
Christos Bouganis
Imperial College London

Joint work with: G. Mingas, S. Liu

Reconfigurable Computing for
Bayesian inference

Group

Machine
Learning

Computer
Vision

Realibility Bayesian
Inference

Motivation 1/2

•  Bayesian models are becoming increasingly complex:
•  Large-scale data, high dimensionalities

Motivation 2/2

•  Stochastic inference methods:
•  MCMC, SMC, Quasi-MC and many variants…

•  Runtimes can reach weeks, months or more
•  Reasons:

•  Complex/”intractable” likelihoods
•  More data to process (Big Data)
•  Computationally demanding samplers

300K predictors, 4K responses

MCMC needs 20 days to sample posterior

Direction 1: Design “better” algorithms

•  Design more efficient samplers (Hamiltonian MC, Population-based
MCMC, Adaptive MCMC, etc)

•  Approximate methods (ABC, INLA, Variational Bayes)

•  Data sub-sampling/blocking (Firefly MC, Consensus MC, Composite
likelihoods)

•  See previous talks for more details

Direction 2: Buy better hardware

Do nothing. Just wait for the next generation processor

But no more…Power wall

No more “free-lunch”

§  Parallel architectures are the present and the future (?):
§  Multi-core CPUs
§  Graphical Processing Units (GPUs)
§  Field Programmable Gate Arrays (FPGAs)

Direction 2: Use Parallel Architectures
(or what I call : Unconventional Computing)

Parallel hardware platforms – Multi-core CPU

•  Few powerful processing cores
•  Lots of control logic and cache memory – designed for sequential code
•  Fixed instruction set
•  Pros: Flexible, easy to use, Cons: Limited speedup, high power

ADD SUB DIV

OPERANDS RESULT

Parallel hardware platforms – GPU

1 block
=

8-32 processors

•  Many light-weight processors, minimal control and cache
•  Pros: Massive peak performance, good for SIMD applications, easy to program
•  Cons: Underperforms on non-SIMD code, medium power efficiency

ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD

Parallel hardware platforms – GPU

1 block
=

8-32 processors

•  Many light-weight processors, minimal control and cache
•  Pros: Massive peak performance, good for SIMD applications, easy to program
•  Cons: Underperforms on non-SIMD code, medium power efficiency

DIV DIV DIV DIV DIV DIV DIV DIV DIV DIV DIV

Parallel hardware platforms – FPGA

Logic block

Interconnect Memory Multiplier

- / x

EXP

Normal pdf

- / x

EXP

Normal pdf

- / x

EXP

Normal pdf

Parallel hardware platforms – FPGA

Logic block

Interconnect Memory Multiplier

…

 Binomial pdf

…

 Binomial pdf

Parallel hardware platforms – FPGA

Logic block

Interconnect Memory Multiplier

MCMC sampler

CPU
(sequential code)

Cholesky

Decomposition

Communication bus

•  No fixed processing architecture – no pre-defined instruction set
•  Pros: Can be tailored to application, low power, runtime re-configuration
•  Cons: Difficult to program, slow compilation ç We started to address that

Programming models
Multi-core CPU
•  C/C++ (or any other language)
•  Vector Instructions (compiler)
•  Implicit threading (Hyper-Threading, Multiple Cores)
•  OpenMP API (explicit threading opportunities in the code – shared

memory)

GPU
•  C/C++ and extra keywords
•  CUDA from Nvidia, OpenCL from Khronos group, libraries
•  SIMD architecture

FPGAs
•  (They need their own slide…)

FPGA design flow

Code writing Synthesis (minutes)

Place and route
(minutes-hours)

Configuration file
generation (seconds)

A high-level comparison of devices (1/2)

FPGA: Xilinx
XCVU440

GPU: Nvidia K40 CPU: Intel Xeon
E7-4800

Peak performance 4,904 GFLOPs 5,364 GFLOPs 1.246 GFLOPs

Power
consumption

20-40 W 235 W 140 W

Memory
bandwidth (global)

50-200 GB/sec 336 GB/sec 85 GB/sec

Memory
bandwidth (cache)

~300 TB/sec

~50 TB/sec ~10 TB/sec

A high-level comparison of devices (2/2)

Spectrum of computational devices

ASIC General-purpose CPU

•  High Performance
•  Low power

•  Long development
time

•  Low performance
•  High power

•  Short development
time

FPGA GPU

GPU or FPGA?

•  Use GPU when:
•  Algorithm is SIMD/

embarrassingly parallel
•  No conditional statements
•  Memory access is deterministic

and structured and data set is
massive

•  Ease of use is the primary
concern

•  Use FPGA when:
•  Algorithm has medium-high

parallelism degree – not
necessarily SIMD

•  Algorithm is streaming-based –
allows extensive pipelining

•  Custom arithmetic precision can
be employed

•  Power efficiency is important

No device is best for all applications

Outline

•  Motivation

•  Unconventional Computing
•  What are multi-core CPUs, GPUs and FPGAs?
•  How are they different?

•  Employing reconfigurable computing for Bayesian Inference

•  aka: What have we done so far?

•  What do we plan to do?

•  What to keep from this talk

Our research on Bayesian Inference

Techniques to perform fast Bayesian inference using parallel devices
(multi-core CPUs, GPUs, FPGAs):

•  Target inference methods (FPGAs)

•  Sampler-specific hardware design (Population-based MCMC, Particle MCMC)
•  Algorithmic modifications and new algorithms

•  Target Bayesian models (FPGAs and GPUs)
•  Variable selection for linear regression with many predictors/responses
•  Work on QR factorization

•  Target optimizations for MCMC algorithms (FPGAs)
•  Arithmetic precision optimization for MCMC algorithms

How do we map efficiently (not necessary faithfully)
an MCMC algorithm into an FPGA?

Inference Methods: Population-based MCMC

slow mixing

Parallel Tempering

§  Each chain has a different target distribution:
1

() ()x x jT
jp p=

Chain
temperature

§  By exchanging samples, mixing is improved

Traditional architecture - CPU

Sample
Proposal

Probability
Evaluation Update Exchange

Tasks

Sample
Proposal

Probability
Evaluation Update Exchange Sample

Proposal
Probability
Evaluation Update Exchange Sample

Proposal
Probability
Evaluation Update Exchange Sample

Proposal
Probability
Evaluation Update Exchange

Chains

Processing blocks that run sequentially

FPGA architecture

•  Spatial computations (i.e. RNGs generated on-chip concurrently to processing)
•  Pipelined data-path to exploit parallel chains’ independency…
•  Probability evaluation heavily parallelized
•  Access to all memories in one clock cycle (on-chip memories)

Processing blocks that run concurrently in a streaming fashion => high performance

Pipelining

Probability
Evaluation

x

m -2s^2

e

c

f(x)

Another form of parallelism

Evaluation

§  Finite Gaussian Mixture Model
§  Synthetic data
§  CPU : Intel i7-2600 (4 cores)
§  GPU : Nvidia GTX480
§  FPGA: Xilinx Virtex-7 VX1140T

Speedup (vs. Number of chains)

§  GPU can reach FPGA performance only for massive chain population
§  à in reality, no gain in mixing after 100-200 chains

§  CPU much slower

Performance increase

Can we boost the performance further?

Yes, we can !!!

Tuning arithmetic precision

§  Resources = Performance in FPGAs

§  Double/single precision floating point is the de facto precision in
MCMC
§  Is it really necessary?

§  FPGAs: Can use custom precision in parts of MCMC sampler to

speedup performance.
§  In which parts? What is the impact?

§  Trade-off: Speed vs. Accuracy

Precision: Effect on FPGA resources

Floating point
exponent bits Floating point

mantissa bits

More
parallelism

Cost of 1 logarithm operator

Precision: Effect on sampling accuracy

23 bits

4 bits 3 bits 2 bits

6 bits 11 bits

Custom precision in Population-based MCMC

Scheme 1: Mixed precision

•  Idea: Use double precision only in the first chain
•  Correct sampling is guaranteed
•  Penalty paid: Mixing might drop due to low precision in auxiliary chains

Custom precision in Population-based MCMC

Scheme 1: Mixed precision

•  Baseline: Single core CPU
•  Mixing – speedup tradeoff
•  Optimal precision maximizes

effective samples per second

Custom precision in Population-based MCMC

Scheme 2: Weights-based

•  Idea: Sample in reduced precision, use weights to correct
estimates

•  Similar to Importance Sampling
•  Penalty paid: Mixing + effect of IS

Population-based MCMC: Performance comparison (Mixture model)

FPGA (Mingas et al. 2012) vs CPU vs GPU (Lee et al. 2010)

5x-6x

55x
120x

Generic MCMC precision optimization

Previous custom precision methods:
•  No bias
•  Specific for Population-based MCMC

This method:
•  Bias allowed but controlled
•  Optimize precision given a user-specified bias tolerance
•  Applies to any MCMC method

Precision: Effect on MC estimate

∫= x)()()]([dpffEp θθθ

We need to
estimate
this

Posterior in
custom
precision α

Posterior in
double precision

Proposed bias estimator

 Short MCMC pre-runs to
estimate bias integrals

Bias for
precision α

∫

∫∫
−=

=−=

θθ
θ
θ

θ

θθθθθθ

α
α

αα

dp
p
pf

dpfdpfb

)()1
)(
)()((...

...)()()()(

Optimization process on FPGA

Choose
 precision

User
input

MCMC
pre-runs

Estimate
 biases

MCMC
final run

SW SW SW HW HW

1) Target standard deviation
2) Tolerable bias

Choose
 precision

User
input

MCMC
pre-runs

Estimate
 biases

MCMC
final run

SW SW SW HW HW

1) Target standard deviation
2) Tolerable bias

Optimization process

Choose
 precision

User
input

MCMC
pre-runs

Estimate
 biases

MCMC
final run

SW SW SW HW HW

1) Target standard deviation
2) Tolerable bias

Optimization process

FPGA configuration 1
Short MCMC pre-runs in all candidate precisions

Choose
 precision

User
input

MCMC
pre-runs

Estimate
 biases

MCMC
final run

SW SW SW HW HW

Optimization process

Optimization process

Choose
 precision

User
input

MCMC
pre-runs

Estimate
 biases

MCMC
final run

SW

SW SW HW HW

Choose
 precision

User
input

MCMC
pre-runs

Estimate
 biases

MCMC
final run

SW

SW SW HW HW

Optimization process

Choose
 precision

User
input

MCMC
pre-runs

Estimate
 biases

MCMC
final run

SW

SW SW HW HW

Optimization process

Choose the lowest precision for which: (| |) 0.95< ⋅ >T biasP bias SD T

Choose
 precision

User
input

MCMC
pre-runs

Estimate
 biases

MCMC
final run

SW

SW

SW HW HW

Optimization process

Choose the lowest precision for which: (| |) 0.95< ⋅ >T biasP bias SD T

Choose
 precision

User
input

MCMC
pre-runs

Estimate
 biases

MCMC
final run

SW

SW

SW HW HW

Optimization process

FPGA configuration 2
Final, long MCMC run in optimized precision

Choose
 precision

User
input

MCMC
pre-runs

Estimate
 biases

MCMC
final run

SW

SW

SW

HW

HW

Optimization process

MCMC target: Mixture model (Jasra et al. 2007)

SDT Tbias Optimized
precision

Speedup vs. DP
FPGA

0.05 100% (8,13) 4.48x
0.05 50% (8,13) 4.59x
0.02 50% (8,15) 4.10x

Evaluation

Exact MCMC acceleration using mixed-precision

Method-Specific Accelerator
(PT-MCMC)

Generic Accelerator
(but biased)

Unbiased Generic Accelerator

What to keep from the talk

•  Summary:
•  Benefits from spatial computation
•  Benefits from custom precision

•  Population-based MCMC (+ custom precision)
•  Generic precision optimization but bias
•  Generic precision optimization without bias

•  Device choice depends on many factors but FPGAs are
cool…
•  More freedom to exploit the characteristics of the application,

interaction between algorithmic design and algorithmic
implementation

•  Frequently (but not always) faster than GPUs
•  More power efficient

What we plan to do

•  Closer collaboration with statistics community:
•  Which are the most promising methods? SMC^2, Firefly MC, Sequential Quasi-MC,…
•  Which are the really demanding applications? Why?

•  Working with large datasets (Big Data):
•  Keeping data inside the chip for as long as possible is critical for performance…
•  Do not move the data around è consumes power

•  Computing with unreliable components:
•  Devices will become less reliable
•  Clock them beyond the safe frequency

A:2

Fig. 1. Mean squared error of the reconstruction of the KLT in the original space vs its clock frequency, as
well as the maximum operating clock frequencies provided by the conservative models of the synthesis tools.
The region of interest corresponds to the clock frequencies for which the KLT circuit generates errors when
ran on a DE0 board from Terasic.

them with uneven performances across the device. Then as well, embedded multipliers
on different locations will have different timing limitations. To address this problem,
the proposed methodology supports design strategies with different operating condi-
tions, such as low-power and high-performance. Moreover, in implementations where
voltage and clock frequency are fixed and don’t change over time, the temperature may
vary as it is very expensive to fine control. The proposed methodology can optimise de-
signs for graceful degradation over a wide range of temperatures.

The proposed framework optimises extreme over-clocking of KLT designs into error-
prone operation, designated as Region of Interest in Fig. 1. This figure shows the evo-
lution of errors, on a Cyclone III FPGA, with the increase of clock frequency, in a KLT
design from a Z6 space to a Z3 using the embedded multipliers on the FPGA. It also
shows the maximum clock frequencies reported by the synthesis tool for different tem-
peratures, which demonstrate the performance penalty due to the tool’s conservative
models, and not the actual delay in the targeted device.

The proposed framework captures the performance characterisation of the targeted
FPGA device and exposes it to the algorithm specification in order to perform the de-
sign space exploration, resulting in implementations of KLT designs with improved
performance, while minimising errors without the expense of extra circuit resources.
The obtained performance information (i.e. errors that are expected at the output of
the multipliers) is injected into a Bayesian formulation of the problem in order to im-
prove the performance of the KLT designs. This framework uses an error model (for
specific operating conditions), and later automatically combines this information with
high-level parameter selection of the algorithm, generating designs less prone to error,
when compared to typical implementations of the KLT algorithm.

The main contributions in this paper are:

— Extension of the characterisation and optimisation framework prototypes, in [Duarte
and Bouganis 2012; 2014b], to support embedded multipliers;

— Introduction of the support for PVT variation in the characterisation framework and
in the optimisation algorithm, including support for different device families;

— Development of an error model for the embedded multipliers under a range of oper-
ating conditions;

— Optimisation of KLT designs for performance targeting different scenarios (i.e. low-
power, high-performance, temperature variation resilience).

2. BACKGROUND
Usually the implementation and performance of KLT designs in a digital system is
bound to the hardware resources occupied and its maximum performance. Typical de-
sign optimisation techniques often translate them into a tradeoff between the number

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Back to the Future…

Is FPGAs the future of statistical computing?

The future will be interesting

Probably not

Heterogeneous Systems
(multi-core with a GPU and FPGA-like in the same chip)

We need tools, libraries and MCMC algorithms aware of hardware
We need to work on it

(We := Hardware Designers, Software Programmers, Statisticians)

Questions?

Team working on this topic:
•  Grigoris Mingas
•  Shuanglong Liu
•  Stelios Venieris

http://cas.ee.ic.ac.uk/people/ccb98/

ccb98@ic.ac.uk

