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Deep Blue beats Garry Kasparov (1997) 
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Computers outperform human in all logical &  
arithmetic operations. 

Living organisms outperform computers and 
robots in all tasks involving uncertainty, e.g.  
action & perception in the real world. 

A difference exploited in the « captcha » tests. 3 
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LOGIC WORLD      ≠       REAL WORLD  
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To be understood at very different space (and time) scales 



5 

Space 
Scale 

Neuron Column Brain Systems 
biology 

Single 
molecule 

Behavior 

IROS 2015 WS 07      Bayesian Computing in Biology 

ψ 

OVERVIEW 



6 

Space 
Scale 

Neuron Column Brain Systems 
biology 

Single 
molecule 

Behavior 

IROS 2015 WS 07      Bayesian Computing in Biology 

ψ ϕ 

OVERVIEW 



7 

Space 
Scale 

Neuron Column Brain Systems 
biology 

Single 
molecule 

Behavior 

IROS 2015 WS 07      Bayesian Computing in Biology 

ψ ϕ µ 

OVERVIEW 



8 

IROS 2015 WS 07      Bayesian Computing in Biology : ψ 

Part 1: Perception as Bayesian inference: an old idea … 
 

H. Helmholtz (1867), E. Mach (1897), …  
Knill & Richards (1996), Kersten, Mamassian & Yuille (2004), … 

Here, an example from Ernst Mach, The Analysis of Sensations (1897) 
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A vertical line in the image ⇒ A vertical rod in space ? 
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A vertical line in the image ⇒ Any object in space contained in the plane Π 

Obs. 

Π 
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A tilted rod … 
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A planar curve 
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or a planar crocodile ? 
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But the most likely object is a vertical rod since its image  
does not depend on the particular position of the observer. 
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High P(O | S): We do not believe in coincidences ! 



The Bayesian approach: priors, likelihood and free variables 

Sensory Observation O Perceived Object or State S 

Priors P(S), P(F) 
(symmetry, regularity, …) 

Likelihood P(O | S, F) 
(The sensor function) 

Posterior P(S | O) ∝ P(S) ΣF P(F).P(O | S, F) 
(Bayes’ rule and marginalization rule) 
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Light source F 



3D Shape from shadow 

A priori, the light comes from above (The sun !): the shading is interpreted as  
« hollows » (if the dark part is above) or « bumps » (if the dark part is below). 
 
Mamassian & Goutcher (2001) Prior knowledge on the illumination position. Cognition 81: B1-9 
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Whiteness from 3D structure 

Zone B (shadowed by the green cylinder) seems whiter than zone A (unshadowed). 
However, both zones have the same objective luminous intensity (see right panel). 
 
Adelson  & Pentland (1996) The perception of shading and reflectance. In: Perception  as Bayesian  
Inference (Knill & Richards, eds.) Cambridge University Press. 18 
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Priors on object shape (e.g. human) or object property  
(e.g. rigidity) allows to complete the otherwise undetermined  
visual information … 

Johansson G (1973) Perception  
and Psychophysics 14:201-211 

Wallach H & O’Connell DN (1953) 
J. of Experimental Psychology 45(5):205-217 
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To solve the gravito-inertia ambiguity (F given by the vestibular sensors 
could result from an infinite number of combinations of gravity G and 
linear acceleration A), the brain uses prior favoring minimal linear 
acceleration. 

G 

A 

F 

The most probable solution Another (but less probable) solution 
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A Bayesian filter model including priors 
(Low angular velocity & Low linear acceleration) 

Rotational 
acceleration ∫ ∫ 

Otolith 
signal 

Canal 
signal  

Linear 
acceleration 

Linear 
velocity 

 ∫ ∫ 

Prior 
N(0, 0.3) rad/s 

Double integration 
Rotational 
velocity 

 

Head 
orientation 

 

Prior 
N(0, 2) m/s² 

Head 
position 

 

Double integration 

J. Laurens & J. Droulez, Biol. Cybernetics, 2007 
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Several effects on self-motion perception are explained, e.g.: 
rotation at constant speed around an off-vertical axis 

Bimodal distribution at high angular velocity 

Data from Correia & Guedry (66), Lackner & Graybiel (78), Denise et al (88), … 



D 
R 

Merging vestibular and visual information to solve the scale ambiguity: 
 

Depth, size and velocity of the object (in monocular vision) can be inferred from 
retinal information only to an unknown multiplicative scale factor. 

V 

d 
R v 
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Assuming that the object is stationary, and estimating the self-motion V from  
vestibular signals can help to solve the scale ambiguity 

V 

D 
d 
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Comparison SM (subject’s motion) versus OM (object’s motion) 
in the estimation of depth (probability of response inferior to 1 meter) 
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Panerai, Cornilleau-Pérès & Droulez, Perception & Psychophysics, 2002. 25 
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3D shape perception: the role of priors for regularity (perspective), 
rigidity (optic flow) and stationarity (self-motion) 

Wexler, Panerai, Lamouret & Droulez, Nature, 2001. 26 
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∆T = Persp. Tilt 
/ Motion Tilt 

Patrick Hughes 
« Reverspective » 



Van Boxtel, Wexler & Droulez (2003), Journal of Vision 3(5) : 318-332. 

Perception of 3D plane orientation (« tilt ») from object and self motion 
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P(Obj, Obs, Move, Flow) = P(Obj).P(Obs).P(Move | Obs).P(Flow | Move, Obj) 

P(Obj) = regularity / perspective 
P(Obs) = Self-motion information 
P(Move | Obs) = Stationarity assumption 
P(Flow | Move, Object) = Rigidity assumption 

Joint distribution: 

Question: P(Obj | Obs, Flow) ? 
 
Experimental results to be explained: 
- Perceptive Inversion (suppressed in active condition) 
- Perceptive variability due to shear (reduced in active condition) 
- 90° Rotation of perceived orientation with added depth translation 

Variables : Object structure, Observer motion, Relative Motion, Optic Flow 

F. Colas, J. Droulez, M. Wexler & P. Bessière, Biol. Cybernetics (2007) 

Obj Obs 

Mov Φ 



Object motion 

Subject motion 

Experiment Model 

Colas, Droulez, Wexler & Bessière (2007) Biological Cybernetics, 97:461-477 29 
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SUMMARY (Part 1) 

● The problem in perception (e.g. 3D perception) is NOT to get rid of 
sensory noise, but to solve ambiguities and indeterminacies. 
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SUMMARY (Part 1) 

● The problem in perception (e.g. 3D perception) is NOT to get rid of 
sensory noise, but to solve ambiguities and indeterminacies. 
 
● In the past two decades, Bayesian models have been quite successful in 
explaining a large variety of perceptive effects (“illusions”). 
 
● Subjects perceptive or motor responses exhibit a large variability from trial 
to trial which does not result from stimulus variations, but matches quite well 
with the output probability distribution of Bayesian models. 
 
● Individual subject response could be a “sample” drawn from the internally 
estimated probability distribution. 
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● How probability distributions are represented in the brain ? 
 
● How Bayesian inferences are performed by neurons ? 

Part 2: The Bayesian Brain 
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1. A variety of theoretical propositions 

● Direct code : single neuronal activity ↔ probability value 
 
r ≈ P(S = s) …. r ≈ Log(P(S = s)) … r ≈ Log(P(S = 1) / P(S = 0)) 
 
     Anastasio et al (2000); Gold & Shadlen (2001); Rao (2004); Yang & Shadlen (2007); … 

 
● Population code : ensemble of neurones ↔ linear combination 
     of a set of basis functions 
P(S = s) ≈ Σi ri.hi(s) or Log(P(S = s)) ≈ Σi ri.hi(s)  
 
    Zemel, Dayan & Pouget (1998); Ma, Beck, Latham & Pouget (2006); … 

 
● Sampling code: instantaneous population activity ↔ random 
   draw from a probability distribution 
 
    Lee & Mumford (2003); Fiser et al (2010); Maass (2014); … 

Im
pl

ic
it 

 
Ex

pl
ic

it 
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1. Evidence for a direct code (Log Likehood Ratio) 

Yang & Shadlen, Nature 447 (2007) 

Accumulation of 
evidence (in LLR) 

Activity in LIP 
(overtrained monkeys) 

But LLR and P(Choice) are highly 
correlated ! 
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2. Evidence for a population code (Tuning curves) 

In cats: Hubel & Wiesel, J. Phys. (1959). In monkeys: Hubel & Wiesel, J. Phys. (1968) 

Ma, Beck, Latham & Pouget, Nature Neurosc. 9:1432 (2006) 

Higher gain → Lower variance Sum of activity → Product of distribution 
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3. Evidence for a sampling code (stochastic neural activity) 

Data and model from Korn et al, Science 213 (1981)  
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4. Examples of proposed sampling codes 

One neuron per (discrete) variable One population per (binary) variable 

Fiser et al, Trends in Cognitive Sc. 14 (2010) Legenstein & Maass, PLoS CB (2014) 
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SUMMARY (Part 2) 

● Partial experimental evidences in favor of each of the (mutually exclusive) 
theoretical propositions. 
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SUMMARY (Part 2) 

● Partial experimental evidences in favor of each of the (mutually exclusive) 
theoretical propositions. 
 
● Log versions are well suited for the product rule (“Bayes’ theorem”), e.g. 
in naïve fusion models, but not for the sum rule (“marginalization”), e.g. in 
models with free variables and in temporal filters. 
 
● Direct codes and population codes aim at representing explicitly the 
probability distributions. Computation is based on exact inference (or close 
to exact inference). Neural “noise” is conceived as a nuisance. Might be not 
suited for solving problems in high dimension spaces.  
 
● Sampling code: accounts for biological stochasticity, well suited for hard 
inference problems. But the relevance of known sampling approach (e.g. 
MCMC) in neurobiology has yet to be demonstrated. 
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Part 3: The Bayesian Cell 

Neuronal activity is also controlled 
by complex biochemical networks 

Unicellular organisms have also 
developed well adapted behaviors in 
spite of uncertain environment 

Perkins & Swain, Strategies for cellular decision-
making, Mol. Syst. Biol, (2009)  

Euglena 
Chlamydomonas 

Integration of dopamine and glutamate signals  
in neurons of the basal ganglia (striatum and 
pallidum), role in reinforcement learning.  
Frank et al, Nature Neurosc. (2009)  
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Fernandez et al, DARPP32 is a robust integrator of Dopamine and Glutamate Signals. 
PLoS Comp. Biol. (2006)  

Striatum Pallidum 
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DARPP32:  
3 sites of phosphorylation → 8 states 
Fernandez et al (2006)  

A Markov model of allosteric transitions  
Droulez et al (2015)  
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S K 

F 

Equivalence between Bayesian inference and cascades of biochemical systems 

The output probability quotient is a rational 
function (with non negative coefficients) of 
likelihood quotients. 

Markov model of a biochemical module: 
NY = number of second messengers 
Φ1(x) = rate of release (by M1) : a RFNC of x 
φ2(x) = rate of removal per messenger (by M2) 
⇒ At equilibrium P(NY) is a Poisson 
distribution of parameter λ(x) = Φ1(x) / φ2 (x) 
 
The output concentration y is a RFNC of x.  
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Towards a Bayesian model of sensory-motor behavior in unicellular organisms  

Channelrhodopsin: the molecular 
light sensor in the eyespot 

Markov model of Channelrhodopsin (4 states) 

Example of simulation (Colliaux, Bessière & Droulez, SAND 2014) 



49 

IROS 2015 WS 07      Bayesian Computing in Biology : µ 

Towards a Bayesian model of sensory-motor behavior in unicellular organisms  

Simulation of phototaxis behavior (Colliaux et al, ECAL 2015) 
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SUMMARY (Part 3) 

● In complement to the usual neurocomputational approach (e.g. integrate-
and- fire neurons), models of the underlying biochemical signaling networks 
are required to understand how the brain could perform Bayesian computing. 
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SUMMARY (Part 3) 

● In complement to the usual neurocomputational approach (e.g. integrate-
and- fire neurons), models of the underlying biochemical signaling networks 
are required to understand how the brain could perform Bayesian computing. 
 
● Unicellular organisms have no brain, but a number of (molecular) sensory 
and motor devices. They can adapt to highly changing and uncertain 
environments. Why such simple organisms would not use a kind of basic 
Bayesian computing ? 
 
● The equivalence between Bayesian inferences and the behavior of large 
populations of macromolecules involved in cell signaling opens new 
perspectives to understand how single cells and unicellular organisms could 
process uncertain information.  
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CONCLUSION 

1. Bayesian theory of perception and behavior : a success story. 
 
2. How probability is coded and processed in the brain is still a highly 
controversial question. 
 
3. New perspectives might emerge from the understanding of information 
processing at molecular level. 
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Thank you for your attention ! 
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A vertical line in the image ⇒ An infinite number of complex scenes 
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