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Motivation 1/2

« Bayesian models are becoming increasingly complex:
« Large-scale data, high dimensionalities
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Motivation 2/2

 Stochastic inference methods:
« MCMC, SMC, Quasi-MC and many variants...

« Runtimes can reach weeks, months or more
» Reasons:
« Complex/’intractable” likelihoods
» More data to process (Big Data)
« Computationally demanding samplers

300K predictors, 4K responses

!

MCMC needs 20 days to sample posterior
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Direction 1: Design “better” algorithms

« Design more efficient samplers (Hamiltonian MC, Population-based
MCMC, Adaptive MCMC, etc)

« Approximate methods (ABC, INLA, Variational Bayes)

« Data sub-sampling/blocking (Firefly MC, Consensus MC, Composite
likelihoods)

» See previous talks for more details
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Direction 2: Buy hetter hardware

Do nothing. Just wait for the next generation processor 1:‘22?
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Direction 2: Use Parallel Architectures
(or what | call : Unconventional Gomputing)

= Parallel architectures are the present and the future (?):
= Multi-core CPUs
= Graphical Processing Units (GPUs)
= Field Programmable Gate Arrays (FPGAS)
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CPU

CPU

Control logic

PU

CPU

OPERANDS

l RESULT

Cache memory

Few powerful processing cores

Lots of control logic and cache memory — designed for sequential code

Fixed instruction set

Pros: Flexible, easy to use, Cons: Limited speedup, high power
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Many light-weight processors, minimal control and cache

1 block

8-32 processors

Pros: Massive peak performance, good for SIMD applications, easy to program
Cons: Underperforms on non-SIMD code, medium power efficiency
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Interconnect Memory Multiplier
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Interconnect Memory Multiplier
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Interconnect Memory Multiplier
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* No fixed processing architecture — no pre-defined instruction set
* Pros: Can be tailored to application, low power, runtime re-configuration
» Cons: Difficult to program, slow compilation € We started to address that
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Multi-core CPU

« (C/C++ (or any other language)

* Vector Instructions (compiler)

« Implicit threading (Hyper-Threading, Multiple Cores)

OpenMP API (explicit threading opportunities in the code — shared
memory)

GPU

« (C/C++ and extra keywords

« CUDA from Nvidia, OpenCL from Khronos group, libraries
« SIMD architecture

FPGAs
* (They need their own slide...)
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module seqll0l mealy(x, y, CLK, RESET)
input x;
input CLK;
input RESET:

output y;
reg y:
Code writing parameter stare = 2100, gori = 2'h01, gord
reg [1:0] Q: // state varisbles
reg [1:0] D; // next state logic output

// next state logic
© always @ (x or Q)
begin

vy = 0:;

case (Q)

start: D .=.x 2 gotl : start: Lo + b
clk

Configuration file Ll = ‘ Place and route
generation (seconds) i | E (minutes-hours)
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A high-level comparison of devices (1/2)

FPGA: Xilinx GPU: Nvidia K40 CPU: Intel Xeon
XCVU440 E7-4800

Peak performance 4,904 GFLOPs 5,364 GFLOPs 1.246 GFLOPs
Power 20-40 W 235 W 140 W
consumption

Memory 50-200 GB/sec 336 GB/sec 85 GB/sec

bandwidth (global)

Memory ~300 TB/sec ~50 TB/sec ~10 TB/sec
bandwidth (cache)
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A high-level comparison of devices (2/2)

Spectrum of computational devices

ASIC FPGA GPU General-purpose CPU
High Performance — * Low performance
 Low power * High power

 Long development — . Short development

time time
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No device is best for all applications

« Use GPU when:

Algorithm is SIMD/
embarrassingly parallel

No conditional statements

Memory access is deterministic
and structured and data set is
massive

Ease of use is the primary
concern

« Use FPGA when:

Algorithm has medium-high
parallelism degree — not
necessarily SIMD

Algorithm is streaming-based —
allows extensive pipelining

Custom arithmetic precision can
be employed

Power efficiency is important
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 Motivation

* Unconventional Computing
« What are multi-core CPUs, GPUs and FPGAs?
* How are they different?

« Employing reconfigurable computing for Bayesian Inference
« aka: What have we done so far?

 What do we plan to do?

 What to keep from this talk
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Techniques to perform fast Bayesian inference using parallel devices
(multi-core CPUs, GPUs, FPGAs):

 Target inference methods (FPGAS)

« Sampler-specific hardware design (Population-based MCMC, Particle MCMC)
* Algorithmic modifications and new algorithms

 Target Bayesian models (FPGAs and GPUs)

» Variable selection for linear regression with many predictors/responses
« Work on QR factorization

« Target optimizations for MCMC algorithms (FPGASs)
* Arithmetic precision optimization for MCMC algorithms

How do we map efficiently (not necessary faithfully)
an MCMC algorithm into an FPGA?
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Parallel Tempering

= Each chain has a different target distribution:

Chain
p (X) — p(x temperature
J
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= By exchanging samples, mixing is improved
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Traditional architecture - CPU

\

Processing blocks that run sequentially
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FPGA architecture

« Spatial computations (i.e. RNGs generated on-chip concurrently to processing)
» Pipelined data-path to exploit parallel chains’ independency...
» Probability evaluation heavily parallelized

* Access to all memories in one clock cycle (on-chip memories)

Processing blocks that run concurrently in a streaming fashion => high performance
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Another form of parallelism
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Evaluation

Finite Gaussian Mixture Model
T

» Synthetic data
= CPU :Inteli7-2600 (4 cores) -
= GPU : Nvidia GTX480
= FPGA: Xilinx Virtex-7 VX1140T
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Speedup (vs. Number of chains)
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» GPU can reach FPGA performance only for massive chain population

= > in reality, no gain in mixing after 100-200 chains
=  CPU much slower
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Yes, we can !!!
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Tuning arithmetic precision

Resources = Performance in FPGAs

= Double/single precision floating point is the de facto precision in

MCMC
» Is it really necessary?

= FPGAs: Can use custom precision in parts of MCMC sampler to
speedup performance.
= In which parts? What is the impact?

= Trade-off: Speed vs. Accuracy
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Cost of 1 logarithm operator
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Precision: Effect on sampling accuracy

200 T T T T T T

11 bits
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Scheme 1: Mixed precision

Double-precision
floating point
(chain 1)

Reduced precision
floating point
(auxiliary chains)

Idea: Use double precision only in the first chain
Correct sampling is guaranteed
Penalty paid: Mixing might drop due to low precision in auxiliary chains
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Scheme 2: Weights-based

Weights (chain 1)

Reduced precision

floating point “
(all chains)

Idea: Sample in reduced precision, use weights to correct
estimates

Similar to Importance Sampling
Penalty paid: Mixing + effect of IS
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Population-based MCMC: Performance comparison [(Mixture model)

FPGA (Mingas et al. 2012) vs CPU vs GPU (Lee et al. 2010)
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Previous custom precision methods:

 No bias
« Specific for Population-based MCMC

This method:

« Bias allowed but controlled

« Optimize precision given a user-specified bias tolerance
« Applies to any MCMC method
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Precision: Effect on MG estimate

E,LF(D]= [f(O)p(O)dx

O

Output integral
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Posterior in
custom
precision a
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Short MCMC pre-runs to
estimate bias integrals

Bias for Posterior in
precision a double precision
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User MCMC Estimate Choose MCMC
input pre-runs biases precision final run
SW HW SW SW HW

1) Target standard deviation
2) Tolerable bias

0.9 o
. B -
g -
5085 /\/\
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O
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Output integral
075 | —
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Samples (x5000)
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Ontimization process
User MCMC Estimate Choose MCMC
input pre-runs biases precision final run
SW HW SW SW HW

1) Target standard deviation
2) Tolerable bias

MCMC stops
0.9- T - =7 9
- ISD =0.04
3 L it
g __
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0.75- L. ——
0.7 18 20 22 24 26

Samples (x5000)
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Ontimization process
User MCMC Estimate Choose MCMC
input pre-runs biases precision final run
SW HW SW SW HW

1) Target standard deviation
2) Tolerable bias

MCMC stops

0.9 T - T \ .
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T T }7._=50%

L b _
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(D]
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= 08 | .
Output integral
0.75- L. ——
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Samples (x5000)
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Ontimization process

[ MCMC

pre-runs }

HW

Short MCMC pre-runs in all candidate precisions

FPGA configuration 1

Custom precision
p(x) evaluators

Double-
precision p(x)
evaluator

Weight

AA AA
vy " """ vy

\ /

MCMC block

\ 4

evaluator

Output
sample

\ 4

\ 4

1/0
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Estimate
biases
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Estimate
biases
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Estimate
biases
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User
input

SW

Choose the lowest precision for which:

MCMC Estimate Choose
pre-runs biases precision

HW SW SW

MCMC
final run
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input

SW

Choose the lowest precision for which:
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Ontimization process

FPGA configuration 2
Final, long MCMC run in optimized precision

|

MCMC
final run

|

HW

Optimized
precision p(x)
evaluator

A
\ 4

MCMC block

Output
sample

A

1/0
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MCMC target: Mixture model (Jasra et al. 2007)

SDr Thias Optimized Speedup vs. DP
precision FPGA

0.05 100% (8,13) 4.48x
0.05 50% (8,13) 4.59x

0.02 50% (8,15) 4.10x

~
62}
/
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Vi

w
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)

(@)

Speedup over DP FPGA
o -

bias

10 10



Imperial College
London

Method-Specific Accelerator Generic Accelerator
(PT-MCMC) (but biased)

Unbiased Generic Accelerator
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« Summary:
» Benefits from spatial computation
» Benefits from custom precision
» Population-based MCMC (+ custom precision)
» Generic precision optimization but bias
» Generic precision optimization without bias

 Device choice depends on many factors but FPGAs are
cool...

* More freedom to exploit the characteristics of the application,
interaction between algorithmic design and algorithmic
implementation

* Frequently (but not always) faster than GPUs
» More power efficient
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« Closer collaboration with statistics community:

* Which are the most promising methods? SMC”2, Firefly MC, Sequential Quasi-MC,...
* Which are the really demanding applications? Why?

 Working with large datasets (Big Data):

» Keeping data inside the chip for as long as possible is critical for performance...
* Do not move the data around =» consumes power

« Computing with unreliable components:
» Devices will become less reliable
» Clock them beyond the safe frequency

Original Space Reconstruction MSE @ 1200mV / 35°C
T T

© g <=Region of Interest=>

Reconstruction MSE
C

10°- #—i : —>FPGA Test |

‘ | ; ‘ * Synth. Topl
300 350 400 450 500 550 600 650
Clock Frequency [MHz]
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Is FPGAs the future of statistical computing?
Probably not

Heterogeneous Systems
(multi-core with a GPU and FPGA-like in the same chip)

We need tools, libraries and MCMC algorithms aware of hardware
We need to work on it
(We := Hardware Designers, Software Programmers, Statisticians)

The future will be interesting
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Team working on this topic:
* Grigoris Mingas
« Shuanglong Liu

. Stelios Venieris http.://cas.ee.ic.ac.uk/people/ccb98/

ccb98@ic.ac.uk




