynamically change their role and importance on the control
of object the object manipulation strategies of humans. On
this particular context, the in-hand manipulation of objects,
the contact signatures between the object and the different
regions of the hand surface, as well as the configuration of
the human hand joints flexure level are importante factors
on the definition and characterization of those strategies. On
this work, we focus our attention on the tactile signatures of
some in-hand manipulation primitives. Through the temporal
combination of those elementary primitives, it is possible to
characterize the strategies used by humans to perform precise
and complex movements during a in-hand manipulation task.

This work intend to implement a system to extract the
correspondent generalized primitive sequence, based on tac-
tile signatures, from human in-hand manipulation movements
demonstration of a specific task. Figure 1 shows an overview
of the global structure of the proposed system.

The human demonstrator performs an in-hand manipula-
ton task using an instrumented data glove with embeded
hand joints flexure sensors and equiped with tactile sensors
distributed on the hand palm and fingers surface region.
During the execution of the task a sequence of the elementary
primitives among the set of pre-defined primitives is detected.
The primitives are individually detected. The coherence of
the sequence of the primitives is verified by task contraints

Fig. 1. Overview of the global structure of the proposed system

module. This module identifies the task class of the demon-
stration and guarantees that the output primitives sequence
respects the general constraints of that class of tasks. This
verification can be seen as a coherence verification between
the detected raw sequence of primitives in order to avoid
the introduction of the descontextualized primitives on that
sequence due to unprecise movements performed during
the demonstration or errors introduced during the primitives
detection stage. The constraints referred previously are ex-
tracted from human demonstrations of different classes of
tasks, performed by different subjects. The diversity of the
demonstrations promotes the exploration of the variability of
the strategies used by humans to perform the same task. The
essential components of those strategies will emerge as the
permanent elements. Then, it is possible to build the temporal
and functional relations and rules between those elements in
order to find a compact representation of those strategies.

The action component module (hand fingers path and
motion planning) of Figure 1 it is not discussed on this
work. The average joint angles flexure level of the different
configuration of the hand pose primitives is stored for future
developments.

IV. CONTACT STATE TEMPLATE DEFINITION AND
DETECTION

On this section the general model of the framework used
to describe the different templates is defined, as well as,
the set of pre-defined primitives used during the primitive
detection stage. The methods implemented on that stage are
also presented.

A. Primitives model definition

The general model of the framework used to describe the
diferent templates of primitives is based on the output of the
data acquisition devices used in the human demonstrations:
the tactile sensing device - Tekscan Grip System[9] (Tekscan,
Inc.; Boston, MA). The tactile sensing device consists of 360
sensing elements that are destributed along the hand palm
and fingers surface. The output of each of the tactile sensing
element is an 8-bit integer. As the tasks on these experiments
are performed by the same subject on consecutive trials
of a single session, the tactile sensing device was not
calibrated. A method proposed by the tactile sensing device
manufacturer called equilibration was applied to the device in
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Fig. 2. Representation of the 15 tactile sensing regions defined from the
360 sensing elements of the tactile sensing device.

order to reduce/eliminate the variation between the individual
sensing elements.

The output of the 360 tactile sensing elements are grouped
on 15 regions as presented on the figure 2. Each region
corresponds to different areas of the hand.

A variable Ti is assigned to each of this regions:

T = {T1, T2, ..., T15}

The domain for each of those variable can be defined as :

Ti ∈ {NotActive, LowActive, HighActive}

where the NotActive, LowActive,HighActive define the
level of activation of that region during the in-hand manipu-
lation task. The NotActive state of a variable Ti corresponds
to an average output of the sensing elements corresponding
to an output that is between 0 and 10. The LowActive
corresponds to an output that is between 26-190 and to the
HighActive state between 190-255.

The general model of the framework used to describe the
different templates of primitives can be defined by the set of
variables T.

B. Primitives set definition

The set of pre-defined templates comprises a total of
seven templates. The contact state templates primitives are
estimated from different seven grasp configurations. Six of
those seven grasp configurations are demonstrated on the
next figure. The remaining one correspond to a situation
where there is no contact between the hand and the object
(Primitive7).

The variable E designes a primitive. The domain definition
of E is

E ∈ {Primitive1, P rimitive2, ...., P rimitive7}

In order to estimate the parameters of the templates
parameters T of each of the 7 pre-defined defined primi-
tives, several human demonstrations of the different static

Fig. 3. Representation of six of the pre-defined grasp configurations used
to estimate the corresponding static pcontact state templates.

contact configurations of the human hand and the object.
The templates are segmented on each demonstration and the
probability distribution P(T/E) is built.

C. Primitives detection on raw data input

In order to proceed to the dectection of the pre-defined
primitives, the raw data input produced during the in-hand
manipulation demonstration is integrated during equal time
intervals. The integrated data during each time slot Tt is
classified according with the following expression and it is
assigned a template label Et to that period of time. The
template with maximum likelihood is the template assigned
to that timeslot.

Pt(E/T) =
Pt(T/E)P (E)

Pt(T)

Pt(T/E) is achieved from the primitives demonstration
trainning session. P (E) is the probability of a template (1/7)
and Pt(T) is the probability of a model measurement.

The previous expression can be rewritten as follows.

Pt(E = primitivei/T = (t1, ...., t15)) =

Pt(T = (t1, ...., t15)/E = primitivei)P (E = primitivei)∑7
j=1 Pt(T = (t1, ...., t15)/E = primitivej)P (E = primitivej)

The output of the primitives detection stage is a raw
temporal sequence of the templates corresponding to the pre-
defined primitives.

V. EXPERIMENTAL RESULTS

A. Experimental setup

During the human demonstrations of the in-hand ma-
nipulation tasks, the subject wears on the right hand an
instrumented glove (Cyberglove II) with a tactile sensing
array (Tekscan Grip System) attached to the palm and fingers
surface region. The objects that are placed on the top of
a table are manipulated only with one hand (right hand).
The subject is seated during the in-hand manipulation tasks
demonstrations. The data from the tactile sensing array is
sampled at 500 Hz. The connfiguration of the tactile sensing
array, as well as the typical configuration of the experimental
area during the task demonstration are shown on figure 4.
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Fig. 4. On the left: Configuration of the tactile sensing array on the hand
surface. On the Right: Configuration of the experimental area.

TABLE I
Template1 TRAINNING RESULT

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
T1 H H H H L
T2 H H H H L
T3 N N N N N
T4 N N N N N
T5 N N N N N
T6 N N N N N
T7 N N N N N
T8 N N N N N
T9 N N N N N
T10 N N N N N
T11 N N N N N
T12 N N N N N
T13 N N N N N
T14 N N N N N
T15 N N N N N

Legend: N-NotActive; L-LowActive; H-HighActive;

B. Primitives set trainning

In order to estimate the parameters of T for each of
the seven pre-defined contact state template primitives, five
demonstrations of each grasp configuration presented previ-
ously were performed by a subject. The trainning result for
each of the primitives templates is shown on Tables I, II, III,
IV, V, VI and VII respectively. The conditional probability
density distribution functions of T for each contact state
template, extracted from the trainning results, is shown on
tables VIII, IX, X, XI, XII, XIII, and XIV respectively.

C. Primitives detection on raw data input

In order to test the primitives detection approach of the
pre-defined contact state templates, two tasks were defined.
On both tasks the manipulated object is a mug and the
starting configuration (position and relative orientation to the
subject) is the same. Task I consists on the reorientation of
the mug in order to positionate the grasp of the mug in a
configuration suitable to be grasped by handle by the subject
right hand. Task II consists on grasping the mug without
reorientation and elevate it. Each of the tasks was performed
2 times. The demonstrated tasks are segmented on blocks of
250 tactile sensing samples (500 miliseconds).The detection
of the primitives is made using the average value of each of
the T tactile inputs. The results for the primitives detection
on raw data inputs for Task I are shown on Tables XV and
XVI.

TABLE II
Template2 TRAINNING RESULT

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
T1 N N N N N
T2 L L L L L
T3 H H H H H
T4 H H H H H
T5 L L L N N
T6 L L N N N
T7 H H L L L
T8 H H L L L
T9 L L N N N
T10 N N N N N
T11 N N N N N
T12 N N N N N
T13 N N N N N
T14 N N N N N
T15 H H H H H

Legend: N-NotActive; L-LowActive; H-HighActive;

TABLE III
Template3 TRAINNING RESULT

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
T1 H H H H H
T2 H H H H H
T3 H H H H H
T4 H H H H H
T5 L L L N N
T6 H H H H H
T7 H H H H H
T8 L L L L L
T9 L L N N N
T10 H H H H H
T11 L L L L L
T12 L L L L L
T13 N N N N N
T14 L L L L L
T15 N N N N N

Legend: N-NotActive; L-LowActive; H-HighActive;

TABLE IV
Template4 TRAINNING RESULT

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
T1 H H H H H
T2 N N N N N
T3 H H H H H
T4 N N N N N
T5 N N N N N
T6 N N N N N
T7 L L N N N
T8 N N N N N
T9 N N N N N
T10 N N N N N
T11 N N N N N
T12 N N N N N
T13 N N N N N
T14 N N N N N
T15 N N N N N

Legend: N-NotActive; L-LowActive; H-HighActive;
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TABLE V
Template5 TRAINNING RESULT

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
T1 H H H H H
T2 H H H H H
T3 H H H L L
T4 H L L N N
T5 H L L N N
T6 N N N N N
T7 N N N N N
T8 N N N N N
T9 N N N N N
T10 N N N N N
T11 N N N N N
T12 N N N N N
T13 N N N N N
T14 N N N N N
T15 N N N N N

Legend: N-NotActive; L-LowActive; H-HighActive;

TABLE VI
Template6 TRAINNING RESULT

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
T1 L L L L L
T2 L L L L L
T3 L L L L L
T4 L L L L L
T5 L L N N N
T6 H H H H H
T7 H H H H H
T8 H H H H H
T9 L L L L L
T10 N N N N N
T11 N N N N N
T12 N N N N N
T13 N N N N N
T14 N N N N N
T15 H H H H H

Legend: N-NotActive; L-LowActive; H-HighActive;

TABLE VII
Template7 TRAINNING RESULT

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
T1 N N N N N
T2 N N N N N
T3 N N N N N
T4 N N N N N
T5 N N N N N
T6 N N N N N
T7 N N N N N
T8 N N N N N
T9 N N N N N
T10 N N N N N
T11 N N N N N
T12 N N N N N
T13 N N N N N
T14 N N N N N
T15 N N N N N

Legend: N-NotActive; L-LowActive; H-HighActive;

TABLE VIII
CONDITIONAL PROBABILITY DENSITY DISTRIBUTION - Primitive1

tk P (T = tk/E = primitive1)
(H,H,N,N,N,N,N,
N,N,N,N,N,N,N,N) 4/5
(L,L,N,N,N,N,N,
N,N,N,N,N,N,N,N) 1/5
other 0

TABLE IX
CONDITIONAL PROBABILITY DENSITY DISTRIBUTION - Primitive2

tk P (T = tk/E = primitive2)
(N,L,H,H,L,L,H,
H,L,N,N,N,N,N,H) 2/5
(N,L,H,H,L,N,L,
L,N,N,N,N,N,N,H) 1/5
(N,L,H,H,N,N,L,
L,N,N,N,N,N,N,H) 2/5
other 0

TABLE X
CONDITIONAL PROBABILITY DENSITY DISTRIBUTION - Primitive3

tk P (T = tk/E = primitive3)
(H,H,H,H,L,H,H,
L,L,H,L,L,N,L,N) 3/5
(H,H,H,H,N,H,H,
L,N,H,L,L,N,L,N) 2/5
other 0

TABLE XI
CONDITIONAL PROBABILITY DENSITY DISTRIBUTION - Primitive4

tk P (T = tk/E = primitive4)
(H,N,H,N,N,N,L,
N,N,N,N,N,N,N,N) 2/5
(H,N,H,N,N,N,N,
N,N,N,N,N,N,N,N) 3/5
other 0

TABLE XII
CONDITIONAL PROBABILITY DENSITY DISTRIBUTION - Primitive5

tk P (T = tk/E = primitive5)
(H,H,H,H,H,N,N,
N,N,N,N,N,N,N,N) 1/5
(H,H,H,L,L,N,N,
N,N,N,N,N,N,N,N) 2/5
(H,H,L,N,N,N,N,
N,N,N,N,N,N,N,N) 2/5
other 0

TABLE XIII
CONDITIONAL PROBABILITY DENSITY DISTRIBUTION - Primitive6

tk P (T = tk/E = primitive6)
(L,L,L,L,L,H,H,
H,L,N,N,N,N,N,H) 2/5
(L,L,L,L,N,H,H,
H,L,N,N,N,N,N,H) 3/5
other 0

TABLE XIV
CONDITIONAL PROBABILITY DENSITY DISTRIBUTION - Primitive7

tk P (T = tk/E = primitive7)
(N,N,N,N,N,N,N,
N,N,N,N,N,N,N,N) 1
other 0
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TABLE XV
PRIMITIVES DETECTION ON RAW DATA INPUT - Task I-Trial 01

Timeslot(ms) Trial 01 Estimation
0-500 (N,N,N,N,N,N,N,N,N,N,N,N,N,N,N) primitive7
500-1000 (N,N,N,N,N,N,N,N,N,N,N,N,N,N,N) primitive7
1000-1500 (H,H,N,N,N,N,N,N,N,N,N,N,N,N,N) primitive1
1500-2000 (N,N,N,N,N,N,N,N,N,N,N,N,N,N,N) primitive7
2000-2500 (H,H,H,L,L,N,N,N,N,N,N,N,N,N,N) primitive5
2500-3000 (N,N,N,N,N,N,N,N,N,N,N,N,N,N,N) primitive7
3000-3500 (H,H,L,N,N,N,N,N,N,N,N,N,N,N,N) primitive5
3500-4000 (H,H,H,L,L,N,N,N,N,N,N,N,N,N,N) primitive5
4000-4500 (N,N,N,N,N,N,N,N,N,N,N,N,N,N,N) primitive7
4500-5000 (H,H,L,N,N,N,N,N,N,N,N,N,N,N,N) primitive5
5000-5250 (N,N,N,N,N,N,N,N,N,N,N,N,N,N,N) primitive7

TABLE XVI
PRIMITIVES DETECTION ON RAW DATA INPUT - Task I-Trial 02

Timeslot(ms) Trial 02 Estimation
0-500 (N,N,N,N,N,N,N,N,N,N,N,N,N,N,N) primitive7
500-1000 (H,H,H,H,H,N,N,N,N,N,N,N,N,N,N) primitive5
1000-1500 (N,N,N,N,N,N,N,N,N,N,N,N,N,N,N) primitive7
1500-2000 (H,H,H,H,H,N,N,N,N,N,N,N,N,N,N) primitive5
2000-2500 (N,N,N,N,N,N,N,N,N,N,N,N,N,N,N) primitive7
2500-3000 (H,H,L,N,N,N,N,N,N,N,N,N,N,N,N) primitive5
3000-3500 (N,H,N,N,N,N,N,N,N,N,N,N,N,N,N) not recognized
3500-4000 (N,N,N,N,N,N,N,N,N,N,N,N,N,N,N) primitive7

The results for the primitives detection on raw data inputs
for Task II are shown on Tables XVII and XVIII.

The estimated primitive corresponding to the input data of
each segment is made by calculating Pt(E = primitivei/T =
(t1, ...., t15)) for each primitive of the set of pre-defined
primitives given the input tactile data T and selecting the
primitive that maximizes the previous expression.

The application of the proposed primitives detection ap-
proach to the acquired data during the demonstrations of
task, decomposes the input data on a sequence of segments.
Typically the first segments correspond to the template of
Primitive7, where the is no contact between the hand and
the object. This period corresponds to the movement of the
hand towards the object that is going to be manipulated.

Task I manipulation movements were segmented in a
repetitive sequence of grasping and release of the object, in

TABLE XVII
PRIMITIVES DETECTION ON RAW DATA INPUT - Task II-Trial 01

Timeslot(ms) Trial 01 Estimation
0-500 (N,N,N,N,N,N,N,N,N,N,N,N,N,N,N) primitive7
500-1000 (H,H,L,N,N,N,N,N,N,N,N,N,N,N,N) primitive5
1000-1500 (H,H,H,H,N,H,H,L,N,H,L,L,N,L,N) primitive3
1500-2000 (H,H,H,H,L,H,H,L,L,H,L,L,N,L,N) primitive3
2000-2500 (H,H,H,H,L,H,H,L,L,H,L,L,N,L,N) primitive3

TABLE XVIII
PRIMITIVES DETECTION ON RAW DATA INPUT - Task II-Trial 02

Timeslot(ms) Trial 02 Estimation
0-500 (N,N,N,N,N,N,N,N,N,N,N,N,N,N,N) primitive7
500-1000 (H,H,H,H,N,H,H,L,N,H,L,L,N,L,N) primitive3
1000-1500 (H,H,H,H,L,H,H,L,L,H,L,L,N,L,N) primitive3
1500-2000 (H,H,H,H,L,H,H,L,L,H,L,L,N,L,N) primitive3

order to reorientate the mug placed on the top of the table to
be grasped correctly. This sequence of grasp-realease allows,
the subject performing the experiment, to repositionate the
hand on the object, adapting the grasp configuration to the
new pose of the object, to maximize the effectiveness of the
subsequent hand actuation on the object. The fingers involved
on the reorientation of the mug are predominantly the thumb,
index and middle fingers. The ring and little fingers have a
less intensive participation on those movements, although the
assigned primitive is the same.

The reorientation of the mug is performed faster on the
second trial, requiring less grasp-release cycles. This can
probably be related with the experience acquired by the
human demonstrator or with the magnitude of the movements
applied to the mug. The magnitude of the tactile inputs and
number of fingers mobilized is higher during the initial grasp-
release cycles.

During the primitive extraction from the Task I - trial
02 input signals, one of the segments was not classified.
This was caused by the not very large extension of the
primitives templates trainning datasets. This can be improved
by increasing the trainning datasets extensions, as well
as, introducing in the algorithm some similarity measures
between input data signals that are going to be classified.

The second manipulation task, Task II, was decomposed
on a serie of primitives that involve the participation of high
extensions of the fingers surface. The task doesn’t require
the execution of grasp-release sequences of movements. The
intermediate primitive, Primitive5, is not detected at the
beginning of trial 02, as it is on trial 01. This can be caused
by the speed of execution of the movement and by the
segmentation of the movement on segments of equal pre-
defined extension, as well as, the average of input signals on
that period.

VI. CONCLUSIONS AND FUTURE WORK

This work has presented the global structure and method-
ology of the proposed approach to describe (symbolic de-
scription) the mechanisms underlying the human strategies
used to execute in-hand manipulation movements. The re-
sults presented and discussed previously, represent the out-
comes and analysis of this initial approach to devellop a
broader system, already presented on figure 2, showing some
effectiveness of this type of approache to achieve those
goals. The results of the primitives detection stage can be
improved by defining a larger set of pre-defined primitives
in order to have a better symbolic description resolution of
the performed task. Other possible future development is the
implementation of unsupervised learning methods to estimate
the parameters of the models of the primitives. The action
module (fingers path and motion planning) which controls
the interaction of the robotic dexterous hand with the object
can be develloped and tested in a virtual environment simu-
lator, using as input the contact state primitives sequences, in
order to evaluate the effectiveness of the proposed approach.

Other component of the system that is going to be im-
proved is the task primitive sequence representaction con-
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straints extraction. This development will allow the automatic
construction of a grammar for the task symbolic representa-
tion framework. This grammar defines, for a set of tasks, the
set of rules that define the temporal and functional relations
between the different primitives. These rules constitute the
canonical representation of the relations between primitives,
allowing the generalized encoding and consequent synthesis
of in-hand manipulation movements.
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