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Abstract In this text we present the real-time imple-

mentation of a Bayesian framework for robotic multisen-

sory perception on a graphics processing unit (GPU) using

the Compute Unified Device Architecture (CUDA). As an

additional objective, we intend to show the benefits of

parallel computing for similar problems (i.e. probabilistic

grid-based frameworks), and the user-friendly nature of

CUDA as a programming tool. Inspired by the study of

biological systems, several Bayesian inference algorithms

for artificial perception have been proposed. Their high

computational cost has been a prohibitory factor for real-

time implementations. However in some cases the bottle-

neck is in the large data structures involved, rather than the

Bayesian inference per se. We will demonstrate that the

SIMD (single-instruction, multiple-data) features of GPUs

provide a means for taking a complicated framework of

relatively simple and highly parallelisable algorithms

operating on large data structures, which might take up to

several minutes of execution with a regular CPU imple-

mentation, and arrive at an implementation that executes in

the order of tenths of a second. The implemented multi-

modal perception module (including stereovision, binaural

sensing and inertial sensing) builds an egocentric repre-

sentation of occupancy and local motion, the Bayesian

Volumetric Map (BVM), based on which gaze shift deci-

sions are made to perform active exploration and reduce

the entropy of the BVM. Experimental results show that the

real-time implementation successfully drives the robotic

system to explore areas of the environment mapped with

high uncertainty.

Keywords GPU � NVIDIA CUDA �
Multimodal Bayesian perception

1 Introduction

Perception has as of recently been regarded as a compu-

tational process of unconscious, probabilistic inference.

Aided by developments in statistics and artificial intelli-

gence, researchers have begun to apply the concepts of

probability theory rigorously to problems in biological

perception and action [22]. One striking observation from

this work is the myriad ways in which human observers

behave as near-optimal Bayesian observers. Several

authors even argue that the brain codes even complex

patterns of sensory uncertainty in its internal representa-

tions and computations—see for example [4, 10, 22].

In recent years, a variety of Bayesian inference algo-

rithms for artificial perception inspired by studies of

biological systems have been proposed. Their high com-

putational cost has been a prohibitory factor for their actual

implementation in real-time applications. In most cases,

this computational cost results from probabilistic models

requiring complicated inference techniques; however, in a

smaller but extremely important subset of Bayesian infer-

ence algorithms, the problem lies, not with the inference

mathematics per se, which can be rather simple, but with

the large data structures involved, raising the issue of

scalability.

In the meanwhile, graphics processing units (GPUs)

have been progressively and rapidly advancing from being

J. F. Ferreira � J. Lobo � J. Dias (&)

ISR-University of Coimbra, 3030-290 Coimbra, Portugal

e-mail: jorge@isr.uc.pt

J. F. Ferreira

e-mail: jfilipe@isr.uc.pt

J. Lobo

e-mail: jlobo@isr.uc.pt

123

J Real-Time Image Proc (2011) 6:171–186

DOI 10.1007/s11554-010-0156-7



specialised fixed-function to being highly programmable

and incredibly powerful parallel computing devices. With

the introduction of the Compute Unified Device Architec-

ture (CUDA), GPUs are no longer exclusively programmed

using graphics APIs. In CUDA, a GPU can be exposed to

the programmer as a set of general-purpose shared-memory

single instruction multiple data (SIMD) multicore proces-

sors. The number of threads that can be executed in parallel

on such devices is currently in the order of hundreds and is

expected to multiply soon. Many applications that are not

yet able to achieve satisfactory performance on CPUs can

get the benefit from the massive parallelism provided by

GPUs [33, 34].

In this text, we will present a real-time implementation

of an extense Bayesian framework for robotic multisensory

perception (including stereovision, binaural sensing and

inertial sensing) using CUDA. We will demonstrate that

the SIMD features of GPUs provide a means of dealing

with the scalability of highly parallelisable algorithms

operating on large data structures, drastically improving

overall processing rates comparing with CPU implemen-

tations, therefore allowing real-time performance. More-

over, we will demonstrate that CUDA is a very useful tool

for GPU programming, as it provides a simplified yet

powerful abstraction to graphic card intricacies [20].

2 Related work

GPUs have developed from fixed function architectures to

programmable, multicore architectures, leading to new

applications.

A relatively popular subset of this work over the years

has been vision and imaging applications. Fung and Mann

[17], present an excellent summary on this work, ranging

from general purpose GPU (GPGPU) processing, where

graphics hardware is used to perform computations for

tasks other than graphics, to the more recent trend of GPU

Computing, where GPU architectures and programming

tools have been developed that have created a parallel

programming environment that is no longer based on the

graphics processing pipeline, but still exploits the parallel

architecture of the GPU—in fact, GPU Computing has

transformed the GPGPU concept into the simple mapping

of parellelisable algorithms onto SIMD format for the

GPU, making a complete abstraction from the intricacies of

graphics programming.

As a result, several full-fledged computer vision and

image processing toolkits and libraries that resort to GPU

technology have emerged, such as OpenVIDIA [18],

GPU4Vision [1] or GpuCV [12].

On the other hand, probabilistic approaches to percep-

tion have risen the stakes regarding the usefulness of GPU

implementations of parallelisable algorithms. Neural net-

work implementation is an example of this, as shown by

Jang et al. [21], who propose a quick and efficient imple-

mentation of neural networks on both GPU and multicore

CPU, with which they developed a text detection system,

achieving performances about 15 times faster than the

analogous implementation using CPU and about 4 times

faster than implementation on GPU alone.

Occupancy grid-based sensor fusion algorithms, on the

other hand, an example of a probabilistic approach to

sensor fusion, have as of recently been a source of very

interesting work on GPUs, given their obvious paralleli-

sable trait due to the probability independence postulate

between grid cells. Moreover, computational frameworks

such as this are perfect candidates for GPU processing:

very large data structures are processed in parallel using

simple operations, yielding the perfect backdrop for SIMD-

based computation. However, GPU implementations for

such algorithms are still very recent and few—examples

would be the work by Reinbothe et al. [37], and also Yguel

et al. [39].

Hence we believe that there is a real contribution to be

made in this area, specially now, when GPU Computing

has taken such a huge step forward, with the appearance of

tools such as NVIDIA’s CUDA architecture [20], which

will be summarised in the following section.

3 The Compute Unified Device Architecture (CUDA)

We will make a brief presentation of the main features of

NVIDIA’s CUDA, based on the excellent summary by

Hussein et al. [19]. For a detailed description, refer to [31].

3.1 Hardware architecture

In CUDA terminology, the GPU is called the device and

the CPU is called the host. A CUDA device consists of a

set of multicore processors. Each multicore processor is

simply referred to as a multiprocessor. Cores of a multi-

processor work in a SIMD fashion. All multiprocessors

have access to three common memory spaces (globally

referred to as device memory). They are:

Constant Memory: read-only cached memory space.

Texture Memory: read-only cached memory space that

is optimised for texture fetching operations.

Global Memory: read/write non-cached memory

Besides the three memory spaces that are common

among all multiprocessors, each multiprocessor has an on

chip shared memory space that is common among its cores.

Furthermore, each core has an exclusive access to a read/

write non-cached memory space called local memory.
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Accessing constant and texture memory spaces is as fast

as accessing registers on cache hits. Accessing shared

memory is as fast as accessing registers as long as there is

no bank conflict. On the other hand, accessing global and

local memory spaces is much slower, typically two orders

of magnitude slower than floating point multiplication and

addition.1

3.2 Execution model

The execution is based on threads. A thread can be viewed

as a module, called a kernel, that processes a single data

element of a data stream. Threads are batched in groups

called blocks, and can only access shared memory from

within their respective blocks. The group of blocks that

executes a kernel constitutes one grid. Each thread has a

three-dimensional index that is unique within its block.

Each block in a grid in turn has a unique two-dimensional

index. Knowing its own index and the index of the block in

which it resides, each thread can compute the memory

address of a data element to process.

A block of threads can be executed only on a single

multiprocessor. However, a single multiprocessor can exe-

cute multiple blocks simultaneously by time slicing.

Threads in a block can communicate with one another via

the shared memory space. They can also use it to share data

fetched from global memory. There is no means of syn-

chronisation among threads in different blocks. The number

of threads within a block that can execute simultaneously is

limited by the number of cores in a multiprocessor. A group

of threads that execute simultaneously is called a warp.

Warps of a block are concurrently executed by time slicing.

3.3 Optimisation issues

There are some important considerations that need to be

taken into account to obtain good performance on CUDA.

– Effect of Branching: If different threads of a warp take

different paths of execution, the different paths are

serialised, which reduces parallelism.

– Global Memory Read Coalescing: Global memory

reads from different threads in a warp can be coalesced.

To be coalesced, the threads have to access data

elements in consecutive memory locations. Moreover,

addresses of all data elements must follow the memory

alignment guidelines. Details are in [31].

– Shared Memory Bank Conflict: Reading from shared

memory is as fast as reading from registers unless a

bank conflict occurs among threads. Simultaneous

accesses to the same bank of shared memory are in

most cases serialised.

– Writing to Global Memory: In CUDA, two or more

different threads, in the same warp, can write simul-

taneously to the same address in global memory. The

order of writing is not specified, but, one is guaranteed

to succeed.

4 Bayesian framework for active multimodal

perception

4.1 Bayesian models for multimodal perception

Active perception has been an object of study in robotics for

decades now, specially active vision, which was first intro-

duced by Bajcsy [3] and later explored by Aloimonos et al.

[2]. Many perceptual tasks tend to be simpler if the observer is

active and controls its sensors [2]. Active perception is thus an

intelligent data acquisition process driven by the measured,

partially interpreted scene parameters and their errors from

the scene. The active approach has the important advantage of

making most ill-posed perception tasks tractable [2].

Active multisensory perception using spatial maps has,

however, been the object of study since only much

recently—an example of this research would be the work

of Koene et al. [23] in visuoauditory-driven gaze shift

generation.

The active multimodal perception system implemented

in this work integrates a complete framework of Bayesian

algorithms which jointly process the outputs yielded by

visual, auditory and inertial sensors at a given instant in

time, use the processed data to build a spatial representation

of selected properties of the surrounding world, and com-

pute a stabilised gaze shift towards a site on the environ-

ment to be explored in the subsequent time step—Fig. 1

shows an overview of the system’s layout and integration.

4.1.1 Visuoauditory sensor fusion through Bayesian

filtering using a log-spherical grid

A spatial representation framework for multimodal per-

ception of 3D structure and motion, the Bayesian Volu-

metric Map (BVM), was presented in [13], characterised by

an egocentric, log-spherical spatial configuration to which

the Bayesian occupancy filter (BOF), as formalised by Tay

et al. [38], has been adapted. It effectively provides a

computational means of storing and updating a perceptual

spatial map in a short-term working memory data-structure,

representing both 3D structure and motion, without the

need for any object segmentation process (see Fig. 2).

This model and its operators were developed using the

Bayesian Program (BP) formalism, as first defined by

1 However, the new Fermi GPUs from NVIDIA will have Config-

urable L1 and Unified L2 caches [32]. Refer to concluding section for

further discussion on the subject.
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Lebeltel [25] and later consolidated by Bessière et al. [5].

This formalism was created to supersede, restate and

compare numerous classical probabilistic models such as

Bayesian networks (BN), dynamic Bayesian networks

(DBN), Bayesian filters, hidden Markov models (HMM),

Kalman filters, particle filters, mixture models, or maxi-

mum entropy models. It also promotes hierarchical pro-

gramming by making the relationship between models and

submodels explicit, in a subroutine-like fashion.

In the BVM framework, cells of a partitioning grid on the

BVM log-spherical space Y associated with the egocentric

coordinate system fEg are indexed through C 2 C � Y;
where C represents the subset of positions in Y corre-

sponding to the ‘‘far corners’’ (logb qmax, hmax, /max) of

each cell C, OC is a binary variable representing the state of

occupancy of cell C (as in the commonly used occupancy

grids—see [11]), and VC is a finite vector of random vari-

ables that represent the state of all local motion possibilities

used by the prediction step of the Bayesian filter associated

with the BVM for cell C, assuming a constant velocity

hypothesis, as depicted on Fig. 2. Sensor measurements (i.e.

the result of visual and auditory processing) are denoted by

Z—observations P(Z | OC VC C) are given by the Bayesian

sensor models2 of Fig. 2, which yield results already inte-

grated within the log-spherical configuration.

By restricting egomotion to rotations around the ego-

centric axes, vestibular sensing (see following subsection),

together with the encoders of the motors of the robotic head

(i.e. proprioception), will yield measurements of angular

velocity and position which can then be easily used to

manipulate the BVM, which is, by definition, in spherical

coordinates [13]. In this case, the most effective solution

for integration is to perform the equivalent index shift. This

process is described by redefining C : C 2 Y indexes a cell

in the BVM by its far corner, defined as C ¼ ðlogbqmax;

hmax þ hinertial;/max þ /inertialÞ 2 C � Y:
For Bayesian stereovision sensing, we have decided to

use a data structure loosely based on the neuronal popu-

lation activity patterns found in the perceptual brain to

represent uncertainty in the form of probability distribu-

tions [36]. Thus, a spatially organised 2D grid may have

each cell associated with a ‘‘population code’’ extending to

additional dimensions, yielding a set of probability values

Fig. 1 Integration layout for

the active multimodal

perception system

Fig. 2 Multimodal perception framework details. a The Bayesian Volumetric Map (BVM) and the Integrated Multimodal Perception

Experimental Platform (IMPEP); b BVM sensor models; c BVM Bayesian occupancy filter

2 These sensor models are, in fact, Bayesian subprograms of the

BVM.
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encoding a N-dimensional probability distribution function.

This information, conveniently expressed in cyclopean

coordinates (thus using the egocentric frame of reference

fEg), is consequently used as soft evidence by a Bayesian

sensor model previously presented in Ferreira et al. [13]

and Fereira et al. [15] (Fig. 2).

The Bayesian binaural system, which was fully

described in Pinho et al. [35], and Ferreira et al. [16], is

composed of three distinct and consecutive processors

(Fig. 2): the monaural cochlear unit, which processes the

pair of monaural signals {x1, x2} coming from the bin-

aural audio transducer system by simulating the human

cochlea, so as to achieve a tonotopic representation (i.e. a

frequency band decomposition) of the left and right audio

streams; the binaural unit, which correlates these signals

and consequently estimates the binaural cues and seg-

ments each sound-source; and, finally, the Bayesian 3D

sound-source localisation unit, which applies a Bayesian

sensor model so as to perform localisation of sound-

sources in 3D space, again using the egocentric frame of

reference fEg:
The BVM is extendible in such a way that other prop-

erties, characterised by additional random variables and

corresponding probabilities might be represented, other

than the already implemented occupancy and local motion

properties OC and VC, by augmenting the hierarchy of

operators through Bayesian subprogramming [5, 25].

One such property that we propose to model uses the

knowledge from the BVM to determine gaze shift fixation

sites. More precisely, it elicits gaze shifts towards locations

of high entropy/uncertainty based on the rationale con-

veyed by an additional variable that quantifies the uncer-

tainty-based interest of a cell on the BVM, thus promoting

entropy-based active exploration.

Therefore, we introduce a new random variable UC,

which takes the algorithm presented in Ferreira et al. [14]

(see Fig. 3) and expresses it in a compact mathematical

form:

UC ¼ ð1� Pð½OC ¼ 1�jCÞÞ krHðCÞk
maxkrHðCÞk C 2 F ;

0 C 62 F :

�
ð1Þ

where F � C represents the set of frontier cells3 and

HðCÞ � HðVC;OCÞ
¼ �

X
OC ;VC

PðOCVCjCÞlogPðOCVCjCÞ

and

krHðCÞk ¼ k½HðCÞ � HðCq�Þ;HðCÞ � HðCh�Þ;
HðCÞ � HðC/�Þ�Tk

represent the generic expressions of the joint entropy and

joint entropy gradient of a cell C, respectively, as defined

in Ferreira et al. [14]. This implies that UC [ [0, 1], being

close to 1 when uncertainty is high and C is a frontier cell,

and UC ? 0 when uncertainty is low or C is not a frontier

cell. In the current implementation, we use the maximum

value for this variable for the decision on the gaze shift, as

described in Ferreira et al. [14].

4.1.2 Modelling vestibular sensing using inertial sensors

To process the inertial data, we follow the Bayesian model

proposed by Laurens and Droulez [24], adapted and pre-

sented in Lobo, Ferreira and Dias [28] to the use of inertial

sensors. Instead of the vestibular system we have MEMS

(microelectromechanical systems) gyros and accelerome-

ters providing angular velocity and linear acceleration

measurements. The aim here is to provide an estimate for

the current angular position of the system, that mimics the

human vestibular perception—see Fig. 4. To overcome the

non-linearity of the motion equations and the high

dimension space of possible distributions, particle filtering

is used. The fact that some motions are more probable than

others in human head motion is also replicated in the

robotic version, limiting periods of sustained acceleration

and also long duration rotations at constant velocity.

In this model the orientation of the system in space is

encoded using a rotation matrix H: Angular velocity of the

head is encoded using the yaw y, pitch p and roll r con-

ventions, as illustrated in Fig. 4. The rotation update is

given by

Htþdt ¼ Ht � Rðdy; dp; drÞ ð2Þ

where

where c() and s() are short form for cos() and sin().

The instantaneous angular velocity is defined as the

vector:

Rðy; p; rÞ ¼
cðyÞ � cðpÞ cðyÞ � sðpÞ:sðrÞ � sðyÞ � cðrÞ cðyÞ � sðpÞ � cðrÞ þ sðyÞ � sðrÞ
sðyÞ � cðpÞ cðyÞ � cðrÞ þ sðyÞ � sðpÞ � sðrÞ �cðyÞ � sðrÞ þ sðyÞ � sðpÞ � cðrÞ
�sðpÞ cðpÞ � sðrÞ cðpÞ � cðrÞ

2
4

3
5

3 Set of cells, each belonging to a particular line-of-sight (hC, /C) in

the BVM, just preceding the first occupied cell in that direction.
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X ¼
dy=dt
dp=dt
dr=dt

0
@

1
A

The gyros will measure Xt with added Gaussian noise,

i.e. Ut ¼ Xt þ gt
U; where gU

t is a three-dimensional

vector, the elements of which follow independent

Gaussian distributions with mean 0 and standard

deviation rU.

The accelerometers will measure the gravito-inertial

acceleration F with added Gaussian noise, i.e. � t ¼ Ft þ
gt
� ; where gt

� is a three-dimensional vector, the elements of

which follow independent Gaussian distributions with

mean 0 and standard deviation r� : F is the resultant

acceleration due to linear acceleration and gravity. Given

the geocentric body linear acceleration A and the system

orientation H; we can compute F: In a geocentric frame of

reference gravity is a vector G ¼ ð0; 0;�9:81Þ; and the

gravito-inertial acceleration is given by G� A; trans-

forming to the egocentric frame of reference we have

F ¼ H�1 � ðG� AÞ ð3Þ

The state of our system at time t is therefore defined by

nt ¼ ðHt;Xt;At;FtÞ and the sensor data by St ¼ ðUt; � tÞ:
In our case we only consider linear acceleration so that

gravity can provide an absolute reference for orientation

when A ¼ 0: Even in the absence of any sensory

information, motion estimates for which the rotational

velocity and acceleration are low are more probable. This

can be described in a simple way using suitable Gaussian

distributions for the priors PðAtÞ / N jAt j;0;rA
and

PðXtÞ / N jXt j;0;rX
:

The Bayesian Program shown in Fig. 5 [28] is used to

compute the probability distribution for the current state

given all the previous sensory inputs and initial known

distribution. At time t the Bayesian Program computes the

probability distribution of the current state nt given all the

previous sensory inputs and the initial distribution. We can

see also that the first-order Markov assumption is present in

both the state dynamic model and sensor model: time

dependence has a depth of one time step. The stationarity

assumption is also implicit: models do not change with

time. The filter iterates for each new time step, but the

relationships between these variables remain the same for

all time steps. This greatly reduces the complexity.

For the implementation the space of nt�dt that needs to

be scanned has three dimensions: Ht�dt: For a given nt-dt,

the space of possible nt has three dimensions, so the total

search space has six dimensions. Following the Bayesian

Fig. 3 Active multimodal

perception using entropy-based

exploration. Only the Bayesian

models for multimodal

perception and the entropy-

based exploration algorithm

implemented by the gaze

computation module are

described herewith; the gaze

control module was presented in

Lobo et al. [28]

Bayesian
Processing

 Angular
PositionLinear

Acceleration

Angular Velocity

Fig. 4 Bayesian processing of inertial data

Fig. 5 Bayesian program for processing of inertial data
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model implementation proposed by Laurens and Droulez

[24], we used a Particle Filter to perform the inference. A

set of N particles, ni,t, sample the state search space, and

each one has an associated weight wi,t = P(ni,t). Starting

from ni,t-dt, we draw values for the Gaussians and apply

Eqs. 2 and 3 to obtain ni,t. The weighing factor is updated

to wi,t = wi,t-dt. P(ni,t). Resampling is applied, so that

unlikely particles are deleted and likely ones are dupli-

cated, in order to avoid having all particles drift towards

improbable states. At each iteration a new set of N samples

is drawn from the previous set of particles. Each particle of

the previous set has a probability wi to be chosen for each

new particle. The weights in the new set are set to 1/N.

An early approach to the problem implemented this

program directly with aid of a C?? library, the ProBT

inference engine [30]. For this work a CUDA implemen-

tation was implemented, allowing higher throughput to

meet real-time requirements and more particles in the filter

for better performance.

The particle filter is shown in Fig. 6. At each iteration a

new set of N samples is drawn from the previous set. Each

new particle is a copy of one of the previous ones, ran-

domly chosen from the previous set when resampling. Each

particle of the previous set has a probability wi,t to be

chosen for each new particle. The random number gener-

ator was implemented using the algorithm described in

[26]. Its output is then used with the Box-muller method

[6], thus generating random numbers following a normal

distribution.

4.2 The Integrated Multimodal Perception

Experimental Platform (IMPEP)

To support our research work, an artificial multimodal

perception system (IMPEP—Integrated Multimodal Per-

ception Experimental Platform) has been constructed at the

ISR/FCT-UC consisting of a stereovision, binaural and

inertial measuring unit (IMU) setup mounted on a motor-

ised head, with gaze control capabilities for image stabi-

lisation and perceptual attention purposes—see Fig. 7.

The stereovision system is implemented using a pair of

Guppy IEEE 1394 digital cameras from Allied Vision

Technologies (http://www.alliedvisiontec.com), the binau-

ral setup using two AKG Acoustics C417 linear

microphones (http://www.akg.com/) and an FA-66 Fire-

wire Audio Capture interface from Edirol (http://www.

edirol.com/), and the miniature inertial sensor, Xsens MTi

(http://www.xsens.com/), provides digital output of 3D

acceleration, 3D rate of turn (rate gyro) and 3D earth-

magnetic field data for the IMU. Initial pitch and roll

positions are taken from the initial moment with the sensor

at rest using the gravity acceleration.

The BVM–IMPEP framework was developed using the

following software:

– Vision sensor system: With the OpenCV toolbox and

David Gallup’s implementation of a basic binocular

stereo algorithm on GPU using CUDA (please refer to

http://www.cs.unc.edu/*gallup/stereo-demo for more

information). The algorithm reportedly runs at 40 Hz

on 640 9 480 images at 50 disparities, computing left

and right disparity maps and performing left-right

consistency validation (which in our adaptation is used

to produce the stereovision confidence maps).

– Binaural sensor system: Using an adaptation of the

real-time software kindly made available by the Speech

and Hearing Group at the University of Shefield [29] to

implement binaural cue analysis as described in [35,

16].

– Bayesian Volumetric Map, Bayesian sensor models and

active exploration: using our proprietary, parallel

processing, single-precision GPU implementation

Fig. 6 Data flow during an

iteration of the particle filter

Fig. 7 View of the current version of the Integrated Multimodal

Perception Experimental Platform (IMPEP). The active perception

head mounting hardware and motors were designed by the perception

on purpose (POP—EC project number FP6-IST-2004-027268) team

of the ISR/FCT-UC, and the sensor systems mounted at the Mobile

Robotics Laboratory of the same institute, within the scope of the

Bayesian approach to cognitive systems project (BACS-EC project

number FP6-IST-027140)
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developed with NVIDIA’s CUDA, which is the main

focus of this paper, described in Sect. 5.

The BVM–IMPEP system is composed of a local

Ethernet network comprised of two PCs communicating

and synchronising via Carmen messaging (Carmen

Robot Navigation Toolkit—http://carmen.sourceforge.net/

home.html—an open-source collection of software for

mobile robot control sponsored by DARPA’s MARS

Program), one for all the sensory and BVM framework

processing (including CUDA processing on a NVIDIA

GeForce 9800 GTX, compute capability 1.1), and the

other for controlling the IMPEP head motors, designed

for portability (i.e. low-consumption and light-weight) in

order to be mounted on mobile robotic platforms in the

future—see Fig. 8. Both are equipped with Ubuntu Linux

v9.04.

5 Implementation on GPU using CUDA

The activity diagram for the BVM Bayesian framework is

presented in Fig. 9, depicting an inference step corre-

sponding to time t and respective timeline. In the following

lines, our GPU implementation of the BVM algorithms

developed with NVIDIA’s CUDA that exectute this time-

line will be described in more detail.

5.1 Bayesian Volumetric Map filter

The BVM filter, which comprises the processing lane on

the right of Fig. 9, launches kernels based on a single three-

dimensional grid corresponding to the log-spherical con-

figuration—see Fig. 10. In fact, both input matrices (i.e.

observations and previous system state matrices) and out-

put matrices (i.e. current state matrices) have the same

indexing system. Blocks on this grid were arranged in such

a way that their 2D indices would coincide with azimuth h

and elevation / indices on the grid, assuming that the full

N-depth of the log-distance index is always copied to

shared memory.

By trial-and-error we arrived at the conclusion that

block size was limited by shared memory resources to 5

9 5 9 N for N B 10 and 3 9 3 9 N for N = 11, which

would therefore be the top limit for depth using this

rationale of a single grid for the whole BVM space. In fact,

DualCore Intel Pentium D 950, 3.40GHz 
Cache L1 (32KB) and L2 (2048KB)
1 GB RAM
80GB, 7200 rpm hard-disk
PCI-Express NVIDIA GeForce 9800 GTX (512MB)

Mobile DualCore Intel Pentium M,1666MHz
Cache L1 (32K B) and L2 (2048KB) 
1024 MB RAM
74GBhard-disk
Integrated graphics card

Fig. 8 BVM–IMPEP system network diagram
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Fig. 9 Activity diagram for an inference time-step at time t. Each

vertical lane represents a processing thread of the module labelled in

the corresponding title. Maximum processing times (for N = 10,

Dh = 1�, D/ = 2�) are also presented in the timeline for reference
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for N \ 11, there were 250 threads and 8,000 bytes of

shared memory per block, thus limiting the maximum

number of blocks per multiprocessor to 2 for the compute

capability 1.1 of the GeForce 9800 GTX; for N = 11, on

the other hand, there were 90 threads and 2,880 bytes of

shared memory per block, increasing the limit of blocks per

multiprocessor to 5.

The flowchart for the BVM filter kernel is shown on

Fig. 12a.

5.2 Bayesian processing of stereovision, binaural and

inertial data

The stereovision sensor model, which comprises the sec-

ond processing lane from the left and the ‘‘Observation’’

box of Fig. 9, launches kernels based on two-dimensional

grids corresponding to image configuration—see Fig. 11.

In fact, its input matrices (left and right images, and dis-

parity and confidence maps) have the same indexing sys-

tem, while its output matrices (visual observation matrices)

have the same indexing as the BVM grid of Fig. 10.

By trial-and-error we arrived at the conclusion that

block size was limited by register memory resources to

16 9 16 for 640 9 480 images. This also ensured that it

was a multiple of the warp size so as to achieve maximum

efficiency.

The implementation of the binaural sensor model, cor-

responding to the processing lane on the left and the

‘‘Observation’’ box of Fig. 9, contrastingly, is very sim-

ple—a vector of binaural readings is used as an input and a

grid as shown on Fig. 10, but without resorting to aprons

(i.e. shared memory; see Figs. 10 and 12a for a detailed

explanation of this notion), was used to update sensor

model measurement data structures analogous to those of

the stereovision sensor model, by referring to a lookup

table with normal distribution parameters taken from the

auditory system calibration procedure (refer to [35] for

more information).

When there are visual and binaural measurements

available simultaneously, two CUDA streams4 are created

(i.e. forked), one for each sensor model, and then destroyed

(i.e. merged).

Finally, the particle filter for the processing of inertial

data runs with 3,072 particles. There are 128 particles per

each processing block and each particle is run by one

thread only. The resampling process takes place in two

stages, as depicted on Fig. 13. In the first stage each half-

warp of threads computes the particle with larger weight,

that particle will be replicated for every halfwarp thread.

Then the contiguous halfwarps exchange the particles with

index 0 and 15. The second process is an inter-block

resampling, where there are fixed routes. Particles in one

block are always sent to a fixed memory space assigned to

another block. This resampling process seems most ade-

quate for the processor architecture and the CUDA

framework.

N

BLOCK_SIZE_Z = N 180 /
BLOCK_SIZE_X

BLOCK_SIZE_Y

360 /

idx-1 idx idx+1

idx-1

idx+ 1

idx

idx-1
dx

idx+1

Fig. 10 BVM filter CUDA implementation. On the right, the overall

3D BVM grid is shown. On the left, a zoom in on the nine adjacent

cells needed to update a central cell of the BVM are shown—this

means that shared memory is required. As mentioned before, CUDA

allows reference to each thread using a three-dimensional index;

however, it only allows two-dimensional indexing for thread blocks.

For this reason, we decided to assign the smallest dimension to the

third axis (from now on referred to as ‘‘depth’’—with size N), and by

making all blocks the same depth as the global grid—this ensures that

the block two-dimensional index corresponds to the remaining axes,

simplifying memory indexing computations. Each thread loads its

cell’s previous state into shared memory and the log-probabilities for

sensor measurements. The need for access to the previous states of

adjacent cells further complicates the implementation by forcing the

use of aprons, depicted in yellow within the thread blocks (see Fig. 12

for further details on kernel implementation using aprons)

4 CUDA streams are concurrent lanes of execution that allow parallel

execution of multiple kernels on the GPU.

J Real-Time Image Proc (2011) 6:171–186 179

123



5.3 Active exploration

The active exploration algorithm was implemented

resorting to CUDA atomic operations, global memory and

four consecutive kernels in a sequential CUDA stream.

This implementation is detailed on Fig. 12b.

6 Results

The real-time implementation of all the processes of the

framework was subjected to performance testing for each

individual module. Processing times and rates for the

sensory systems are as follows:

– Stereovision unit: 15 Hz (using CPU), including image

grabbing, preprocessing, stereovision processing itself

(i.e. disparity and confidence map generation), and

postprocessing and numerical conditioning.

– Binaural processing unit: Maximum rate of 40 Hz and

20 to 70 ms latency (using CPU) for 44 KHz, 16-bit

audio, with 16 frequency channels and 50 ms buffer for

cue computation.

– Inertial processing unit: 100 Hz using GPU. (The

previous particle filter, running on a Pentium D CPU,

achieved a maximum processing rate of 10 Hz,

representing therefore a 10-times-faster perfor-

mance.)

Processing times for the BVM modules are shown in

Fig. 14. As can be seen, the full active exploration system

runs from 6 to 10 Hz, depending on system parameters.

This is ensured by forcing the main BVM thread to pause

for each time-step when no visual measurement is available

(e.g. during 40 ms for N = 10, D/ = 2�—see Fig. 9).

This guarantees that BVM time-steps are regularly spaced,

which is a very important requirement for correct imple-

mentation of prediction/dynamics, and also ensures that

processing and memory resources are freed and unlocked

regularly.

Running times for the Bayesian Volumetric Map update

process decreased for each processing cycle from 5 to

30 min of serial processing on a Pentium Core 2 Quad

CPU at 2.40 GHz, depending on BVM parameters, to a

corresponding few hundredths of a second to a tenth of a

second of parallel computing on an NVIDIA 9800 GTX

Block

P(Z | VC OC C)Image-Sized Grid

Block Block

Block

C

Pixel Thread Pixel Thread

Pixel Thread

Fig. 11 Stereovision sensor model CUDA implementation. Each

thread independently processes one pixel of the egocentric-referred

depth map and confidence images (no use of shared memory

required), computes the corresponding cell C on the BVM log-

spherical spatial configuration using the equation shown, and updates

two data structures in global device memory with that configuration

storing log-probabilities corresponding to P(Z | [OC = 1] C) and P(Z |

[OC = 0] C) (independent of velocity VC), respectively. The update

is performed using atomic summation operations provided by CUDA

compute capability 1.1 and higher [31]. Atomic operations are needed

due to the many-to-one correspondence between pixels and cells on

the BVM; however, the order of summation is, obviously, non-

important. Finally, since all atomic operations except ‘‘exchange’’

only accept integers as arguments, log-probabilities are converted

from to floating-point to integer through a truncated multiplication by

10n, with n corresponding to the desired precision (in our implemen-

tation, we used n = 4)
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graphics card, thus yielding an 18,000- to 30,000-times-

faster performance.

Results for Bayesian processing of inertial data are

presented in Fig. 15, showing the algorithm is robust

enough to follow the attitude of the IMU based only on

gyro and accelerometer information. The plot in red is the

output of an extended Kalman filter from the IMU sensor

firmware that also relies on magnetic sensor data to over-

come gyro integration drift.

The results of processing a scenario testing different

aspects of the full system are presented in Fig. 16. A scene

consisting of two male speakers talking to each other in a

cluttered lab is observed by the IMPEP active perception

system and processed online by the BVM Bayesian filter,

using entropy-based active exploration as described earlier,

in order to scan the surrounding environment. These results

show a projection of the log-spherical configuration onto

Euclidean space of a volume approximately delimiting the

so-called ‘‘personal space’’ (the zone immediately sur-

rounding the observer’s head, generally within arm’s reach

and slightly beyond, within 2 m range [9]) and the evolu-

tion of the exploration process through time.

Fig. 12 BVM CUDA implementation flowcharts. a BVM filter

CUDA kernel flowchart. Aprons are the limiting cells of the block,

to which correspond threads that cannot access adjacent states, and

therefore with the sole mission of loading their respective states into

shared memory—thus, blocks must overlap as their indices change, so

that all cells have the chance to be non-apron. After all threads, apron

or non-apron, load their respective previous states into shared

memory, all non-apron threads then perform Bayesian filter estima-

tion and update the states, as depicted. The ‘‘Observation’’ box here

denotes the computation of b by multiplying all available outputs

from the stereovision and binaural Bayesian sensor models denoted as

the ‘‘Observation’’ box of Fig. 9. b Active exploration CUDA stream

flowchart. Four consecutive kernels in a sequential CUDA stream

were used to implement the active exploration algorithm. The

division of the processing workload into separate kernels was

necessary due to the fact that the only way to enforce synchronisation

between all concurrent CUDA threads in a grid (as opposed to all

threads in a block, which are only a subset of the former) is to wait for

all kernels running on that grid to exit—this is only possible at CUDA

stream level (see main text for the definition of CUDA stream).

CUDA atomic operations (refer to Fig. 11 for more information) and

global memory were used to pass on data from one kernel to the next

without the need for additional memory operations
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7 Conclusions and future work

The active exploration algorithm thus successfully drives

the IMPEP–BVM framework to explore areas of the

environment mapped with high uncertainty in real-time,

with an intelligent heuristic that minimises the effects of

local minima by attending to the closest regions of high

entropy first. Moreover, since the human saccade-genera-

tion system promotes fixation periods (i.e. time intervals

between gaze shifts) of a few hundred milliseconds on

average [7, 8], the overall rates of 6–10 Hz achieved with

our CUDA implementation, in our opinion, back up the

claim that our system does, in fact, achieve satisfactory

real-time performance. In fact, running times for the

Bayesian Volumetric Map update process decreased for

each processing cycle from 5 to 30 min of serial processing

on a CPU, depending on BVM parameters, to a corre-

sponding few hundredths of a second to a tenth of a second

of parallel computing on a GPU, thus yielding an 18,000–

30,000-times-faster performance. The effect of double-

precision processing used in some of the original baseline

code to which current running times are compared to pales

in face of the order of magnitude of performance increase.

Several improvements on the CUDA implementations

described in this text are still possible, in order to increase

the scalability of the system and improve processing times,

namely memory coalescing through pitched 2D memory

operations (refer to [31] for more information), possibly the

use of pinned memory on the host, and the use of multiple

grids processed by parallel CUDA streams for the BVM

filter in order to subdivide the BVM data structure, there-

fore eradicating the limit of N = 11 divisions in distance.

On the other hand, future use of the next generation of

graphics cards and CUDA Compute architectures, such as

the NVIDIA Fermi [32], will make a much improved

computational framework and memory subsystem avail-

able, by adding, for example, more capacity, a hierarchy

with Configurable L1 and Unified L2 Caches, ECC mem-

ory support and greatly improved atomic memory opera-

tion performance.

Additionally, in the future the vision module will be

extended so as to include a Bayesian optical flow

threads k k+15... k+16k-1

threads k k+15... k+16k-1

particle with max weight in a set of 16 threads is replicated throughout all of them

one particle is exchanged between contiguous thread sets
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Fig. 13 CUDA implementation

of the resampling process of the

particle filter for the inertial

model
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processor, which will receive input in the form of a prior

distribution built from the output from the inertial module.

This extension, together with the stereovision unit, will

allow automatic independent motion segmentation, as

described in [27].

In summary, our artificial active perception system

contributions are twofold:

– It provides a rather complete framework for active

multimodal perception—introducing an approach

which, while not strictly neuromimetic, finds its roots

in the role of the dorsal perceptual pathway of the

human brain—of which the proof of concept and

relevance to robotic active perception is presented

elsewhere [13–16, 35].

(a) Average processing times for

(b) Average processing times for

Fig. 14 BVM framework average processing times. Both graphs are

for Dh = 1�, and show the average of processing times in ms for each

activity depicted on Fig. 9, taken for a random set of 500 runs of each

module in the processing of 5 dynamic real-world scenarios, with

sensory horopter occupation varying roughly from 10 to 40%

(although with no apparent effect on performance). These times are

plotted against the number N of divisions in distance, which is the

most crucial of system parameters (for N [ 11, the GPU resources

become depleted, and for N \ 5 resolution arguably becomes

unsatisfactory), and for two different reasonable resolutions in /.

Note that BVM filter performance degrades approximately exponen-

tially with increasing resolution in distance, while the performance of

all other activities degrades approximately linearly—the sole excep-

tion is the vision sensor model for N = 11, where it actually

improves its performance. The reason for this is that the ratio of the

effect of the influence of resolution on CUDA grid size versus the

effect of the influence of resolution on the number of atomic

operations required is reversed. (The * denotes that for N = 11 the

block size is smaller for the BVM filter CUDA implementation—refer

to main text for further details.)
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– By providing a real-time implementation of a prob-

abilistic grid-based framework for multimodal per-

ception, shown in Sect. 2 to be a relatively

unexplored subject, it demonstrates that the SIMD

features of GPUs provide a means of dealing with

the scalability of highly parallelisable algorithms

operating on large data structures, therefore allowing

for real-time performances not possible using a CPU

implementation.

Further details on ongoing work can be found at http://

paloma.isr.uc.pt/*jfilipe/BayesianMultimodalPerception.
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