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Abstract— This paper focus in the importance of context
awareness and intention understanding capabilities in modern
robots when faced with different situations. The inclusion of
such requirements in robot design aim for more intelligent
robots capable to adapt its behaviours to the faced situations.
Gaze estimation and gesture interpretation are modalities,
closely related with context-depent human intention under-
standing, that are addressed in this work.

I. INTRODUCTION

It is common-sense that humans’ and other animals’
behaviours are context-dependent. Context affects almost all
aspects of behaviour, mostly in an automatic manner,i.e.
without a conscious reasoning effort.

Human perception is heavily influenced by top-down
predictions, making it more difficult to detect, or recog-
nize, out-of-context objects than familiar ones, and there
are numerous studies showing the priming effect of one
concept on another (see e.g. Glass and Holyoak, 1986
[1]). Pevtzow and Goldstone (1994) [2] suggest that the
categories a person has learnt, affects which features of
an object he or she perceives. Context has also impact on
decision-making and action. Preference measurements are
also context-sensitive [3]. Learning is affected by context,
as studies as far back as those of Pavlov have demonstrated.
Context has been studied extensively in language use, usually
with ”context” meaning the history of prior utterances (e.g.
Ferstl, 1994 [4]), but also including other kinds of context.
Holtgraves [5] has found that the status of the speaker relative
to the hearer affects whether the literal meaning of an indirect
request is activated, or not.

According to Turner [6], we can define context and
situation as follows. The term context means any identifiable
configuration of environmental, mission-related and agent-
related features that has predictive power for an agent’s
behaviour. The term situation is used to refer to the entire
set of circumstances surrounding an agent, including the
agent’s own internal state. Context is thus the elements of
the situation that should impact behaviour.

Artificial intelligent agents, as personal robots, must be
context-sensitive and adapt its own behaviour. The context-
mediated behavior (CMB), presented in [6], is based on the
idea that an agent should have explicit knowledge about
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contexts in which it may find itself, then use that knowledge
when in those contexts.

In human interaction, the contextual information can in-
fluence the understanding of personal intention. We can infer
human intention by analysing specific types of features in a
person’s pose and combining them with the context to un-
derstand the whole situation. In spite of context, other types
of information are needed to provide adequate interactivity.
In this work we address the gaze orientation to infer the
person’s visual attention.

Visual attention is associated with person eye fixations [7].
By fixating our attention to the same point where another
person is staring, we emphasise our presence through a
shared attention process [7]. Levels of attention associated to
gaze directionality has been subject of study in the Theory of
Mind [8]. While performing a task, user’s eyes and/or head
directionality patterns can be used to extract measures of the
level of attention. For example, in human-robot interaction
(HRI), by fixating on specific robot points (screen points,
body parts or camera) or watching away those interest
regions, the user demonstrates his interest or attention to
the robots’ behaviour. The link between attention and gaze
movements was demonstrated by several authors [9][10]

In what concerns gestural interaction, humans use gestures
to indicate directions, places or objects, repetitive gestures to
”control” actions or call for attention, and expression-related
or communicative gestures. Many authors have devoted their
efforts to gesture recognition in the past decade, especially in
attempts to use sign language like methods to communicate
with robots [11]To our knowledge, only a few researchers be-
came interested to deictic[12] and periodic[13][14] gestures
in recent years. These two types of gestures are of large
importance to HRI, as pointing directions, places, or objects
can simplify largely the communication between humans and
robots. Repetitive or periodic gestures can also provide a
simple, but natural and effective way of communicating with
a robot. Among the repetitive gesture class we can include:
left (moving hand horizontally left-and-right, but faster to
the left), right, slow down, approach, etc. These types of
gestures can have a great utility in industrial plants, where
transportation robots may be guided by any person along a
new path for some reason.

The next sections will present a review of the literature
that was relevant to guide our studies, some methodology
considerations, the implementation and results, attained at
the current stage of the work, and finally some conclusions
for this paper.



II. METHODOLOGY

A. Time varying analysis of eye/head gaze movement

Retrieving gaze estimation from images, or a movie is
something that is natural for most humans. For a robot to
have that capability is not as trivial. For gaze estimation
we need four points, which are the two irides centres and
the two eyeballs centers; the two vectors that we get from
projecting a ray that passes through the eyeballs centers
and corresponding iris will intersect in space, in the point
that a person is looking at. Having this, we will have to
recognize the iris, locate the eyeballs centers, and finally
trace the two vectors to estimate the gaze. Using an RGB
camera, first step is to locate the user’s face, using Viola and
Jones method [15] for face detection. From this detection,
and using an average ellipsoid model of the user’s head, we
can get a rough estimate of the position of user’s face w.r.t.
the camera. The next step consists in detecting robust image
features in the user’s face and map them onto the ellipsoid
model. We have chosen SURF [16] as the feature detector,
and for each feature we compute the respective projective
ray with the model to get the corresponding 3D points, as in
figure 1a.

(a) (b)

Fig. 1: (a) Representation of projection of SURF points to
the ellipsoid model and b Locating eyeballs in the ellipsoid
model.

Now we need a eye tracking method to get the both irides’
centers. Once we have them we can map them onto the
ellipsoid model. Human eyes are approximately spherical
with 22.5mm of diameter, thus we can approximate their
centers in the ellipsoid frame (Fig. 1b).

From this point on, the system detects the user’s face, and
extracts new SURF points. These new SURF features are
paired with the corresponding obtained in the first frame.
The head pose estimation corresponds to the application
of one method to solve this PnP problem. The result is a
approximation of the user’s head pose and as so, the position
of the eyeballs centers. Again using the eye tracking we get
the iris, and ray trace them to the spheres models of both
eyes. Finally we have the four 3D points we needed for
gaze estimation, the eyeballs centers and the iris. The two
vectors we obtain intersect in space at the location the user is
looking at. The eye tracking routine is made using OpenCV
functions. From one image of the user’s face, that we get
from the HAAR cascade for face detection, we heuristically
narrowed the region of the eyes.

B. Periodic gestures

A periodic gesture can be defined as the repetitive motion
of a person’s hand and that, depending on the envelope or
direction, means hello, move right, move forward, among
others. This class of gestures are mainly related to action
guidance, or to draw attention or compliance. By obser-
vation we have concludes that these gestures are normally
performed, by different people, in a range of frequencies
between the 0.5Hz and 1.5 Hz. By consequence to detect
these gestures we need to detect the presence of a periodic
trajectory of the hand within the given range of frequencies.

A similar problem that we can find in the literature is the
detection of voice signals in audio streams. Both the periodic
gestures and in case of detecting voice, these have a natural
frequency and a certain amplitude. In addition, both are
normally corrupted with noise, that needs to be eliminated
so that the detection can take place more easily. Given these
factors, we used an adaptation of a voice detection algorithm
namely the Modified Autocorrelation Method Using Clipping
(AUTOC) [17]. This algorithm has a quite simple principle
of operation,that had to be adapted to the current problem.
This was due to the fact that we are dealing with a range of
very low frequencies and sequences with a small number of
samples, when compared to the voice signals.

In Fig. 2 represents a block diagram showing the steps of
this algorithm. In each 120 samples (S[n], n = 1, · · · ,120),
the signal is submitted to a low pass digital filter (FIR filter of
order 5) with a cutoff frequency of 10Hz in order to eliminate
the highest frequency noise, taking into account the range
of the gesture working frequencies of the gestures. Next, it
was necessary to rectify the amplitude values, and eliminate
the existing offset so that clipping is done in a form both
cohesive and uniform. To remove the offset, we compute
Smax (1) and Smin (2) and using the expression (3) the data
is rectified.

Smax = max(S[n]),n = 1, · · · ,120 (1)

Smin = min(S[n]),n = 1, · · · ,120 (2)

Sc[n] = S[n]− Smin +Smax

2
,n = 1, · · · ,120 (3)

The next step is to do the clipping by the level cL
for each sequence of 120 samples. After computing the
maximum values for both the first, and last 20 samples,
respectively IPK1, and IPK2. Them cL is determined as cL=
k×min(IPK1, IPK2), where k = 0.64. Using this clipping
level, a centred sequence of values (see figure 3b) ) is
generated from the input signal as follows: 1 if the value
Sc[n] is greater than cL, -1 if the value of Sc[n] is less than
cL and 0 for all other cases [17].

The normalised autocorrelation of the centred sequence is
obtained, and the resulting sequence corresponding to the
different lag values is scanned for the first minimum. If this
minimum value is below −0.35, then the signal represented
by the 120 samples is considered as periodic, otherwise it
is labelled as non-periodic. It is important to note that this
is in fact different from the AUTOC algorithm, whereas



Fig. 2: Block diagram for detection of periodic gesture algorithm
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Fig. 3: Some algorithm steps submitted to a well know
sinusoidal signal: a) well know sinusoidal signal x(n) ; b)
clipping step; c) autocorrelation result with threshold=-0.35.

the in latter it is considered the first maximum value of
the normalised autocorrelation. In reality the first minimum
value, whose lag corresponds to halt the signal period (that
results in the phase opposition of the signal), whereas the
first maximum value corresponds to the lag equivalent of
the period of the signal. We have chosen the minimum as it
is more easy to detect especially with such small number of
samples.

Now our system is able to detect if a periodic gesture is
present or not, and we can select the principal direction as
well as its intensity to be analysed in order to identify the
associated semantic.

C. Deictic Gestures

Among the group of deictic gestures we are mainly
interested in the pointing gestures. Using these gestures we
can interact with a robot specifying a position to which it
should move, or an object it should manipulate, or even a
person it should interact with.

The approach used here is not to determine the pointing

gesture alone. Using first a attention gesture (waving, for
example), to get the attention of the robot, we can then point
to a certain place for it to move. Using a depth camera and
the application programming interface OpenNI [18], [19] it is
possible to get the positions of the elbow and the hand. This
pair of 3D points define the pointing vector a. To determine
the position the user is intending the robot to go, we make
use of the ground plane information given by the OpenNI.
The ground plane is then defined by a normal vector n and
3D point p0 of the floor as:

n · (p−p0) = 0, (4)

knowing that p is a generic point on the plane.
With the vector a and the plane, defined in (4), we can

know the intersection point, which should correspond to the
position indicated by the user. Using the vector equation for
a line and the equation of the plane (4),{

n · (p−p0) = 0
p = l+λ ·a,

(5)

defining l as a point in the line, with the same direction
as a, and λ relates ||a|| and the distance between the l and
the point of the plane, p. Determining the equation system
(5) we can define the λ as,

λ =
(p− l) ·n

a ·n
.

Enviroment plane segmentation: The environment that
surrounds the robot must be known in order to distinguish
the pointing gesture according the context. For example, if
direction pointing line intersects a tall structure probably it
might refers an object to grab (ex: on a table), otherwise
might just refer a location where the robot must go. A rough
environment segmentation method is suggested based on 3D
Hough plane detection [20]. It is well known that a plane
can be defined through the following equation:

ρ = p ·n
= pxnx + pyny + pznz

with p belonging to the plane, n being a unitary normal
vector and ρ the distance to the origin. Considering the plane



polar coordinates representation the equation can be rewriten
as:

ρ = px sinϕ cosθ + py sinϕ sinθ + pzcosϕ

where ϕ is the angle between xy-plane and the normal vector
in z direction, and θ is the angle of normal vector projection
on xy-plane. A R3 plane will be mapped on a tridimensional
Hough Space (θ ,ϕ,ρ). For each Cartesian point from a 3D
cloud, we mark all the planes that include it on this Hough
Space. The intersection of three curves represents a plane.
Finding where higher intersections happens, it is possible to
detect dominant planes through a threshold (see algorithm
1).

Algorithm 1 3D Hough Transform Plane Detection
1: Input: 3D point cloud
2: Output: dominant planes
3: for all points p from 3D point cloud do
4: for all cells (θ ,ϕ,ρ) in accumulator HT do
5: if point p is inside the plane (θ ,ϕ,ρ) then
6: increment cell HT (θ ,ϕ,ρ)
7: end if
8: end for
9: end for

10: find HT (θ ,ϕ,ρ) cells with higher values, that defines
dominant planes

III. IMPLEMENTATION AND RESULTS

A. Gaze tracking

The head pose estimation with gaze tracking is imple-
mented in C, in a normal laptop and using it’s own web-
cam. This application runs in real time at about 20 frames
per second. The head pose estimation with gaze tracking
is good for a normal distance of interaction of about 50
to 80 cm, which for a longer distance, the rate of correct
matched points (matches between the reference frame and
other frame) is reduced and the head pose estimation is
no longer possible. The pose estimation has a fluctuation
error of about 4 mm measured using a human dummy. The
eye tracker has an error of about 10% of the dimension of
the detected iris, proven by visual marking of iris centre
and result of eye tracker (Fig. 4), for a distance no larger
than 1.5m, in which the irides become too small to be
detected. Combining the head pose estimation with the eye
tracker we end up with a estimation of the user’s gaze. The
gaze estimation has an error of about 3 degrees, but in our
application is enough for detecting the region which the user
is looking at, and so, we extrapolate the user’s attention. If
the user is looking to the region of the robot, then we may
consider the he/her is paying attention to the robot.

The gaze tracking system based on head pose estimation
enable to limit regions and determine when the user is
looking at them, or when is not looking. Such functionality
on a robot (Fig. 5) provides an additional input, giving the
robot the ability to answer the question ”Is the user looking
at me?”.

Fig. 4: Example of eye’s image filtering and estimation of
iris center

Fig. 5: Hilario, a human interaction robot used for context-
based understanding experiments: context-sensitive for peri-
odic and deictic gestures and attention based on user gaze.

B. Detection of periodic gestures

In Fig. 6 is shown the three coordinates of the periodic
move forward gesture. With its analysis we can conclude that
the implementation can perfectly distinguish the coordinates
that make the gesture periodical with those that do not. Since
the principal component of this gesture is on coordinate Z
axis, we can expect that the periodicity is detected primarily
on the corresponding coordinate values. If fact, as long as
we can detect that there is a periodic behaviour in one of
the coordinate axes we immediately classify the gesture as
periodic. In addition, the implementation has a time response
of detection between 3 and 4 seconds, which corresponds to
the number of samples that the analysis is based upon.

C. Pointing Gesture

In what concerns, pointing gestures, as it is illustrated in
Fig. 7a, we are able to indicate a position to the robot that
it should go to, what corresponds to identify a point on the
ground floor. We were also able to measure the precision of
the system comparing the distance between a know marked
point and the samples average, taking the Primesense sensor
as origin. As show in Fig. 7b we can conclude that the
system, in order to tell the robot to go to specific area,
have a good precision results. We are currently implementing
the object plane segmentation that will enable us to identify
pointed objects using a similar method.

The object plane segmentation enable us to identify
pointed objects using a similar method. The plane detec-
tion approach described in algorithm 1 identifies dominant
planes by searching high peaks of sinusoidal surfaces in-
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Fig. 6: The three coordinates of the move forward gesture
and the corresponding result of periodic the characteristics.
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Fig. 7: (a) Result of pointing gesture. The white point is the
location where the gesture is directed.; (b) Results obtained
with the measurement of precision, comparing the mean
point of 120 samples and the marked point at 2.8m depth
and 1.8m to the left of the sensor reference.

tersections on Hough Space (θ ,ϕ,ρ). Figure 8 exempli-
fies the intersection of 3 sinusoidal surfaces generated by
3 three-dimensional points (a horizontal plane defined by
(1,0,1),(0,1,1),(1,1,1)).

D. Context representation and identification

The context was described using an ontology designed
using Protégé. The ontological representation for context is
depicted in figure 9.

This ontology provides a mechanism to relate all the rele-
vant information that contextualize a given gesture. Extracted

Fig. 8: Three 3D points mapped on Hough Space (θ ,ϕ,ρ).
The intersection of the 3 sinusoidal surfaces locks the plane
defined by the three 3D points.

Fig. 9: Example of a possible context descriptor using an
ontological representation

features are characterized in terms of mission, environment
and temporal characteristics. The interpretation of a gesture
takes into account the relationships between these character-
istics, providing the context for that gesture.

The context identification problem was considered to be
similar to an ontology matching problem. This means, given
a set of input features, the process selects the most similar
representation for context, according an evaluation metric.
The matching process was implemented using a genetic-
algorithm (GA), implemented with the WatchMaker library.
The fitness function uses an evaluation metric based in the
Tversky’s similarity [21]. The ratio model we applied is
modeled according to the equation:

SimilarityO1,O2(M) =

f ((FO1 ∈ FO2)|M)

f ((FO1 ∈ FO2)|M)+α× f ((FO1 −FO2)|M)+β × f ((FO2 −FO1)|M)
(6)

where f ((FO1FO2)|M) are the matched elements of both
ontologies with respect to the mapping M, f ((FO1−FO2)|M)
and f ((FO2 −FO1)|M) are respectively two sets of the un-
matched elements with respect to the mapping M. α and β

are two parameters between 0 and 1, which determine the
relative importance of the two unmatched feature sets; f is
a function defined as the cardinality of set.

In our genetic-algorithm, the Elitist strategy was employed
to save the current 5% of best solution after selection, i.e.
5% of the population with best fitness score was passed
to the next generation unchanged. The parameters used in



the genetic algorithm were assigned as follows: size of
population was 1000; crossover points were 3; crossover
probability was 0.9; mutation probability was 0.001; and the
max generation count was 400. The genetic algorithm pa-
rameters were determined heuristically, thus more advanced
techniques for tuning these values will be studied as future
work.

The candidate solutions were represented as an array of
integer numbers obtained by a stochastic process. The search
space for a given solution was limited to the number of
concepts of both ontologies, i.e. the length of the array was
given by the number of concepts in the ontology 1 whilst
the value for each array ”cell” could vary between 0 and
the number of concepts in ontology 2. Each concept in
one ontology could be mapped in more than one concept
in the other, thus value repetition throughout the candidate
solution were allowed. The candidate solution representation
used in our study is similar to that used in [22], considering
the adequate adaptations to each algorithm. For the genetic
algorithm, given its population characteristics, a number
of candidate solutions were computed at the beginning,
according the population size, and then changed according
the mutation and cross-over parameters.

The ontology matching algorithm was tested in the
OAEI2005 dataset. The evaluation measures used were re-
spectively Precision (Pre), Recall (Rec) and FMeasure(F1).
The obtained results are summarized in table 10 and de-
picted, comparing different approaches to the problem.

Fig. 10: Ontology matching results table

In table 10 we present the results of a preliminary ex-
periment conduced in the OAEI2005 dataset, in order to
validate our implemented algorithm. We also implemented
a Simulated Annealing approach, however we concluded the
genetic-algorithm performs better when solving this problem.

IV. CONCLUSION

The paper considered the importance of addressing con-
textual information for intention understanding in modern
robots. We proposed a possible methodology to address the
problem of understanding the user intention, by means of
context identification based not only on gaze tracking, but
also on gestures analysis. The gaze tracking informs the
robot about the user’s focus of attention, if any. The gesture
analysis enables the robot to receive orders or information
from the user in a simple manner, or simply to direct the
robot attention to somewhere or something, depending on
the context. Both gesture and gaze analysis have shown
interesting results, and as the corresponding methods do not

require excessive computational power they are adequate for
integration in a mobile robot.

We believe that these two mechanisms can provide impor-
tant information for achieving the construction of a robot that
can infer about user intention. This will be possible through
a context-dependent interpretation of these two interaction
cues. To support our approach we have presented some
implementation consideration and results of the different
components of the whole solution.
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