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Abstract – The article represents a method to perform the
Shape From Silhouette (SFS) of human, based on gravity
sensing. A network of cameras is used to observe the scene.
The extrinsic parameters among the cameras are initially
unknown. An IMU is rigidly coupled to each camera in or-
der to provide gravity and magnetic data. By applying a
data fusion between each camera and its coupled IMU, it
becomes possible to consider a downward-looking virtual
camera for each camera within the network. Then extrin-
sic parameters among virtual cameras are estimated using
the heights of two 3D points with respect to one camera
within the network. Registered 2D points on the image plane
of each camera is reprojected to its virtual camera image
plane, using the concept of infinite homography. Such a
virtual image plane is horizontal with a normal parallel to
the gravity. The 2D points from the virtual image planes
are back-projected onto the 3D space in order to make conic
volumes of the observed object. From intersection of the cre-
ated conic volumes from all cameras, the silhouette volume
of the object is obtained. The experimental results validate
both feasibility and effectiveness of the proposed method.

Keywords: Shape From Silhouette (SFS), IMU (Inertial
Measurement Unit), 3D reconstruction, virtual camera, vir-
tual image plane, infinite homography.

1 introduction
3D silhouette reconstruction of human is highly useful for
many applications including human behaviour understand-
ing. SFS is a known method to automatically reconstruct 3D
shape of an object by using a set of images which are taken
from multiple views. In this method the position and orien-
tation of the cameras need to be known. It means that the
camera network has to be initially calibrated. There are sev-
eral methods to calibrate camera network[25, 3, 4, 12, 30].
However they work on either by moving a bright spot object
(such as LED) through the darkened scene, placing some
calibration pattern in different orientation, or using vanish-
ing points of some structure in the scene. In some cases, it

Figure 1: A network of IMU-camera couples and a horizon-
tal plane

is not possible to make the scene dark enough or either dif-
ficult to move an object inside the scene. Therefore most of
the extrinsic calibration approaches can not easily be applied
for some cases. In this paper a method to perform the SFS,
based on making a virtual camera network, is proposed. A
network of cameras is used to observe the object within the
scene. An IMU is rigidly coupled to each camera in order to
provide gravity and magnetic data. By applying a data fu-
sion between each camera and its coupled IMU, it becomes
possible to consider a downward-looking virtual camera for
each camera within the network. Then extrinsic parame-
ters among virtual cameras are estimated using the heights
of two 3D points with respect to one camera within the net-
work. Registered 2D points on the image plane of each cam-
era is reprojected to its virtual camera image plane, using the
concept of infinite homography. Such a virtual image plane
is horizontal with a normal parallel to the gravity. The 2D
points from the virtual image planes are back-projected onto
the 3D space in order to make conic volumes of the observed
object. From intersection of the created conic volumes from
all cameras, the silhouette volume of the object is obtained.
Based on the proposed method even just one IMU-camera
couple can be used to make a camera network by moving it
inside the scene. The only prerequisite of the scene struc-
ture is to know the heights of two arbitrary 3D points with
respect to one camera within the network and there is no
more need of doing any in-scene calibration operation.



1.1 Previous work

In [26], Wada presented a homography-based parallel inter-
section method to reconstruct object’s volume. Khan in [17]
proposed a homographic framework for the fusion of multi-
view silhouettes. A marker-less 3D human motion capturing
approach is introduced in [20] using multiple views. Mi-
choud in [21] investigated a multi-view framework to com-
pute a 3D shape estimation of multiple objects from silhou-
ette and without ghost object. Takahashi in [16, 14, 15] pro-
posed some remarks on 3D human body posture estimation
extracted from multi cameras using silhouette volume inter-
section technique. Zhang in [29] introduced an algorithm
for 3D projective reconstruction based on infinite homog-
raphy. In his approach he improved the estimation of ho-
mography matrix in such a way that instead of having 4
points on a reference plane it needs 3 points. An octree-
based fusion of shape from silhouette and shape from struc-
tured light is proposed by Kampel in [13]. Lai and Yilmaz
in [18] used images from uncalibrated cameras for perform-
ing projective reconstruction of buildings based on SFS ap-
proach where buildings structure is used to compute vanish-
ing points. Chen and Chai in [7] proposed a method to per-
form 3D reconstruction of human motion and skeleton from
uncalibrated monocular video. In [27] a multi-camera net-
work system is applied for markerless 3D human body re-
construction. Zhang and Hanson in [31] implemented a 3D
Reconstruction based on homography mapping. Franco in
[10] used a Bayesian occupancy grid to represent the silhou-
ette cues of objects. The use of IMU sensor to accompany
compute vision applications is recently attracting attentions
of the researchers. Dias in [8] investigated the cooperation
between visual and inertial information. Lobo and Dias[19]
proposed an efficient method to estimate the relative pose of
a camera and an IMU. In our previouse works [2, 1], IMU
was used in order to perform calibration between a 3D laser
range finder and a stereo camera as well as data registration.
Moreover the method presented in [2] was extented in order
to calibrate a stereo camera and a 3D tracker[9]. Mirisola
in [23] used a rotation-compensated imagery for the aim of
trajectory by aiding inertial data. Fusion of image and in-
ertial data is also investigated by Bleser [5] for the sake of
tracking in the mobile augmented reality.

1.2 Outline

As mentioned, in this paper a method to perform the SFS,
based on making a virtual camera network, is proposed. The
data from each coupled camera and IMU are fused in order
to actualize a virtual downward looking camera. After that
a novel 2-known-heights based method is proposed to esti-
mate the extrinsic parameters between cameras within the
virtual camera network. Then the registered images by the
virtual camera network are used to perform the SFS method
for the sake of human silhouette volume reconstruction. The
use of gravity and magnetic data to perform SFS-based 3D
reconstruction is the main contribution of this paper. The

article is structured as follows: The models of camera and
IMU are explained in Sec. 2. The method to actualize a
network of virtual cameras is proposed in Sec. 3. In Sec.
4, an algorithm to carry out the SFS-based reconstruction is
suggested. Sec. 5 is dedicated to the experiments and even-
tually the conclusion and future work is presented in Sec.
6.

2 Sensor model
In a pinhole camera model, a 3D point X =
[ X Y Z 1 ]T in the scene and its corresponding
projection x =[ x y 1 ]T (both X and x are expressed
in normalized homogeneous form) are related via a 3× 4
matrix P (called Projection matrix) through the following
equation [11]:

x = PX (1)

P = K [R| t] (2)

where K is the camera calibration matrix, R is rotation ma-
trix between world and camera coordinate systems and t is
translation vector between world and camera coordinate sys-
tems which is equal to t = −RC, C being is the center of
the camera expressed in the world coordinate system. The
camera matrix K, which is also called intrinsic parameter
matrix, is defined by [11]:

K =

 fx 0 u0
0 fy v0
0 0 1

 (3)

in which fx and fy represent the focal length of the camera
(in terms of pixel scale) in the directions of x and y. The u0
and v0 are the elements of the principal point vector p [11].
In order to map points from one plane to another plane
the concept of Homography [11] is used. Lets consider a
3D plane is observed by two cameras with P = [I|0] and
P

′
= [R|t] (concerning first camera center as world reference

frame). Also assume that x1 and x2 are the image points of
a 3D point X lying on the 3D plane. Then x1 and x2 are
called a pair of correspondence points and the relation be-
tween them can be expressed as x2 = H x1 in which H is a
3× 3 matrix called planar homography induced by the 3D
plane [28] and is equal to (up to scale)

H = R+
1
d

t nT (4)

in which R and t are rotation matrix and translation vec-
tor between the two cameras centers, n is Normal of the
3D plane and d is the orthogonal distance between the 3D
plane and camera center. Applying the camera calibration
matrices K and K

′
and consequently having P = K [I|0] and

P
′
= K

′
[R|t] as camera projection matrices then correspond-

ing equation will become [11]:



H = K
′
(R+

1
d

t nT )K−1 (5)

Regarding the IMU, just its the gravity and magnetic data
are used in this work. The complete model of this sensor is
described in [19].

3 Virtual camera network construc-
tion

3.1 Reference Frames
Fig. 1 shows a setup with n couples of IMU-camera and a
horizontal plane. In this setup each camera is rigidly cou-
pled to an IMU. If the scene is static, then even a single
IMU-camera is sufficient, since it can be put in different
places of the scene (in this case, in any position the data
from IMU-camera couple should be stored and after that it
can be replaced to a new position). Using the orientation
given by IMU it becomes possible to assume a virtual cam-
era beside of each real camera within the network. In order
to calibrate the network, four different reference frames are
involved (see Fig. 2):

• Real camera reference frame{C}: The local coordinate
system of a camera C is expressed as {C}.

• Earth reference frame {E}: Which is an earth fixed
reference frame having its X axis in the direction of
North, Y in the direction of West and Z upward.

• Inertial Measuring Unit local reference frame {IMU}:
This is the local reference frame of an IMU sensor
which is defined w.r.t. to the earth reference frame {E}.

• Virtual camera reference frame {V} : As explained, for
each real camera C, a virtual camera V , is considered
by the aid of a rigidly coupled IMU to that. {V} indi-
cates the reference frame of such a virtual camera. The
centers of {C} and {V} coincide and therefore there is
just a rotation among these two reference frames.

3.2 Rotation compensation
The idea here is to introduce a method to recover the rotation
among cameras within the network. Then it will be possible
to compensate rotation for each camera or in the other words
having a camera network with no rotation among them. A
camera network setup is shown in Fig. 1. We start to explain
the method for one camera and then it can be extended for all
cameras. Fig. 3 shows the center, optical axis, image plane
and principal points of a real camera C and its corresponding
virtual camera V . Here the image plane of real camera and
virtual camera are named as I and I

′
, respectively. Based

on our definition V is downward looking camera and has
optical axis parallel to the gravity vector. Thus I

′
becomes

Figure 2: Involved reference frames in the proposed ap-
proach and a horizontal world plane. The plane can be any
world plane which has a normal parallel to the gravity

Figure 3: Virtual Camera Using IMU-aided Homography

a horizontal image plane at a distance f below the camera
sensor, f being the focal length [22].

In this fashion the intention is to register a 3D point X
onto I

′
. This can be done in two steps. Firstly X is regis-

tered onto I as cx = K [I|0]X . Then the 2D point cx can be
reprojected onto I

′
as follows:

vx = vHc
cx (6)

in which vHc is a 3×3 homography matrix between I and I
′
.

As described before, the real camera C and virtual camera V
have their centers coincided to each other, so the transforma-
tion between these two cameras can be expressed just by a
rotation matrix (see Fig. 3). In this case vHc is called infinite
homography since there is just a pure rotation between real
camera and virtual camera centers [11]. Such an infinite ho-
mography can be computed using a limiting process on Eq.
(5) by considering either d → ∞ or t → 0:

V HC = lim
d→∞

K (V RC +
1
d

t nT )K−1 = K V RC K−1 (7)

where V RC is the rotation matrix between {C} and {V} [24].
The rotation matrix V RC can be computed through three
consecutive rotations (see the reference frames in Fig. 2)
as follows:



V RC = V RE
ERIMU

IMU RC (8)

First one IMU RC is to transform from real camera reference
{C} to the IMU local coordinate {IMU}. The second one
ERIMU transforms from the {IMU} to the earth fixed ref-
erence {E} and the last one V RE is to transform from {E}
to virtual camera reference frame {V}. Here we continue to
explain how to compute these three consecutive rotation ma-
trices. In order to estimate the rotation between camera and
IMU ( IMU RC) , Camera Inertial Calibration Toolbox [19]
is used which is a toolbox to calibrate a rigid couple of a
IMU and camera. Rotation from IMU to earth , ERIMU , is
given by the IMU sensor w.r.t {E}. Since the {E} has the Z
upward but the virtual camera is supposed to be downward-
looking (with a downward Z ) then the following rotation is
applied to reach to the virtual camera reference frame:

V RE =

 1 0 0
0 −1 0
0 0 −1

 (9)

Having V RC for each cameras and applying Eq. 7 for any
camera within the network, we will have a set of parallel
(and horizontal) virtual image planes in such a way that there
is no rotation among them. This means that by now we have
solved the problem of rotation recovery for cameras. In the
next section we proceed to explain a method to recover the
translations among the cameras in the network.

3.3 Translation among virtual cameras
In previous sub-section, it was explained how to reach to a
network of virtual cameras such a way that there is no rota-
tion among them. It means that we have reduced the prob-
lem of calibration to just a “pure translation” case. This sec-
tion is dedicated to propose a method to estimate the trans-
lation between the mentioned virtual cameras. Obviously
since the center of each virtual camera is coincided to its cor-
responding real camera then the translations between virtual
cameras set are equal to the real ones. As described before,
the only requirement from the scene is to have the heights
of two arbitrary 3D points such X1 = [ X1 Y1 Z1 ]T

and X2 = [ X2 Y2 Z2 ]T (see Fig. 4) w.r.t one camera
(namely V0) within the network.

Suppose 0X1 = [ 0X1
0Y1

0Z1 ]T and 0X2 =
[ 0X2

0Y2
0Z2 ]T are coordinations of the two 3D

points X1 and X2 expressed in the first virtual camera cen-
ter, respectively. Based on the assumption, the parameters
0Z1 and 0Z2 which indicate the heights of X1 and X2 in
{V0} are known. Therefore the term “height“ here is equal
to the Z component of the 3D point. Then using projective
property of a camera we can have all three components of
0X1 and 0X2 numerically computed in a metric scale using
the Eq. (10): {

0X1 = 0Z1 (K−1
1

0x1)
0X2 = 0Z2 (K−1

1
0x2)

(10)

where 0x1 and 0x2 are respectively the imaged points of X1
and X2 in the first virtual camera image plane. The same
can be considered for the second virtual camera. Suppose
1X1 = [ 1X1

1Y1
1Z1 ]T and 1X2 = [ 1X2

1Y2
1Z2 ]T

are respectively coordinations of the 3D points X1 and X2
expressed in the second virtual camera center ({V1}). Then
likewise using projective property of a camera we can have
the following equation:{

1X1 = 1Z1 (K−1
2

1x1)
1X2 = 1Z2 (K−1

2
1x2)

(11)

In contrary to the Eq. (10), Eq. (11) can not be numeri-
cally computed yet, since it has two unknown values for 1Z1
and 1Z2 (the heights of the 3D points w.r.t {V1}). The terms
(K−1

2
1x1) and (K−1

2
1x2) in Eq. (11) as well express the 3D

position of the points 1X1 and 1X2 however up to scale fac-
tors 1Z1 and 1Z2. Here it is desirable to rewrite the Eq. (11)
as the following: {

1X1 = 1Z1
1X̂1

1X2 = 1Z2
1X̂2

(12)

where 1X̂1 = (K−1
2

1x1) and 1X̂2 = (K−1
2

1x2). Then the
Eq. (10) and Eq. (12) can be related through the translation
vector between {V0} and {V1} as:{

0X1 = 1X1 + t = 1Z1
1X̂1 + t

0X2 = 1X2 + t = 1Z2
1X̂2 + t

(13)

where t = ( t1 t2 t3 )T . In Eq. (13) there are five un-
known parameters, 1Z1, 1Z2, t1, t2, t3, and six linear equa-
tions. In order to estimate the five unknowns Eq. (13) can
be arranged in the form of

Ax = B (14)

where

A =
[ 1X̂1 03×1 I3×3

03×1
1X̂2 I3×3

]
,

x =
[

1Z1
1Z2 t1 t2 t3

]T
,B =

[ 0X1
0X2

]
x in Eq. (14) can thus be estimated using the least square ap-
proach and consequently the translation vector between the
two virtual cameras’ frames, {V0} and {V1}, is estimated.
In the same way, the translations between all other virtual
cameras and {V0} can be estimated.

4 Silhouette volume reconstruction
In this section, the applied SFS method for the aim of 3D re-
construction is explained. As introduced before, a network
of virtual cameras is used to observe the object. Here having



Figure 4: Translation between two virtual cameras (corre-
sponding to two real cameras: first one from the structure
camera and the other one here is on a mobile robot).

a sufficient background subtraction algorithm is an assump-
tion. Moreover, the only interesting feature from the object
in this approach is its silhouette. The silhouette of the ob-
ject is registered on the image planes of the cameras in the
network. Then 2D points of the image plane of each cam-
era are re-projected onto its corresponding virtual camera’s
image plane (I

′
), based on the proposed method. Then the

2D points from the virtual image planes are back-projected
onto the 3D space in order to make conic volumes of the
observed object. Using intersection of the created conic vol-
umes from all cameras, the silhouette volume of the object is
obtained. In order to do these operations the following algo-
rithm is proposed (Alg. 1). Here, {voxel} is the set of voxel
involved in the 3D space, {camera} is the set of cameras.
Kc is the camera matrix corresponding to c. In the case of
using just one camera (by moving it through the scene) then
there will be just one K for all cameras. tv is the translation
vector for the virtual camera v which can be calculated by
the proposed method in 3.3. I

′
(x) indicate the intensity of

the virtual image I
′

in the cell x.

Algorithm 1 3D Reconstruction
for each vox in {voxel} begin
vox:= ’occupied’
consider X as 3D position of v in the space.
for each c in {camera} begin
consider v as the virtual camera of c
consider I

′
as the image plane of v

compute x = Kc (X + tv)
if I

′
(x) < thresh then

vox:=’empty’
endif

end
end

5 Experiments
An experiment is performed based on the proposed ap-
proach. Fig. 5 show a rigid Camera-IMU couple which is
used in our experiment. In this experiment just one Camera-
IMU couple is used and the camera network is made by

Figure 5: Camera-IMU setup

Figure 6: From real image planes to virtual image planes:
F1: Background subtraction process. F2: Image plane of
virtual camera.

manually placing it in different position. The camera is a
simple 640× 480 FireWire Unibrain camera. A MTi-Xsens
is used as the IMU sensor. Firstly the intrinsic parameters
of the camera camera is estimated using Bouguet Camera
Calibration Toolbox[6] :

K =

 750.9819 0 367.5754
0 751.8286 292.6940
0 0 1

 (15)

Then Camera Inertial Calibration Toolbox [19] is used for
the sake of extrinsic calibration between the camera and
IMU:

CRIMU =

 0.0032 −0.9996 −0.0286
0.0179 0.0286 −0.9994
0.9998 0.0027 0.0179

 (16)

The Camera-IMU couple was placed in three different
positions. In each position an image and also the gravity-
magnetic data of the IMU is recorded. Fig. 6, the first row,
shows the image planes of the real cameras. Then a virtual
camera for each real camera is constructed. Further, the reg-
istered 2D-points on the image plane are reprojected onto
the virtual image planes (see Fig. 6-third row). Transla-
tions among cameras are calculated by using the heights of
two points in the scene. As the next step, the 3D reconstruc-
tion of the maniken is obtained usign the proposed algorithm
(Alg. 1). Fig. 7 represents the result (from three different
views) after aplying the algorithm on the data-set shown in
Fig. 6. The used resolution for the volume is as 20mm in
each axis.



Figure 7: The result of the proposed method for the SFS-
based 3D reconstruction: These three figures are taken from
three different views. It is the result of Alg. 1, applied to the
data-set shown in Fig. 6.

6 Conclusion and future work
In this paper the Shape From Silhouette (SFS) method is
applied for 3D reconstruction of human using a network of
sensors. The network comprises of IMUs and cameras. The
camera network is calibrated just based on gravity and mag-
netometer data and measuring the height of two 3D points
in the scene w.r.t one camera within the network. The need
for human operation for camera network calibration is min-
imum. Using the proposed method it is possible to rapidly
mount the IMU-Camera couples in the scene, measuring the
heights of two 3D point and then starting to monitor the
scene. As future work the intention is to continue this work
for surveillance applications where there are more modali-
ties such as range and vocal data.
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