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ABSTRACT

In this paper, we present a multi-modal fusion scheme for
tracking and behavior analysis in Smart Home environments.
This is applied to tracking multiple people and detecting their
behavior. To this end, information from multiple heteroge-
neous sensors (visual color sensor, thermal sensor, infrared
sensor and photonic mixer devices) is combined in a common
3D voxel occupancy grid. Graph cuts are used for data fusion
and to accurately reconstruct people in the scene. A Viterbi
tracking framework is applied to track all people and simulta-
neously determine their behaviour. We evaluate the proposed
fusion scheme on the PROMETHEUS Smart Home database
and show the impact of different sensors and modalities to the
final results.

1. INTRODUCTION

In recent years, automatic assistance and safety systems for
supporting elderly people at their homes have gained increa-
sing research interest [1, 2]. Multi-modal video cameras, mi-
crophones and computer processing power have become po-
werful and cheap enough to potentially allow for full time
surveillance and assessment of the home environment.

In this paper we present a system which can automatical-
ly track multiple people and simultaneously detect unusual
events. For this purpose, a smart home environment, equip-
ped with multiple multi-modal sensors is used. Our method
is twofold: First (Section 2), data from all available sensors
is fused in a 3D voxel occupancy grid, where we apply graph
cuts [3] to accurately reconstruct the 3D scene. Our algorithm
is capable of fusing information from CCTV, thermal, infra-
red, and PMD-range cameras.

Secondly (Section 3), we apply a Viterbi tracking algo-
rithm, which not only tracks every person, but simultaneous-
ly detects whether they are standing, or have fallen down.
Depending on the tracking output, the system is capable of
detecting events such as entering, exiting, sitting on the sofa
and most importantly falling to the floor. We evaluate diffe-
rent configurations and show excellent recognition rates on
the PROMETHEUS Smart Home database [4] in Section 4.
Section 5 concludes the paper.
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Fig. 1. The 3D Voxel occupancy grid is calculated as follows:
For each input sensor, foreground silhouettes are generated
using background subtraction. The visual hulls of the fore-
ground silhouettes are fused in the 3D space using graph cuts.
The range channel is a special case: Instead of using back-
ground subtraction, the visual hull is generated using the ran-
ge information.

2. 3D VOXEL OCCUPANCY GRID

In the following, we present an approach for reconstructing
the 3-dimensional shapes of objects from multiple multi-modal
distributed camera sources. To this end, the scene is quantized
to a three dimensional voxel occupancy grid. The occupancy
of each of the voxels is determined by the joint observations
of all available sensors. The method is able to utilize hetero-
geneous sensors such as CCTV, thermal, infrared and range
sensors.



2.1. Definition and Sensor Projection

The reconstruction of the scene is done in a 3-dimensional
occupancy grid V , with a neighborhood system N ⊂ V × V
which connects each voxel to its adjacent voxels. For every
voxel v ∈ V there is a binary labeling fv which is 1, if the
voxel is occupied, and 0, if it is not occupied.

The input to the algorithm comes from multi-modal visual
sensors, i.e. visual cameras, infrared cameras as well as the
photonic mixer device (PMD) which produces a near infrared
image (NIR) and a range image. We distinguish between two
principal categories of sensors: intensity and range. There are
m intensity sensors and n range sensors. In our experiments
we have m = 4 intensity sensors and n = 1 range sensors.

The set of pixels in camera k is denoted as Ck. We use
background modeling [5] to determine, which of the pixels
in Ck are foreground. The subset Fk ⊂ Ck denotes all the
pixels which are determined to be foreground by the back-
ground modeling method. All of the cameras are calibrated
using the Tsai camera calibration method [6]. With the use of
this calibration, each pixel ck ∈ Ck of camera k intersects
with a set of voxels, which is denoted as V (ck) ⊂ V . Conse-
quently, each voxel v corresponds to a multitude of pixels in
the corresponding camera k. The visual observation set O(v)
describes for each voxel v, which sensors see it as foreground:

O(v) =
{
k∣∃ck with ck ∈ V −1(v) ∧ ck ∈ Fk

}
(1)

The range sensor is a special case. The function r(v) des-
cribes, if the voxel v is foreground, based on the range infor-
mation.

r(v) =

{
1 range(V −1(v)) < dist(v,PMD)

0 else
(2)

Here dist(v,PMD) denotes the Euclidean distance from the
voxel v to the center of the PMD camera and range(ck) deno-
tes to distance measured with the PMD device at pixel ck.

2.2. Fusion using Graph Cuts

Initial experiments have shown, that a simple fusion method
using intersection of visuall hulls, does not suffice in many ca-
ses. To further improve the reconstruction quality, we used a
global energy function with a data termDv(fv) and a smooth-
ness term S(fv, fv′). This allows to naturally include a smoo-
thness constraint. Minimizing this energy function is superior
to silhouette intersection, which has no means of incorpora-
ting a smoothness term. The energy function is given as

E(f) =
∑
v∈V

Dv(fv) + �
∑

v,v′∈N(v)

S(fv, fv′) (3)

For each voxel v, the data term Dv(fv) assigns a cost de-
pending on the label fv . We define the visibility ratio ℎ(v) =

∥O(v)∥+r(v)
∥Ô(v)∥ , Ô(v) =

{
k∣∃ck with ck ∈ V −1(v)

}
, which de-

fines for each voxel the ratio of the number of cameras obser-
ving the voxel as foreground divided by the total number of
cameras which can see the voxel. This is an important measu-
re, because voxels can be oberserved by a variable number of
cameras. We then define the data term as follows:

Dv(fv) =

{
ℎ(v) fv = 1

1− ℎ(v) fv = 0
(4)

The smoothness term is defined on the close neighbor-
hood as:

S(fv, fv′) =

{
0 fv = fv′

1 else
(5)

The final labeling f = arg minf E(f) is obtained using
graph cuts [7]. In all our experiments we set � = 1

100 in Equa-
tion 3. This factor weighs the influence of the data term versus
the smoothness term.

3. EVENT TRACKER

The basic idea of the event tracker is to formulate the event
detection stage jointly with the tracking stage. In other words,
we use a multi object tracking algorithm, which not only tracks
all the people in the scene, but simultaneously tracks the con-
figuration (standing or fallen down) of the person.

3.1. Viterbi Formulation

We use a maximum a posteriori method, more specifically
the Viterbi algorithm, to find the optimal trajectories. To be-
gin, we will first introduce the state variables. At each ti-
me t, the state of a person i is given by Sit =

{
xit, y

i
t, l

i
t

}
.

Thus the state not only contains the position (xit, y
i
t), but an

additional flag lit which can hold one of three values: lit ∈
{outside, standing, fallen). We denote the joint state space
of all N people at time t by St =

{
S1
t , . . . , S

N
t

}
. Si ={

Si1, . . . , S
i
T

}
denotes the trajectory of person i. The com-

plete state of the full sequence containing T frames is then
given by S = (S1, . . . ,ST ).

Given the set of observations I = (I1, . . . , IT ), we seek
to maximize the state sequence S, given the observations I.

Ŝ = arg max
S

P (S∣I) (6)

Because we already have a heavily discretized occupancy grid
(and thus a rather low number of states), we propose to use
the Viterbi algorithm to find the optimal state sequence. The
Viterbi algorithm is an iterative algorithm, which at each ti-
me step returns the optimal trajectory up until this time step.
However, despite the discretized occupancy grid, the optimal
solution is intractable, because the number of states increases
exponentially with a higher number of people.



A solution to this problem is to compute the trajectories
for each person one after the other:

Ŝ1 = arg max
S1

P (S1∣I) (7)

Ŝ2 = arg max
S2

P (S2∣I, Ŝ1) (8)

...

ŜN = arg max
SN

P (SN ∣I, Ŝ1, Ŝ2, . . . , ŜN−1) (9)

This means that the optimization of a trajectory is conditioned
on the results from optimizing all the previous trajectories.
The conditioning implies that trajectories cannot use locations
which are already occupied by other trajectories.

Optimizing a single trajectory then becomes a matter of
running the standard Viterbi algorithm [8]. We need to find the
most likely path through the state sequence, which maximizes
the posterior probability of Equation 6. This is achieved with
an iterative procedure. At each time t,

Ψt(k) = max
S1,...,St−1

P (I1, . . . , It, S1, . . . , St−1, St = k)

(10)
denotes the maximum probability of ending up in state k at
time t. With the Markov assumptions, the current state is on-
ly dependent on the previous state P (St∣St−1, St−2, . . .) =
P (St∣St−1) and the observations are independent given the
state P (I∣S) =

∏
t P (It∣St). Therefore the iterative Viterbi

equation can be written as:

Ψt(k) = P (It∣St = k) max
�

P (St = k∣St−1 = �)Ψt−1(�)

(11)
The maximization operator in Equation 11 finds the opti-

mal predecessor in frame t−1 when going to state k at time t.
Thus a backtracking starting from the final optimum at t = T
yields the optimal trajectory.

3.2. Motion Model

The motion model is given by the term P (St = k∣St−1 = �).
It is the probability of entering state k, if the system was in
state � in the previous time step. We model this probability
with a Gaussian distribution centred at � and with a standard
deviation of � = 100mm. This way, motions of approxima-
tely 0.1 meter per time step and less are encouraged, while
bigger motions are not likely (but still possible).

3.3. Appearance Model

Here P (It∣St = �) is the observation model. Given a hypo-
thesized state St = �, this is the likelihood of observing that
state. This observation likelihood is determined as follows:
First we correlate the 3D voxel occupancy grid with two tem-
plates. One template is a thin and tall cylinder, representing a

Fig. 2. Falling person and the corresponding 3D voxel oc-
cupancy grid. Background objects (red); Observations (blue);
Human correlation templates at the tracked position (yellow)

standing human (see Figure 2(top row)). The other template
is a flat and wide template representing a fallen human (see
Figure 2(bottom row)). Then the output from the correlation
is normalized to a probability distribution.

3.4. Event Detection

Detecting events becomes very straight forward after the in-
formative output from the tracking module. The tracker gives
for each person the position and the standing/fallen flag. Set-
ting appropriate thresholds on the position readily gives re-
sults for entering, exiting, sitting down and standing-up. The
event falling down can be directly detected from the stan-
ding/fallen flag lt.

4. EXPERIMENTS

To evaluate our method, we use the PROMETHEUS indoor
smart home database [4]. This multi-sensors, multi-modal da-
tabase shows daily scenarios in a living room.

4.1. Evaluation of Tracking

In order to evaluate different configurations of sensors, we set
up 7 experiments (Figure 1), each of which only uses a subset
of the five available sensors.

The tracking performance is assessed using four measu-
res: Multiple Object Tracking Mean Error (MOTME), Mul-
tiple Object Tracking Variance (MOTV), Missed Tracks per
Frame (MTPF), and Artifact Tracks per Frame (ATPF).

In order to computer MOTME and MOTV, we first com-
pute a distance matrix at each frame between all found objects
and all ground truth objects. The Hungarian algorithm is used
to optimally match found and ground truth objects. However,
when the match distance exceeds 1 meter, we stop matching.
Once matched, mean and variance are easily computed. Un-
detected persons and erroneously detected persons are mea-



Cam1 Cam2 Cam3 Thermal PMD
Experiment 1 x x x x x
Experiment 2 x x x x
Experiment 3 x x x x
Experiment 4 x x x
Experiment 5 x x x
Experiment 6 x x x
Experiment 7 x x x

Table 1. Performance results for the five detectable events
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Fig. 3. Tracking results

sured by the missed tracks per frame and artifact tracks per
frame measures, respectively.

Tracking results are shown in Figure 3. Regarding MOT-
ME, MOTV and MTPF, all configurations seem to perform
roughly similarly with only minor differences. Most notably
the ATPF rate is dramatically reduced when using all availa-
ble sensors. It can furthermore also be seen, that in terms
of Mean Error, the configurations without the PMD sensor
slightly outperform the others. Also experiment 6 sticks out:
While the tracking variance is low, it suffers at the same time
from a high artifact rate. Thus, camera 1 seems to have a good
view of the scene and is important for good results.

4.2. Evaluation of Event Detection

For evaluation, the processing results are compared against
manually annotated ground truth. In order to account for an-
notation errors and detection uncertainty, we allow a temporal
window of Δf = 30 frames (=̂ 2sec @15fps) for matching
ground truth to detection results.

The final results of our event detection method are shown
in Table 2. It can be seen that the event falling down has been
recognized with 100% recall and a few false positives. A few
false positives are admissible because in safety applications,
the focus is on a high recall rate. In our experiments a few
false positives occured when people leaned down to help up
a person who has fallen down before. Our algorithm is able

Precision Recall F1-measure
falling down 85.7% 100% 96.1%
sitting down 100% 100% 100%
standing up 100% 100% 100%
entering home 83.2% 71.4% 76.8%
exiting home 80.0% 66.6% 72.7%

Table 2. Performance results for the five detectable events

to detect the sitting down and standing up events with perfect
precision and recall. The entering and exiting events are har-
der to detect, especially because in our dataset, people often
enter or exit the scene in groups of two or three.

5. CONCLUSION

In this paper we have shown how data from multiple, hete-
rogeneous image sensors can be efficiently combined to de-
tect a number of events with application to surveillance in a
smart home environment. Furthermore, we demonstrated si-
multaneous tracking and event detection using an extended
multi-object Viterbi tracking framework. On the Prometheus
Smart Home database we showed the impact of multiple sen-
sor configurations on the tracking performance and we sho-
wed excellent event detection results.

6. REFERENCES

[1] Homa Foroughi, Alireza Rezvanian, and Amirhossien Paziraee,
“Robust fall detection using human shape and multi-class sup-
port vector machine,” in Proc. Indian Conf. on Computer Vision,
Graphics & Image Processing, 2008, pp. 413–420.

[2] M. Shoaib, T. Elbrandt, R. Dragon, and J. Ostermann, “Altcare:
Safe living for elderly people,” in 4th Int. ICST Conf. on Perva-
sive Computing Technologies for Healthcare, 2010.

[3] Yuri Boykov, Olga Veksler, and Ramin Zabih, “Fast approxi-
mate energy minimization via graph cuts,” IEEE Trans. Pat.
Analysis and Machine Intelligence, vol. 23, no. 11, 2001.

[4] Stavros Ntalampiras, Dejan Arsić, Andre Störmer, Todor Gan-
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