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Abstract— This paper presents a comparative case study on the 

classification accuracy between 5 methods for golf putting 

performance analysis. In a previous work, a digital camera was 

used to capture 30 trials of 6 expert golf players. The detection 

of the horizontal position of the golf club was performed using 

a computer vision technique followed by the estimation algo-

rithm Darwinian Particle Swarm Optimization (DPSO) in 

order to obtain a kinematical model of each trial. In this paper, 

the estimated parameters of the models are used as sample and 

training data of five classification algorithms: 1) Linear Dis-

criminant Analysis (LDA); 2) Quadratic Discriminant Analysis 

(QDA); 3) Naïve Bayes with Normal (Gaussian) distribution 

(NV); 4) Naïve Bayes with Kernel Smoothing Density Estimate 

(NVK) and 5) Least Squares Support Vector Machines with 

Radial Basis Function Kernel (LS-SVM). The 5 classification 

methods are then compared through the analysis of the confu-

sion matrix and the area under the Receiver Operating Cha-

racteristic curve (AUC). 
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I.  INTRODUCTION 

The putt is a motor skill that combines art and science 
[1], representing about 43% of the strokes in a Golf game 
[2]. Coordination and control of this movement is an indi-
vidual process that is different for each subject depending on 
his profile and characteristics [3]. Several studies [4-7] ana-
lyzed putting based on process measurements of motor ex-
ecution, i.e., movement action parameters like position, ve-
locity and acceleration (Figure 1). The same researchers 
assume that the aspects of stability and variability in the 
execution of this movement, observed at expert level players 
and beginners alike, may have significant differences in 
motor performance. Like other motor skills, the intra and 
inter-individual performance resulting from the execution of 
the putt is a “fingerprint” (i.e., signature) that is unique to 
each individual [8-11]. However, only a few studies analyz-
ing process variables such as the position, velocity or accele-
ration (linear or angular) in the golf club, more specifically 
the putter, during putt execution [6] have been performed 
and, researches using automatic tracking of the putter’s tra-
jectory on the green or in laboratory are not known. 

A previous work [12] presented the experimental design 
and methodological aspects in the analysis of the effects of 
variability in golf putting performance of expert subjects 
based on previously detected and estimated data of the hori-
zontal position of the putter during the execution. The 
process variables, such as the trajectory function were ob-
tained by estimation of a sinusoidal model to fit the horizon-
tal position of the putter during the execution using the 
Darwinian Particle Swarm Optimization (DPSO) method.  

In this paper, the parameters of the kinematic model 
(i.e., amplitudes, frequencies and phases of the sinusoids) of 
each expert player’s putting trial are classified with 5 differ-
ent classification methods in order to identify possible links 
between different executions of the same player, thus ex-
tracting putting signatures for every player. The several 
classification algorithms studied are described in section 2, 
leading to the experimental results of the mentioned stages, 
that are represented and discussed in section 3. Finally, the 
main conclusions are outlined in section 4. 

II. SURVEY OF CLASSIFICATION METHODS 

In this section it is presented a review of the five classi-
fication algorithms used in this work. In particular, the Li-
near and Quadratic Discriminant Analysis (LDA and QDA), 
the Naïve Bayes with Normal (Gaussian) distribution and 
with Kernel Smoothing Density Estimate (NV and NVK) and 
the Least Squares Support Vector Machines with Radial 
Basis Function Kernel (LS-SVM). 

Despite the diversity of the methodologies to evaluate 
the performance of classifiers, the confusion matrix and the 
area under the Receiver Operating Characteristic curve 
(AUC) are some of the most well-known methods to eva-
luate them and will be used in this work. Further details 
about both methods can be found in [13]. A confusion ma-
trix is a matrix containing information about actual and 
predicted classifications done by a classification system 
[14]. The confusion matrix lists errors and successes in the 
test set. The main diagonal represents the correctly classi-
fied samples while the other elements of the matrix corres-
pond to samples that were incorrectly classified. The Re-
ceiver Operating Characteristic (ROC) is a technique to 



visualize, evaluate, organize and select classifiers based on 
their performance (Fig. 1). The ROC graphs can show the 
line between the true positive and false positive rate of the 
classifiers [15].  

 

 
 

Figure 1.  Example of ROC curves for the third sine wave (Amplitude (a3) 

vs. Angular Frequency (b3)) of the fifth player (class 5). The best possible 

prediction method would yield a point in the upper left corner, i.e., 

coordinate (0,1), of the ROC space, hence the LS-SVM is the classifier 

which presents a superior performance for this trial. 

 

To compare classifiers it is necessary to reduce the curve 
to a scalar value. A common method to achieve this reduc-
tion is to calculate the area under the ROC curve (AUC). 
The AUC is a way to measure classifiers performance. Since 
the AUC is a part of the area of the unit square, its value 
always varies between 0 and 1. An AUC value of 1 repre-
sents a perfect test while the AUC value of 0.5 represents a 
weak or worthless test. 

A. Linear Discriminant Analysis (LDA) 

There are many possible techniques for data classifica-
tion. The Linear Discriminant Analysis (LDA) is one of the 
most commonly used techniques for data classification and 
dimensionality reduction in statistics, pattern recognition 
and machine learning, since it easily handles the case where 
the within-class frequencies are unequal and their perfor-
mances has been examined on randomly generated test data 
[16]. This method maximizes the ratio of between-class 
variance to the within-class variance in any particular data 
set thereby guaranteeing maximal separability (Fig. 2).  

LDA is closely related to logistic regression, Principal 
Component Analysis (PCA) and Quadratic Component 
Analysis (QDA), which also attempt to express one depen-
dent variable as a combination of other features or mea-
surements. LDA looks for linear combinations of variables 
which best explain the data, by explicitly attempting to 
model the difference between the classes of data. Other 
methods are preferable in applications where it is not rea-
sonable to assume that the independent variables are nor-
mally distributed, which is a fundamental assumption of the 
LDA method. Hence, a difference between independent 
variables and dependent variables must be made. LDA as-
sumes that the conditional probability density functions 
(PDF) follow a normal distribution for all classes. In prac-
tice, the class means and covariances are usually not known 

and are estimated from the training set used; e.g., using the 
maximum likelihood estimate or the maximum a posteriori 
estimate. Also, LDA assumes that all classes have a com-
mon covariance matrix and all covariances have full rank, 
this is called the homoscedastic assumption. The discrimi-
nant function is given by testing the probability that a sam-
ple x is contained in one class or another: 

 

               
 

 
  
                   (5) 

Where, Σ is the covariance matrix common to all classes 
and μk is the mean of class k. The value of x in each δk(x) is 
calculated and the classification of x is the class k that yields 
the largest value. When the number of observations of each 
sample exceeds the number of samples, the covariance esti-
mates do not have full rank, and so cannot be inverted. One 
way to deal with this is to use a pseudo inverse instead of 
the usual inverse matrix or use a Shrinkage estimator of the 
covariance matrix. The resulting classifier implies that the 
decision boundary between pairs of classes is linear and a 
hyperplane when using more than 2 classes, this is verified 
through the comparison of classes using the log-ratio. In 
geometrical terms, it is clear that an input observation is in a 
given class if the multidimensional-space observation point 
is located on a certain side of a hyperplane, perpendicular to 
the normal to the discriminant hyperplane.   

LDA finds other applications in areas like face recogni-
tion, marketing or financial prediction. For more details on 
the implementation of the method, one should refer to [17].  

 

 
Figure 2.  Example of fitted LDA decision boundaries separating three 

classes [17]. 

B. Quadratic Discriminant Analysis (QDA) 

Although they differ in their derivation, Quadratic Dis-
criminant Analysis (QDA) is similar to LDA [18]. The es-
sential difference between them is in the way the linear 
function is fit to the training data (Fig. 3). Also very popu-
lar, QDA separates measurements of classes of objects or 
events with a boundary between each pair of classes de-
scribed by a quadratic equation. Normal distributions are 
assumed, but each class can have a different covariance 
matrix. Thus, the separate covariance matrices must be 
estimated for each class. Which means there are much more 
parameters than in LDA, that increase with the number of 
dimensions. Since the decision boundaries are functions of 
the parameters of the densities, counting the number of 
parameters must be carefully done. When the homoscedastic 
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assumption is true, the best possible test for the hypothesis 
that a given measurement is from a given class is the like-
lihood ratio test, similarly to the LDA. The discriminant 
function is given by testing the probability that a sample x is 
contained in one class or another:  
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where Σk is the covariance matrix for class k, and μk is the 
mean of class k. After calculating each covariance matrix, 
estimating the mean, μk, and calculating P(C = k), the classi-
fication of new samples is accomplished by calculating their 
discriminant function value for each class. The less rigid 
model underlying QDA may better approximate the situation 
in a real classification problem (compared to LDA). While 
the allowance of curved decision boundaries can lead to 
reduced bias in the estimation of the (unknown) optimal 
decision boundaries, having to estimate variance and co-
variance values with less data can lead to increased variance 
in the estimation of the optimal boundaries. 

Literature show that both LDA and QDA perform well 
on large and diverse set of classification tasks.  

 

 
Figure 3.  Example of fitted QDA decision boundaries separating three 

classes [19]  

C. Naïve Bayes with Normal (Gaussian) distribution (NV) 

Naïve Bayes (NV) is one of the most efficient and effec-
tive inductive learning algorithms for machine learning and 
data mining [19]. The NV classifier is designed for use when 
features are independent of one another within each class, 
which is a rather unrealistic assumption that is almost al-
ways violated in real-world applications. However, it has 
surprisingly good performance, performing well in practice 
even when that independence assumption is not valid. Fur-
thermore, this assumption dramatically simplifies the esti-
mation. The individual class-conditional marginal densities 
can be estimated separately; also if the variables are dis-
crete, then an appropriate histogram estimate can be used. 
Assuming conditional independence among Xi’s (vectors of 
observed random variables), Bayes Rules is given by:  
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Hence, the Naïve Bayes classifier selects the class Ynew 
with maximum discriminant function for Xnew=<X1,…,Xn>: 
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If we have a continuous Xi, a common approach is to as-
sume that P(Xi | Y=yk ) follows a normal (Gaussian) distribu-
tion:  
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And the classification becomes:  
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Where Πk is estimated for each value of yk by 
πk≡P(Y=yk). Also, for each attribute Xi, it is necessary to 
estimate the class conditional mean µik and variance σik. 

A well-known limitation of Naïve Bayes is in the case of 
binary features [20], where it can only learn linear discrimi-
nant functions, and thus it is always suboptimal for non-
linearly separable concepts. Nonetheless, Naïve Bayes has 
proven effective in many practical applications, including 
text classification, medical diagnosis, and systems perform-
ance management [21]. Moreover, it is efficient using mem-
ory space and in terms of time complexity [22]. 

D. Naïve Bayes with Kernel Smoothing Density Estimate 
(NVK) 

Kernel smoothing density estimation is an unsupervised 
learning procedure, which historically precedes kernel re-
gression. This method fits a different but simple model 
separately at each query point x0, using only observations 
close to the target point, in a way that the resulting esti-
mated function becomes smooth. This is accomplished via a 
weighting function or kernel Kλ(x0;xi) that assigns a weight 
to xi based on its distance from x0 [17]. Kernel methods use 
weights that decrease smoothly to zero with distance from 
the target point. In high-dimensional spaces the distance 
kernels are modified to emphasize some variable more than 
others. 

The Kernel estimate is probably the most widely used 
nonparametric density estimation method. Kernels Kλ are 
typically indexed by a parameter λ that controls the width of 
the neighborhood. This results in a memory-based method 
that requires little or no training at all where all the work 
gets done at evaluation time. The only parameter that needs 
to be determined from the training data is λ. The model is 
the entire training data set. Generally the kernel function is 
given by:  
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Three popular probability density functions (PDF) used 
are Epanechnikov, Tri-Cube and Gaussian distribution func-
tion. A comparison of these kernels for local smoothing is 
presented in Fig. 4. 

 



 
Figure 4.  A comparison of three popular kernels for local smoothing [22]. 

Bayesian classification and decision making are based 

on probabilities that a given set of measurement come from 

objects belonging to a certain class (probability theory) and 

statistical methods based on class conditional probability 

density functions of features, are suitable in diverse classifi-

cation tasks [23]. 
Estimated PDFs have been used for classification utiliz-

ing Bayes formula. The classification can be done based on 
the probability density function, instead of estimating post-
erior probability using Naïve Bayes. The attempt is to esti-
mate the underlying density function from the training data, 
and the idea is that the more data in a region, the larger is 
the density function. Kernel smoothing density estimation 
leads naturally to a simple family of procedures for nonpa-
rametric density estimates for classification in a straightfor-
ward fashion using Bayes' theorem [17].  

E.  Least Squares Support Vector Machines with Radial 

Basis Function Kernel (LS-SVM) 

Support Vector Machines (SVM) is a powerful metho-
dology for solving problems in nonlinear classification, 
function estimation and density estimation which has also 
led to many developments in kernel based methods in gen-
eral [24-27]. This method solves convex optimization prob-
lems, typically by quadratic programming. The Least 
Squares Support Vector Machines (LS-SVM) is a reformula-
tion to the standard SVMs [28] which was recently pro-
posed. In fact, when the data points are linearly indepen-
dent, LS-SVM is equivalent to Hard Marginal SVM [29]. LS-
SVM involves the equality constraints only. Hence, the solu-
tion is obtained by solving a system of linear equations. 

SVM models are similar to multilayer perceptron neural 
networks. However, using a kernel function, SVMs are an 
alternative training method for polynomial, radial basis 
function and multi-layer perceptron classifiers in which the 
weights of the network are found by solving a quadratic 
programming problem with linear constraints, rather than by 
solving a non-convex, unconstrained minimization problem 
as in standard neural network training. Furthermore, rather 
than fitting nonlinear curves to the data, SVM handles this 
by using the kernel function to map the data into a different 
space where a hyperplane can be used to do the separation. 

Many kernel mapping functions can be used but only a 
few have been found to work well in for a wide variety of 
applications. The default and recommended kernel function 
is the Radial Basis Function (RBF). According to [20], Ker-

nel methods achieve flexibility by fitting simple models in a 
region local to the target point x0. Localization is achieved 
via a weighting kernel Kλ, and individual observations re-
ceive weights Kλ(x0; xi). Radial basis functions combine 
these ideas, by treating the kernel functions Kλ(μ; x) as base 
functions, where each basis element is indexed by a location 
and a scale parameter (μm and λm respectively). Thus, Radial 
basis functions are symmetric p-dimensional kernels located 
at particular centroids:  
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The centroids μm and scales λm have to be determined. A 
usual choice for the probability density functions is the 
standard Gaussian density function. There are also several 
approaches for learning the parameters μm, λm and θm. For 
example, a popular method is estimating θm, given μm and λm 
by a simple least squares problem. Often the kernel parame-
ters μm and λm are chosen in an unsupervised way using the 
X distribution alone. One of the methods is to fit a Gaussian 
mixture density model to the training xi, which provides 
both the centers μm and the scales λm. Figure 9 shows an 
example of Gaussian Radial Basis Function Kernels with 
scale parameter λ=1 and centered at 5 centroids, which were 
chosen at random. 

The LS-SVM classifier was implemented using the Least 
Squares – Support Vector Machines MatLab Toolbox [30]. 

 

 
Figure 5.  An example of a Gaussian Radial Basis Function Kernels 

centered at 5 centroids chosen at random and scale parameter λ=1[19]. 

III. EXPERIMENTAL RESULTS 

Experimental results present a comparative case study 
on the classification accuracy between five methods for the 
detection of signatures in the performance of the golf 
putting. In this stage, intensive Matlab simulation was per-
formed using the detection algorithm and the DPSO as an 
estimation technique with the earlier defined parameters to 
obtain the putter’s motion function that describes 30 putt 
executions of 6 different expert subjects (classes), in a total 
of 180 trials. After calculating all the estimation parameters, 
the five classification methods previously described were 
used in order to identify the signature of each player. 

Figures 6-8 and Table 1 depict the confusion matrix and 
the area under the ROC curve (AUC) of the five classifiers, 
respectively. 

 



 
Figure 6.  Comparisson of the percentual TP rate of the classifiers for the first sine wave.  

a) Amplitude (a1) vs. Angular Frequency (b1);  b) Amplitude (a1) vs. Phase (c1). 

 
Figure 7.  Comparisson of the percentual TP rate of the classifiers for the second sine wave.  

a) Amplitude (a2) vs. Angular Frequency (b2);  b) Amplitude (a2) vs. Phase (c2). 

 

 
Figure 8.  Comparisson of the percentual TP rate of the classifiers for the third sine wave.  

a) Amplitude (a3) vs. Angular Frequency (b3);  b) Amplitude (a3) vs. Phase (c3). 

Based on the previous figures, the LS-SVM shows a bet-
ter classification accuracy since it presents a higher percen-
tage of true-positives (TP) in almost all situations closely 
followed by the NVK method. 

However, in order to confirm the superiority of the LS-

SVM over the NVK, the AUC of each player’s trials was 

determined for the five classification methods. In order to 

allow a straightforward comparison of the five classifiers, 

next table depicts the average value of the AUC highlighting 

the maximum value for each player’s trial. Once again, the 

previous tables and figures provide evidences about the 

superiority of the LS-SVM classifier which shows better 

results in the majority of the trials closely followed by the 

NVK classifier. 

TABLE I.  AVERAGE VALUE OF THE AUC. 

Class LDA QDA NV NVK SVM 

1 0,619 0,601 0,671 0,680 0,744 

2 0,650 0,623 0,692 0,685 0,737 

3 0,566 0,582 0,634 0,761 0,734 

4 0,507 0,585 0,574 0,675 0,690 

5 0,622 0,651 0,692 0,766 0,797 

6 0,493 0,602 0,650 0,718 0,745 
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IV. CONCLUSION 

Real-time automated analysis of sport games such as foot-
ball, tennis or golf is a domain receiving increased attention. 
Nowadays, in many live broadcasts, computer vision analysis, 
with special attention to the ball’s kinematic, is used for ex-
ample to present the ball’s velocity or checking the ball’s 
relative position. Also, relevance is given to information com-
puted offline, like player’s statistics.  

The presented system for data retrieval, despite its com-
plexity, is functional and allows retrieving a series of different 
information simultaneously. To validate the work, towards 
using it in real situations, the putting performance of six expert 
golf players was evaluated. In this work, several classification 
methods for golf putting performance analysis were used and 
compared. It was shown that LS-SVM showed the most consis-
tent results. For this reason, in the future we intend to apply 
LS-SVM to extract unique features related to each player when 
performing the putt, in order to obtain a putting signature for 
every single subject.  
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