
Efficient Information Sharing and Coordination in
Cooperative Multi-Robot Systems

Rui Rocha
Institute of Systems and Robotics

University of Coimbra, Pole 2
3030-290 Coimbra, PORTUGAL

E-mail: rprocha@isr.uc.pt

Abstract— Multi-robot systems involve the distribution of
robotic resources and information. Being an opportunity, they
require cooperation among robots so that potential advantages
of distribution become effective. Cooperation requires in turn
efficiently sharing information and proper coordination. This
article extends previous work, regarding efficient information
sharing in the context of volumetric mapping [1], with a
coordinated exploration method based on mutual information
minimization. Experimental data obtained with multi-robot
systems varying in size demonstrate the performance gain due
to the proposed coordination method.

Index Terms— Multi-robot systems, cooperation, coordination,
information utility, 3-D mapping, exploration.

I. INTRODUCTION

Multi-robot systems (MRS) are sets of autonomous mobile
robots that are assumed to cooperate in order to carry out
collective missions [2], [3]. MRS may either substitute humans
in risky scenarios [4]–[7] due to the expendability of individual
robots, or relieve people from collective tasks that are monoto-
nous and repetitive. Moreover, they allow to automate missions
that are inherently distributed in time, space or functionality.

The distribution of robotic resources and information en-
dows MRS with interesting features, such as space and time
distribution, managing complexity through distribution, distri-
bution of risk and increased robustness [8]. But these potential
advantages require robots’ cooperation in order to become
effective [9]. Cooperation requires in turn efficient information
sharing and proper coordination. Previous work was conducted
with the aim of restricting communication in MRS to useful
information, in the context of building volumetric maps [1].
This framework is extended herein with coordinated multi-
robot exploration, so as to improve collective performance.

1) Sharing information within multi-robot systems:Most
of the work about MRS has been devoted to the definition
of different distributed architectures [4], [6], [10] that rule
the interaction between the behaviors of individual robots.
Although communication is a central issue of MRS, because it
determines the possible modes of interaction among robots, it
has been often neglected in these architectures. Furthermore,
most of the work about communication in MRS [10]–[13]
has addressed the communication structure, neglecting another
important dimension: the communication content.

A distributed group architecture for 3-D mapping was
proposed in [1], which endows robots with an altruistic infor-
mation sharing behavior, wherein communication efficiency is
ensured by restricting communication contents to useful infor-
mation. This framework is extended herein with coordination.

2) Robotic mapping:Robotic mapping addresses the prob-
lem of acquiring spatial models of physical environments with
mobile robots equipped with range sensors. It is a relevant
application domain whether robots are used to build detailed
maps of environments, especially hazardous environments for
human beings [5], [7], or they require a map to safely navigate
within the environment and perform other useful tasks.

As sensors have always limited range, are subject to oc-
clusions and yield noisy data, mobile robots have to navigate
through the environment and build the map iteratively. Key
challenges include the sensor modeling problem, the repre-
sentation problem, the registration problem and the exploration
problem [14]. This article focuses on coordinated exploration.

3) Exploration and active sensing:When a robot or a team
of robots explore an unknown environment to build a map, the
main goal is to acquire as much new information as possible
with every sensing cycle, so as to minimize the mission time.

Yamauchi et al. proposed frontier-based exploration [15]
whereby a robot is driven to the closest frontier cell in its
neighborhood, located between open space and unexplored
regions. Burgard et al. used this concept to address coordi-
nation in multi-robot exploration, by considering a balance
between travel cost and utility of unexplored regions, so
that robots explore non-overlapping regions [16]. Bourgault
et al. [17] addressed the single robot exploration problem as
a balance of alternative motion actions, from the point of
view of information gain (in terms of entropy), localization
quality (using SLAM) and navigation cost. In [18], robots that
can communicate with each other are arranged in exploration
clusters and the robots within each cluster share a common
map and coordinate their exploration actions as in [16].

This article proposes a multi-robot exploration method
closely related with [16], but with important improvements: it
uses a distributed architecture model with efficient information
sharing [1], wherein entropy is used to define a formal
information-theoretic background to reason about the mapping
and exploration process; and the utility of an exploration
viewpoint is formally defined using entropy-related concepts.



II. PROBABILISTIC VOLUMETRIC MAPS

This section briefly presents the grid-based probabilistic
framework proposed in [1] for representing and updating
volumetric maps. The 3-D workspace is divided into equal
sized voxels with edge ε ∈ R and volume ε3. The set of all
voxels yielded by such division is a 3-D discrete grid Y . Given
a 3-D point x ∈ R

3, v(x) denotes the voxel l ∈ Y containing
the point x. Given a voxel l ∈ Y , w(l) ∈ R

3 denotes the
voxel’s center coordinates [xl, yl, zl]T . The coverageof a voxel
l ∈ Y is the portion of the the cell which is covered (occupied)
by obstacles. It is modeled through the continuous random
variable Cl, taking values cl in the interval 0 ≤ cl ≤ 1. The
tuple Mk = (xk,Vk) denotes the k-th batch of measurements,
being xk the sensor’s position from where measurements are
obtained and Vk the set of measurements belonging to the
batch, provided by the robot’s sensor at t = tk, tk ∈ R, k ∈
N. The set Mk = {Mi : i ∈ N, i ≤ k} is a sequence of k
batches of measurements, corresponding to the period of time
t0 ≤ t ≤ tk, being t0 the initial time before any batch of
measurements. The knowledge about the voxel’s coverage C l,
after k batches of measurements, is modeled through the pdf
p(cl | Mk), 0 ≤ cl ≤ 1. The probabilistic volumetric map
after k batches of measurements is the set of random variables
C = {Cl : l ∈ Y}, described statistically through the set of
coverage probability density functions P(C | Mk) = {p(cl |
Mk) : l ∈ Y}. The coverage of each individual voxel is
assumed to be independent from the other voxels’ coverage
and thus C is a set of independent random variables.

The voxel’s discrete entropy is denoted as H(C l) and the
map’s entropy is

H(C) ≡
∑
l∈Y

H(Cl), (1)

which is an absolute measure of how much uncertainty the
map contains. Hereafter, the quantity H(C l | Mk) = H(tk)
denotes the map’s joint entropy H(C | Mk) conditioned to
the previous k batches of measurements.

See Fig. 3 for examples of volumetric maps.

III. DISTRIBUTED ARCHITECTURE MODEL

This section briefly describes the distributed architecture
model proposed in [1] for building volumetric maps, which
is extended herein with a coordinated exploration mechanism.
Consider a team F = {1, . . . , n} of n mobile robots and
the architecture’s diagram depicted in Fig. 1. Although this
diagram refers to an individual robot i ∈ F , the interaction
with the rest of the team (the set of robots F\i) is represented
through the communication block and its associated data flow.

The robot’s sensor provides new sets of vectors Vk+1 where
obstacles are detected from the current sensor’s pose Y (t). The
localization module gives the sensor’s pose Y (t), including
position and attitude. The actuator changes the sensor’s pose
accordingly with new selected viewpoints Y s. Whenever the
robot’s sensor yields a new batch of measurements Mk+1 =
(xk+1,Vk+1), the map is updated accordingly.
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Fig. 1. Block diagram showing the relation between different parts of the
process and the resources of a given robot i of the fleet F .

Robot i selects a new viewpoint Y s = Y s
i given the

current map, its current pose Yk = Yk,i, its current visibility
parameters ri and αi, and visibility information {(Y s

j , rj , αj) :
j ∈ F\i} about all the other robots in the team F\i. The new
selected viewpoint Y s is the reference input to the robot’s
actuator. Whenever the robot selects a viewpoint for its sensor,
the communication module is used to communicate the tuple
(Y s

i , ri, αi) to other robots, i.e. the new selected viewpoint and
its current visibility parameters. This minimal communication
increase the robot’s awareness about its teammates and enables
to coordinate the multi-robot exploration.

As part of the map updating process, it is built a batch of
measurements Sk = (xk,Uk) containing the most useful data
from sensor Uk ⊆ Vk. Those selected measurements are shared
between robot i and the other robots in the fleet F\i through
the communication module. This module can also provide
robot with batches of measurements Rk = (x′

k,U ′
k) given by

other robots and the map is updated accordingly. Cooperation
among robots arises because of this altruistic commitment to
share useful information [1].

A. Results

An uncoordinated version [1] of the distributed architecture
model was implemented in the mobile robots depicted in
Fig. 2, which use stereo-vision as range sensor. Fig 3 shows
three different versions of the map obtained in a mapping
mission performed by these robots. The robots started the
experiment with a maximum entropy map and followed the
entropy gradient-based exploration method proposed in [1], in
order to explore the environment until H(C) < 500. The same
mapping mission was also carried out with a single robot; the
time tk(1) that it needed to obtain maps with entropy equal
to the ones depicted in Fig 3 is shown therein in red, so as to
better understand the reduction of the mission execution time
yielded by the team of two robots.



H(C | Mk)=76047 bits tk(1)=389 s

tk=243 s

H(C | Mk)=23196 bits tk(1)=1752 s

tk=1123 s

H(C | Mk)=249 bits tk(1)=9146 s

tk=6530 s

One robot would need…

Fig. 3. Map’s evolution along a volumetric mapping mission with two robots. Each column is a snapshot of the map at a different instant time tk and entropy
level H(C | Mk). The time tk(1) that a single robot needs to obtain a map with the same entropy is shown in red. The maps’ resolution is ε = 0.1 m.

(a) (b)(a) (b)

Fig. 2. Mobile robots used in the mapping experiments: (a) Scout mobile
robots (top) equipped with stereo-vision sensors (bottom); (b) a stereo image
pair (top) and its disparity (bottom-left) and depth map (bottom-right).

Although the two mobile robots accomplished the mapping
mission in less time than a single robot — 72% of the time
needed by a single robot — this performance gain is far away
from a linear performance gain with team size, wherein two
robots would spend just half of the time of a single robot. The
main reason for this result is the lack of coordination in the
robots’ exploration actions.

IV. COORDINATED EXPLORATION

In an exploration mission, the objective is to acquire as
much new information about the environment as possible with
every sensing cycle. An entropy gradient-based exploration
method was proposed in [1], which directs the robot’s sensor to
frontier voxels [15] between more explored and less explored
regions. This method was proved to be successful with a single
robot [1], but coordinating the robots’ exploration actions
with multiple robots is crucial to ensure a good collective
performance.

Fig. 4 illustrates the three types of undesirable situations
yielded by the lack of coordination. Firstly, a robot may choose
the same exploration viewpoint selected by other robots or, at
least, the map’s region that a robot can sense may overlap
the sensed regions by other robots (Fig. 4-a). Secondly, a
robot may select an exploration viewpoint for which its chosen
trajectory is blocked by other robots (Fig. 4-b). Thirdly, the
robot’s sensor may me occluded by other robots located within
its sensory field of view (Fig. 4-c).

(a) (b) (c)

Fig. 4. Typical undesirable situations due to uncoordinated exploration.

A. Robot’s visibility

Consider a robot and its pose Y = (x, a), which includes
its position x ∈ R

3 and orientation a = {θ, φ, ψ}. The
angles θ, φ and ψ are the yaw angle, the pitch angle and
the roll angle, respectively, and are assumed to be positive
in the counterclockwise direction. The robot’s visibility is the
maximum volume the robot can sense upon its current pose.
Given the maximum range distance r and the maximum angle
α with the heading p̂ of the robot’s sensor, it is the volume
defined as the continuous set of points:

V(x, a, r, α) = {y ∈ R
3 :‖y − x‖ ≤ r,

0 ≤ arccos
(

(y − x) · p̂
‖y − x‖

)
≤ α},

(2)

with
p̂ = [cos θ. cosφ, sin θ. cosφ,− sinφ]T . (3)

Whether the robot is currently exploring a wide open area
or a narrower space, the robot’s visibility is dynamically
conditioned by the presence of obstacles in front of the sensor,
which hide the space behind them and reduce the sensor’s
intrinsic range. In order to dynamically adapt the robot’s
visibility, the latest sensor data is used to estimate r and α.
Given the latest batch of mk measurements Mk = (x,Vk),
the robot’s visibility parameters are estimated as:

(r̂, α̂) =

(
1
mk

mk∑
i=1

‖−→v k,i‖, max
i

[
arccos

(−→v k,i · p̂
‖−→v k,i‖

)])
.

(4)

B. Visible maps and mutual information

Consider the fleet F = {1, . . . , n} of n robots performing a
3-D mapping mission and one of the robots, i ∈ F , belonging



to the team. Its visibility Vi = V(xi,ai, ri, αi) ⊂ R
3

represents a sub region of the environment being mapped that
robot i is able to sense and, thus, measurements gathered from
its current pose Yi = (xi,ai) will only influence its knowledge
about that sub region. That sub region refers to the subset of
voxels

Zi = {l ∈ Y : w(l) ∈ V(xi,ai, ri, αi)} ⊂ Y. (5)

The subset of coverage random variables

Ci = {Cl, l ∈ Zi} ⊂ C (6)

denotes the robot’s visible map, which models the robot’s
knowledge about the visible sub region defined by the voxels
l ∈ Zi, with entropy

H(Ci) =
∑
l∈Zi

H(Cl) < H(C). (7)

The inequality in equation (7) means that the robot’s visible
map covers less uncertainty than the map’s uncertainty.

The other robots in the fleet, F\i, cover the set of voxels

Wi =
⋃

j∈F\i

Zj ⊆ Y (8)

and have a joint visible map T i with entropy

H(T i) =
∑

l∈Wi

H(Cl) ≤ H(C). (9)

The fleet covers the set of voxels W = Z i ∪ Wi and has a
joint visible map T = C i ∪ T i, with entropy

H(T ) = H(Ci) +H(T i) − I(Ci; T i). (10)

Equation (10) measures the uncertainty being covered by the
team. The mutual information I(C i; T i) between the robot’s
visible map and the joint visible map of the other robots is
null if the robot’s visible map does not overlap with the other
robots’ visible maps; otherwise, it is equal to the sum of the
entropy of the voxels belonging to the overlapping [9].

C. Coordinated exploration strategy

In an exploration mission, the objective is to acquire as
much new information about the environment as possible
with every sensing cycle. Intuitively, this is equivalent to
select new regions to explore so that the robot’s visible map
entropy H(C i) is maximized. This is indeed the aim of the
entropy-gradient based exploration proposed in [1] for a single
robot. With multiple robots, the robot’s goal should be the
maximization of the fraction of the map’s uncertainty covered
by the team, H(T ). As equation (10) shows, this is a twofold
goal: to maximize the joint entropy of its own visible map
H(Ci), likewise in the single robot case; and to avoid the
overlapping with the other robots’ visible maps, so that the
mutual information I(C i; T i) is minimized (see Fig. 5).

Considering a given robot i ∈ F , the coordinated explo-
ration method proposed herein selects the best voxel from
a subset of Y in its neighborhood, by computing entropy
gradient, visible map’s mutual information, reachability and

Fig. 5. Example showing visible maps with 3 robots i, j and k. The mutual
information I(Ci;T i) > 0 decreases the team’s visible map joint entropy,
i.e. the team covers a smaller part of the map’s uncertainty H(C).

occlusions due to other robots. Accordingly with Fig. 1, page
2, it is assumed that whenever a robot j ∈ F selects a new pose
Y s

j = (xs
j , a

s
j), the other robots in the team, F\j, are informed

through explicit communication about its new selected pose
and its current range parameters rj and αj , i.e. they receive
the tuple (Y s

j , rj , αj). This minimal communication enables
each robot i ∈ F to compute the mutual information I(C i; T i)
between its visible map C i and the joint visible map of the
rest of the team F\i.

Assuming that robots’ motion is restricted to a plane Γ
(ground mobile robots), the new robot’s position is selected as
the center of a voxel from a set of voxels NΓ(x, r) traversed
by Γ, in the neighborhood defined by its current position x
and range r.

Consider a given candidate voxel l ∈ NΓ(x, r). Being−→∇HΓ(l) the projection on Γ of the entropy gradient computed
at the voxel’s center w(l), the normalized gradient magnitude

to the interval [0, 1] is denoted as
∥∥∥−→∇HΓ(l)

∥∥∥
N

. If the center
of the voxel is selected to be the next robot’s selected position
xs, the method proposed herein claims that the robot should
select the gaze direction a(l) defined by the unitary vector

p̂(l) =
−→∇HΓ(l)∥∥∥−→∇HΓ(l)

∥∥∥ ,
−→∇HΓ(l) 
= −→

0 . (11)

Given any candidate voxel l ∈ NΓ(x, r), and denoting its
associated candidate pose as Y l, the non-redundancy coeffi-
cient is the function λ : Y →]0, 1], defined as

λ(l) = exp
[
−1
ξ
I(Ci(Y l); T i)

]
, (12)

wherein ξ is a scale factor and λ(l) = 1 means that candidate
voxel l is associated with a visible map which does not overlap
with the other robots’ visible maps.

The reachability of a given voxel is a function of how much
covered are the voxels traversed by the robot when it moves



its sensor along its path from its current pose Y = (x, a)
to the pose Y l. These voxels may be either occupied with
obstacles in the environment or other robots. The reachability
of a candidate voxel l ∈ NΓ(x, r) is denoted as ρ(x, l), taking
values between 0 (invalid path) and 1 (path completely clear
of obstacles).

The presence of other robots within the robot’s visibility
region yields undesirable occlusions and interference. Using
equation (5), the robot computes the visible voxels Z i(Y l)
when its sensor’s pose is Y l and checks if there are other
robots occupying those voxels. The non-interference coeffi-
cient of a candidate voxel l ∈ NΓ(x, r) is computed through
a function η : Y →]0, 1], where in η(l) = 1 means that the
robot’s visible map associated with l is not interfered by the
presence of other robots.

If it is also worth to reduce the traveled distance during
exploration, the cost associated with each candidate voxel l ∈
NΓ(x, r) has to be considered, being the distance between
current robot’s position x and the center of the candidate voxel
l. The cost factor is defined as the function ϑ : R

3×Y → [0, 1],
wherein ϑ(x, l) = 1 means that the distance is equal to r.

Given the set of candidate voxels NΓ(x, r) in the robot’s
neighborhood, the robot is directed to the voxel

ls = argmax
l∈NΓ(x,r)

(∥∥∥−→∇HΓ(l)
∥∥∥

N
.λ(l).ρ(x, l).η(l) − κ.ϑ(x, l)

)
,

(13)
with a gaze on arrival defined by the unitary vector p̂(ls),
computed through equation (11). In the argument of equation
(13), the left term measures utility and the right term measures
cost, being κ a cost sensitivity coefficient. Further details about
this formulation can be found in [9].

D. Results

The multi-robot coordinated exploration method represented
by equation (13) was implemented in the mobile robots
depicted in Fig. 2, which were used to carry out mapping
experiments. Besides implementing the method on physical
robots, a simulator was also built in Matlab with enough detail,
so as to be able to predict the physical robots’ behavior through
computer simulations. Moreover, the simulator made possible
to simulate teams with arbitrary team sizes.

Extensive experiments were carried out in the same en-
vironment with varying number of robots in the range n ∈
{1 . . . 10}, using both the uncoordinated and the coordinated
exploration methods. With up to two robots, the experiments
were carried out both with the physical robots and the sim-
ulator, so as to fine tune the simulator. At the end of this
tuning process, the results obtained through simulations were
statistically quite similar to the ones obtained with physical
robots. The simulator was used afterwards to extrapolate the
team’s performance with more than two robots.

1) Uncoordinated exploration versus coordinated explo-
ration: The graph represented in Fig. 6 compares the average
mission execution time tkmax as a function of the team size
n, using either the the coordinated and the uncoordinated

uncoordinated coordinateduncoordinated coordinated

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

1 2 3 4 5 6 7 8 9 10
0

2500

5000

7500

10000

12500

15000

17500

20000

22500

1 2 3 4 5 6 7 8 9 10
0

2500

5000

7500

10000

12500

15000

17500

20000

22500

1 2 3 4 5 6 7 8 9 10

Fig. 6. Mission execution time tkmax as a function of team size n using
both the uncoordinated and the coordinated exploration methods.

exploration methods. In these experiments, the cost sensitivity
coefficient κ was equal to 0.

Using the uncoordinated method, two robots took on av-
erage 81% of the time needed by a single robot, though the
team’s performance became significantly worse for n > 2.
For n > 2, adding more robots to the system always led
to an increase of tkmax . For n > 5, the average mission
execution time was even greater than the time of a single
robot, which is a disastrous performance. These results reveal
that coordination is crucial to attain effective cooperation,
especially for larger teams.

On the other hand, using the coordinated method, two robots
took on average only 59% of the time needed by a single robot,
yielding therefore a slightly sub-linear speedup with the team
size increase. Moreover, the mission execution could be further
decreased for 3 ≤ n ≤ 8. For n > 8, the average mission
execution time tended to increase with the team size, which
indicates that using more than eight robots was completely
worthless for the workspace considered in the experiments.
This reveals that, although the coordinated method minimized
the interference among robots, the benefit of having teams with
more than two robots was not particularly noticeable, due to
the relatively confined workspace where the experiments took
place: an area with just 23 m2.

It was concluded with a confidence level equal to 99% that
the coordinated method yields a faster mission execution time
than the uncoordinated method for any team size.

2) Impact of the cost sensitivity in collective performance:
In order to evaluate how the cost sensitivity coefficient κ
influences the team’s performance, further experiments were
carried out with the robots depicted in Fig. 2, using coordi-
nated exploration and other values for that parameter than 0.

The graph on the top of Fig. 7 plots the mission time tkmax

and the traveled distance by one of the robots, dT , as a function
of κ. It shows that being more sensible to the traveled distance,
i.e. increasing κ, leads to a monotonous increase of the mission
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Fig. 7. Performance of a team of two robots using the coordinated exploration
method with different values of the cost sensitivity coefficient κ: graph of the
mission execution time tkmax and of the traveled distance dT (top) and graph
of the product tkmax .dT (bottom), as a function of κ.

execution time tkmax and to a monotonous decrease of the
traveled distance dT . Furthermore, these variations are not
linear: the reduction of dT is more noticeable in the interval
0 ≤ κ ≤ 0.25; the increase of tkmax is more accelerated in
the interval 0.125 ≤ κ ≤ 0.5.

If both variables are required to be optimized, the graph
on the bottom of Fig. 7, which plots the variables’ product,
stabilizes for roughly κ > 0.25. This means that distance can
be significantly reduced without compromising too much the
mission time for roughly κ < 0.25. For greater values of κ,
the product remains slightly constant, i.e. any reduction of
distance is accompanied by an increase of mission time with
the same order of magnitude.

V. CONCLUSION

This article addressed the problem of building volumetric
maps with multi-robot systems, efficient information sharing
and proper coordination. After briefly presenting a probabilis-
tic framework which allows to represent and update volumetric
maps, special emphasis was given to the formulation of multi-
robot exploration using entropy-related concepts. Results ob-
tained within experiments with mobile robots equipped with
stereo-vision demonstrated the importance of coordinating

robots’ exploration actions, so as to improve the team’s perfor-
mance. It was statistically demonstrated that coordinated teams
always perform faster than their uncoordinated counterparts.

An important future direction is to demonstrate the ap-
plication of the concepts related with efficient information
sharing and coordination herein presented to other robotics
application domains than robotic mapping and, as well, to
domains outside robotics. For instance, human organizations
involve complex cooperative interactions supported on some
flow of information. Redundancy, consistency, information
utility and coordination are certainly important issues in the
context of these complex social systems.
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