Imperial College
London

Reconfigurable Gomputing for
Bayesian inference

Christos Bouganis
Imperial College London

Joint work with: G. Mingas, S. Liu

Imperial College

Machine
Learning

Realibility

Computer
Vision

Bayesian
Inference

it

I“

1

| 1| \
i i F I I: I 1"‘ il i
i ¥ t i

|
(=== rrrj:gj:;:ﬂﬂ:.::tl o o s e o o e e
T
I

Imperial College
London

Motivation 1/2

« Bayesian models are becoming increasingly complex:
« Large-scale data, high dimensionalities

e e T B B B

Imperial College

Motivation 2/2

 Stochastic inference methods:
« MCMC, SMC, Quasi-MC and many variants...

« Runtimes can reach weeks, months or more
» Reasons:
« Complex/’intractable” likelihoods
» More data to process (Big Data)
« Computationally demanding samplers

300K predictors, 4K responses

!

MCMC needs 20 days to sample posterior

Imperial College
London

Direction 1: Design “better” algorithms

« Design more efficient samplers (Hamiltonian MC, Population-based
MCMC, Adaptive MCMC, etc)

« Approximate methods (ABC, INLA, Variational Bayes)

« Data sub-sampling/blocking (Firefly MC, Consensus MC, Composite
likelihoods)

» See previous talks for more details

Imperial College
London

Direction 2: Buy hetter hardware

Do nothing. Just wait for the next generation processor 1:‘22?

/
Dual-Core Itanium 2 . /
L]

Intel CPU Trends '/_‘

(sources: Intel, Wikipedia, K. Olukotun}) 7

100,000
; |]

W No more “free-lunch”

10,000,000

1,000

100

o,
° °
am . ° . °
/ D 0) 44
10 =
A &
‘/.g oo L A .
[
1 : 2 _ o A Transist ors (000) |
../. / * @ Clock Speed (MHz]
oo ° Power (W)
Perf/Clock (ILP)

0 [
1970 1975 1980 1985 1990 1995 2000 2005 2010

Imperial College

Direction 2: Use Parallel Architectures
(or what | call : Unconventional Gomputing)

= Parallel architectures are the present and the future (?):
= Multi-core CPUs
= Graphical Processing Units (GPUs)
= Field Programmable Gate Arrays (FPGAS)

Imperial College

CPU

CPU

Control logic

PU

CPU

OPERANDS

l RESULT

Cache memory

Few powerful processing cores

Lots of control logic and cache memory — designed for sequential code

Fixed instruction set

Pros: Flexible, easy to use, Cons: Limited speedup, high power

Imperial College

SsP | SP | SP | SP | SP | SP | SP | SP | SP | SP | SP
SP | SP | SP | SP | SP | SP | SP | SP | SP | SP | SP
sp | SP | SP | SP | SP | SP | SP | SP | SP | SP | SP
SsP | SP | SP | SP | SP | SP | SP | SP | SP | SP | SP
SP | SP | SP | SP | SP | SP | SP | SP | SP | SP | SP
sp | SP | SP | SP | SP | SP | SP | SP | SP | SP | SP
SsP | SP | SP | SP | SP | SP | SP | SP | SP | SP | SP
SP | SP | SP | SP | SP | SP | SP | SP | SP | SP | SP
sp | SP | SP | SP | SP | SP | SP | SP | SP | SP | SP

Many light-weight processors, minimal control and cache

1 block

8-32 processors

Pros: Massive peak performance, good for SIMD applications, easy to program
Cons: Underperforms on non-SIMD code, medium power efficiency

Imperial College

SsP | SP | SP | SP | SP | SP | SP | SP | SP | SP | SP
SP | SP | SP | SP | SP | SP | SP | SP | SP | SP | SP
sp | SP | SP | SP | SP | SP | SP | SP | SP | SP | SP
SsP | SP | SP | SP | SP | SP | SP | SP | SP | SP | SP
SP | SP | SP | SP | SP | SP | SP | SP | SP | SP | SP
sp | SP | SP | SP | SP | SP | SP | SP | SP | SP | SP
SsP | SP | SP | SP | SP | SP | SP | SP | SP | SP | SP
SP | SP | SP | SP | SP | SP | SP | SP | SP | SP | SP
sp | SP | SP | SP | SP | SP | SP | SP | SP | SP | SP

Many light-weight processors, minimal control and cache

1 block

8-32 processors

Pros: Massive peak performance, good for SIMD applications, easy to program
Cons: Underperforms on non-SIMD code, medium power efficiency

Imperial College
London

Interconnect Memory Multiplier

FTFTFTFTFTEEEEEE

o S e S S

1Sl Rl RSl el el
o S S P I TS TS

Imperial College
London

Interconnect Memory Multiplier

il

Binomial pdf

Logic block———

FTFTFTFTFTEEEEEE

o S e S S

1Sl Rl RSl el el
o S S P I TS TS

Imperial College

Interconnect Memory Multiplier

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ —
MCMC sampler

Logic block—]

A

(sequential code)

Communication bus

Cholesky
Decomposition

,_H_H_Hﬁl_llﬁl_ﬂ_\l_ﬂ_\l_lﬁ

| |U

* No fixed processing architecture — no pre-defined instruction set
* Pros: Can be tailored to application, low power, runtime re-configuration
» Cons: Difficult to program, slow compilation € We started to address that

Imperial College
London

Multi-core CPU

« (C/C++ (or any other language)

* Vector Instructions (compiler)

« Implicit threading (Hyper-Threading, Multiple Cores)

OpenMP API (explicit threading opportunities in the code — shared
memory)

GPU

« (C/C++ and extra keywords

« CUDA from Nvidia, OpenCL from Khronos group, libraries
« SIMD architecture

FPGAs
* (They need their own slide...)

Imperial College
London

module seqll0l mealy(x, y, CLK, RESET)
input x;
input CLK;
input RESET:

output y;
reg y:
Code writing parameter stare = 2100, gori = 2'h01, gord
reg [1:0] Q: // state varisbles
reg [1:0] D; // next state logic output

// next state logic
© always @ (x or Q)
begin

vy = 0:;

case (Q)

start: D .=.x 2 gotl : start: Lo + b
clk

Configuration file Ll = ‘ Place and route
generation (seconds) i | E (minutes-hours)

Imperial College
London

A high-level comparison of devices (1/2)

FPGA: Xilinx GPU: Nvidia K40 CPU: Intel Xeon
XCVU440 E7-4800

Peak performance 4,904 GFLOPs 5,364 GFLOPs 1.246 GFLOPs
Power 20-40 W 235 W 140 W
consumption

Memory 50-200 GB/sec 336 GB/sec 85 GB/sec

bandwidth (global)

Memory ~300 TB/sec ~50 TB/sec ~10 TB/sec
bandwidth (cache)

Imperial College
London

A high-level comparison of devices (2/2)

Spectrum of computational devices

ASIC FPGA GPU General-purpose CPU
High Performance — * Low performance
 Low power * High power

 Long development — . Short development

time time

Imperial College
London

No device is best for all applications

« Use GPU when:

Algorithm is SIMD/
embarrassingly parallel

No conditional statements

Memory access is deterministic
and structured and data set is
massive

Ease of use is the primary
concern

« Use FPGA when:

Algorithm has medium-high
parallelism degree — not
necessarily SIMD

Algorithm is streaming-based —
allows extensive pipelining

Custom arithmetic precision can
be employed

Power efficiency is important

Imperial College
London

 Motivation

* Unconventional Computing
« What are multi-core CPUs, GPUs and FPGAs?
* How are they different?

« Employing reconfigurable computing for Bayesian Inference
« aka: What have we done so far?

 What do we plan to do?

 What to keep from this talk

Imperial College
London

Techniques to perform fast Bayesian inference using parallel devices
(multi-core CPUs, GPUs, FPGAs):

 Target inference methods (FPGAS)

« Sampler-specific hardware design (Population-based MCMC, Particle MCMC)
* Algorithmic modifications and new algorithms

 Target Bayesian models (FPGAs and GPUs)

» Variable selection for linear regression with many predictors/responses
« Work on QR factorization

« Target optimizations for MCMC algorithms (FPGASs)
* Arithmetic precision optimization for MCMC algorithms

How do we map efficiently (not necessary faithfully)
an MCMC algorithm into an FPGA?

Imperial College

T 1} T T
A
1] 2 4 B 8

slow mixing

T T T
A
-6 -4 -2 1] 2

7

O—O—~0O—-0O\ O—~O—-O—-O—-0—-0O
O—O\ O0—O O—-0O0—-0—-0—0—-0
O—0O O—-0O0—-0O0—-0—-0C—-0. 00
O—O—-0C—-0O0—-CO\ O0—~0O0-0O"0-0
O—0O—-0—-0—-0 O—-0—-0—-0-0

Imperial College

Parallel Tempering

= Each chain has a different target distribution:

Chain
p (X) — p(x temperature
J

1 ; * 10 >

! ﬁﬁ “ ; A;q:"::;..r)‘”’
COLDEST 1 , - : ;
CHAIN ol * =« B i T
TARGET N &

2 o #*

@ &
k4

HOTTEST
CHAIN
TARGET

,,,,,
-1 0 1 2 3 4 5 6 7 8 9 10 -1 0 1 2 3 4 5 6 7 8 9 10

= By exchanging samples, mixing is improved

Imperial College
London

Traditional architecture - CPU

\

Processing blocks that run sequentially

Imperial College
London

FPGA architecture

« Spatial computations (i.e. RNGs generated on-chip concurrently to processing)
» Pipelined data-path to exploit parallel chains’ independency...
» Probability evaluation heavily parallelized

* Access to all memories in one clock cycle (on-chip memories)

Processing blocks that run concurrently in a streaming fashion => high performance

Imperial College
London

E=1
+-o4etotator

m -25/\2 c

Another form of parallelism

Imperial College
London

Evaluation

Finite Gaussian Mixture Model
T

» Synthetic data
= CPU :Inteli7-2600 (4 cores) -
= GPU : Nvidia GTX480
= FPGA: Xilinx Virtex-7 VX1140T

Imperial College

Speedup (vs. Number of chains)

(p)
© < ¢ oc
= 100?
v —>¢— FPGA
o
3 —}—GPU
7 A cpu
> 10+
Q
3 A A A
GJ = Y [A= Y
)
Q
7
w 1 Ll ! ! | ! ! | ! ! | ! ! | ! ! | ! ! | !
8 32 128 512 2_048 8192 32768
Chains

» GPU can reach FPGA performance only for massive chain population

= > in reality, no gain in mixing after 100-200 chains
= CPU much slower

Imperial College
London

Yes, we can !!!

Imperial College

Tuning arithmetic precision

Resources = Performance in FPGAs

= Double/single precision floating point is the de facto precision in

MCMC
» Is it really necessary?

= FPGAs: Can use custom precision in parts of MCMC sampler to
speedup performance.
= In which parts? What is the impact?

= Trade-off: Speed vs. Accuracy

Imperial College
London

Cost of 1 logarithm operator

1000
900 I
300
700
More 288 -
parallelism 100 F
i
— T~
v 100 &\i//‘
3
4 5

6
Floating point

exponent bits

mantissa bits

Imperial College

Precision: Effect on sampling accuracy

200 T T T T T T

11 bits

Imperial College
London

Scheme 1: Mixed precision

Double-precision
floating point
(chain 1)

Reduced precision
floating point
(auxiliary chains)

Idea: Use double precision only in the first chain
Correct sampling is guaranteed
Penalty paid: Mixing might drop due to low precision in auxiliary chains

Imperial College
London

10° |

10 F

10k

10

Scheme 1: Mixed precision

10° ¢

10 F

10" F

T T T T T T T T

4?

=~ ESS ratio (MCMC-related)
=B~ Raw speedup

+ Effective speedup vs. seq. SW

¥

'Double

| . . 4
,precision

|
!

1 1 1 __ | 1 1 1
46 14 20 24 . . 40
Mantissa bits

53

Baseline: Single core CPU
Mixing — speedup tradeoff

Optimal precision maximizes
effective samples per second

Imperial College
London

Scheme 2: Weights-based

Weights (chain 1)

Reduced precision

floating point “
(all chains)

Idea: Sample in reduced precision, use weights to correct
estimates

Similar to Importance Sampling
Penalty paid: Mixing + effect of IS

Imperial College

Population-based MCMC: Performance comparison [(Mixture model)

FPGA (Mingas et al. 2012) vs CPU vs GPU (Lee et al. 2010)

; 1000+ -,
2 5Xx-6Xx
O
=
g 1001 .
o : = FPGA (baseline) :
o FPGA (weights) |

. FPGA (mixed precision)| |
g GPU

B CPU _
o 1 E
= A—A—A
()]
Q
7p)
1 I | |

8 32 128 512 2048 8192 32788
Chains

Imperial College
London

Previous custom precision methods:

 No bias
« Specific for Population-based MCMC

This method:

« Bias allowed but controlled

« Optimize precision given a user-specified bias tolerance
« Applies to any MCMC method

Imperial College
Precision: Effect on MG estimate

E,LF(D]= [f(O)p(O)dx

O

Output integral

ATl ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ____________________________ VCustorh precision (8,7) | .
: | -<=-Double precision (11,52)
UL N O O S SIS SN S
2H... S T N S
3 biaé 5 We need to
1 TT - estimate

this

0 10 2i0 3i0 40 5i0 60
Number of samples (x7000)

Imperial College

Posterior in
custom
precision a

1 / ¢
(@= [f(H)@dH - f(H@dH .

= (1P _y, o)ae
[F O =Dp.©)

l

Short MCMC pre-runs to
estimate bias integrals

Bias for Posterior in
precision a double precision

Imperial College
London

User MCMC Estimate Choose MCMC
input pre-runs biases precision final run
SW HW SW SW HW

1) Target standard deviation
2) Tolerable bias

0.9 o
. B -
g -
5085 /\/\
()]
O
s 08 4+ |
Output integral
075 | —
— 18 20 22 24 26

Samples (x5000)

Imperial College

London
Ontimization process
User MCMC Estimate Choose MCMC
input pre-runs biases precision final run
SW HW SW SW HW

1) Target standard deviation
2) Tolerable bias

MCMC stops
0.9- T - =7 9
- ISD =0.04
3 L it
g __
5085 /\/\
(]
O
= 08 |
Output integral
0.75- L. ——
0.7 18 20 22 24 26

Samples (x5000)

Imperial College

London
Ontimization process
User MCMC Estimate Choose MCMC
input pre-runs biases precision final run
SW HW SW SW HW

1) Target standard deviation
2) Tolerable bias

MCMC stops

0.9 T - T \ .
° —_ ISDT=0.O4
T T }7._=50%

L b _
%085 /\/\ ias
(D]
®)
= 08 | .
Output integral
0.75- L. ——
0.7 18 20 22 24 26

Samples (x5000)

Imperial College

Ontimization process

[MCMC

pre-runs }

HW

Short MCMC pre-runs in all candidate precisions

FPGA configuration 1

Custom precision
p(x) evaluators

Double-
precision p(x)
evaluator

Weight

AA AA
vy " """ vy

\ /

MCMC block

\ 4

evaluator

Output
sample

\ 4

\ 4

1/0

Imperial College

Estimate
biases

SW
0.1r Pre-runs termination i
o ~!
0.05¢ :
o)) i
© :
£ :
g O .
7)) i
8 i
- 0.05 i
e =(8,11) | |
~~(8,13) i
01k =(8,15) | 1
0 5 10 15

Samples (x50000)

Imperial College

Estimate
biases

SW
0.1 Pre-runs termination i
K ~!
0.05F T :
o)) i
© :
.g fuwd :
70 B8 . =<
[72) e 1
8 i
- 0.05 E
e =(8,11) | |
(8,13) | |
01t <= (8,15) | 1
0 5 10 15

Samples (x50000)

Imperial College

Estimate
biases

SW
0.1 1 Pre-runs termination i
K ~i
0.05- T |
o)) i
© :
E = '
$ Or - ,)_2 :
w T i 1
o :
- 0.05F T E
e =(8,11) | |
. (8,13) | |
-0.1+ ! ~(8,15) | i
0 5 10 15

Samples (x50000)

Imperial College

London

User
input

SW

Choose the lowest precision for which:

MCMC Estimate Choose
pre-runs biases precision

HW SW SW

MCMC
final run

HW

1

o(8.15)

: ~-(8,13)

06_ S aae & -&(8’1 1)
: : : E '9'(8,9)

04L)l vvvvvvvvvvvvvvvvvvvv ____________________ T ______ N

T

Pre-runs termination—s

Probability that bias within tolerance

- . R p——— | Tp—-

: ":—|—(8,159) o

b 2 4 8§ 10 12 14 16
Samples (x50000)

Imperial College

London

User
input

SW

Choose the lowest precision for which:

ce
o
(e}
[&) JEEN

=
o)

=
o

0.4

Probability that bias within toleran

T

MCMC Estimate Choose
pre-runs biases precision

HW SW SW

MCMC
final run

HW

-©-(8,15)

- ; --(8,13)

..................... -&(8,1 1)
‘ | ? ~-(8,9)

Pre-runs termination—s

- . R p——— | Tp—-

: ":—|—(8,159) o

> 4 8§ 10 12 14 16
Samples (x50000)

Imperial College

Ontimization process

FPGA configuration 2
Final, long MCMC run in optimized precision

|

MCMC
final run

|

HW

Optimized
precision p(x)
evaluator

A
\ 4

MCMC block

Output
sample

A

1/0

Imperial College
London

MCMC target: Mixture model (Jasra et al. 2007)

SDr Thias Optimized Speedup vs. DP
precision FPGA

0.05 100% (8,13) 4.48x
0.05 50% (8,13) 4.59x

0.02 50% (8,15) 4.10x

~
62}
/

IS
Vi

w
al
)

(@)

Speedup over DP FPGA
o -

bias

10 10

Imperial College
London

Method-Specific Accelerator Generic Accelerator
(PT-MCMC) (but biased)

Unbiased Generic Accelerator

Imperial College
London

« Summary:
» Benefits from spatial computation
» Benefits from custom precision
» Population-based MCMC (+ custom precision)
» Generic precision optimization but bias
» Generic precision optimization without bias

 Device choice depends on many factors but FPGAs are
cool...

* More freedom to exploit the characteristics of the application,
interaction between algorithmic design and algorithmic
implementation

* Frequently (but not always) faster than GPUs
» More power efficient

Imperial College
London

« Closer collaboration with statistics community:

* Which are the most promising methods? SMC”2, Firefly MC, Sequential Quasi-MC,...
* Which are the really demanding applications? Why?

 Working with large datasets (Big Data):

» Keeping data inside the chip for as long as possible is critical for performance...
* Do not move the data around =» consumes power

« Computing with unreliable components:
» Devices will become less reliable
» Clock them beyond the safe frequency

Original Space Reconstruction MSE @ 1200mV / 35°C
T T

© g <=Region of Interest=>

Reconstruction MSE
C

10°- #—i : —>FPGA Test |

‘ | ; ‘ * Synth. Topl
300 350 400 450 500 550 600 650
Clock Frequency [MHz]

Imperial College
London

Is FPGAs the future of statistical computing?
Probably not

Heterogeneous Systems
(multi-core with a GPU and FPGA-like in the same chip)

We need tools, libraries and MCMC algorithms aware of hardware
We need to work on it
(We := Hardware Designers, Software Programmers, Statisticians)

The future will be interesting

Imperial College
London

Team working on this topic:
* Grigoris Mingas
« Shuanglong Liu

. Stelios Venieris http.://cas.ee.ic.ac.uk/people/ccb98/

ccb98@ic.ac.uk

