Reconfigurable Computing for Bayesian inference

Christos Bouganis Imperial College London

Joint work with: G. Mingas, S. Liu

Group

Motivation 1/2

- Bayesian models are becoming increasingly complex:
 - Large-scale data, high dimensionalities

50.0

Motivation 2/2

Stochastic inference methods:

• MCMC, SMC, Quasi-MC and many variants...

Runtimes can reach weeks, months or more

- Reasons:
 - Complex/"intractable" likelihoods
 - More data to process (Big Data)
 - Computationally demanding samplers

300K predictors, 4K responses

MCMC needs 20 days to sample posterior

Direction 1: Design "better" algorithms

- Design more efficient samplers (Hamiltonian MC, Population-based MCMC, Adaptive MCMC, etc)
- Approximate methods (ABC, INLA, Variational Bayes)
- Data sub-sampling/blocking (Firefly MC, Consensus MC, Composite likelihoods)
- See previous talks for more details

Direction 2: Buy better hardware

Do nothing. Just wait for the next generation processor

SSOT TOTAL

But no more...Power wall

No more "free-lunch"

Imperial College London Direction 2: Use Parallel Architectures (or what I call : Unconventional Computing)

• Parallel architectures are the present and the future (?):

- Multi-core CPUs
- Graphical Processing Units (GPUs)
- Field Programmable Gate Arrays (FPGAs)

Parallel hardware platforms – Multi-core CPU

- Few powerful processing cores
- Lots of control logic and cache memory designed for sequential code
- Fixed instruction set
- Pros: Flexible, easy to use, Cons: Limited speedup, high power

Parallel hardware platforms – GPU

| ADD | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------------|
| SP | |
| SP | 1 block |
| SP | -
8-32 processors |
| SP | |

- Many light-weight processors, minimal control and cache
- Pros: Massive peak performance, good for SIMD applications, easy to program
- Cons: Underperforms on non-SIMD code, medium power efficiency

Parallel hardware platforms – GPU

| DIV | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------------------|
| SP | |
| SP | 1 block |
| SP | 8-32 processors |
| SP | |

- Many light-weight processors, minimal control and cache
- Pros: Massive peak performance, good for SIMD applications, easy to program
- Cons: Underperforms on non-SIMD code, medium power efficiency

Parallel hardware platforms – FPGA

Parallel hardware platforms – FPGA

Parallel hardware platforms – FPGA

- No fixed processing architecture no pre-defined instruction set
- Pros: Can be tailored to application, low power, runtime re-configuration

Programming models

Multi-core CPU

- C/C++ (or any other language)
- Vector Instructions (compiler)
- Implicit threading (Hyper-Threading, Multiple Cores)
- OpenMP API (explicit threading opportunities in the code shared memory)

GPU

- C/C++ and extra keywords
- CUDA from Nvidia, OpenCL from Khronos group, libraries
- SIMD architecture

FPGAs

• (They need their own slide...)

FPGA design flow

Code writing

module seq1101 mealy(x, y, CLK, RESET); input x; input CLK; input RESET; output y; reg y; parameter start = 2'b00, got1 = 2'b01, got1 reg [1:0] Q; // state variables reg [1:0] D; // next state logic output // next state logic always @ (x or Q) begin y = 0; case(Q) start: D = x ? got1 : start;

Synthesis (minutes)

Place and route (minutes-hours)

Configuration file generation (seconds)

A high-level comparison of devices (1/2)

	FPGA: Xilinx XCVU440	GPU: Nvidia K40	CPU: Intel Xeon E7-4800
Peak performance	4,904 GFLOPs	5,364 GFLOPs	1.246 GFLOPs
Power consumption	20-40 W	235 W	140 W
Memory bandwidth (global)	50-200 GB/sec	336 GB/sec	85 GB/sec
Memory bandwidth (cache)	~300 TB/sec	~50 TB/sec	~10 TB/sec

A high-level comparison of devices (2/2)

GPU or FPGA?

No device is best for all applications

- Use GPU when:
 - Algorithm is SIMD/ embarrassingly parallel
 - No conditional statements
 - Memory access is deterministic and structured and data set is massive
 - Ease of use is the primary concern

- Use FPGA when:
 - Algorithm has medium-high parallelism degree – not necessarily SIMD
 - Algorithm is streaming-based allows extensive pipelining
 - Custom arithmetic precision can be employed
 - Power efficiency is important

Outline

- Motivation
- Unconventional Computing
 - What are multi-core CPUs, GPUs and FPGAs?
 - How are they different?
- Employing reconfigurable computing for Bayesian Inference
 - aka: What have we done so far?
- What do we plan to do?
- What to keep from this talk

Our research on Bayesian Inference

Techniques to perform fast Bayesian inference using parallel devices (multi-core CPUs, GPUs, **FPGAs**):

- Target inference methods (FPGAs)
 - Sampler-specific hardware design (Population-based MCMC, Particle MCMC)
 - Algorithmic modifications and new algorithms
- Target Bayesian models (FPGAs and GPUs)
 - Variable selection for linear regression with many predictors/responses
 - Work on QR factorization
- Target optimizations for MCMC algorithms (FPGAs)
 - Arithmetic precision optimization for MCMC algorithms

How do we map efficiently (not necessary faithfully) an MCMC algorithm into an FPGA?

Inference Methods: Population-based MCMC

Parallel Tempering

Each chain has a different target distribution:

By exchanging samples, mixing is improved

Traditional architecture - CPU

Processing blocks that run sequentially

FPGA architecture

- Spatial computations (i.e. RNGs generated on-chip concurrently to processing)
- Pipelined data-path to exploit parallel chains' independency...
- Probability evaluation heavily parallelized
- Access to all memories in one clock cycle (on-chip memories)

Processing blocks that run concurrently in a streaming fashion => high performance

Pipelining

Another form of parallelism

Evaluation

- Finite Gaussian Mixture Model
- Synthetic data
- CPU : Intel i7-2600 (4 cores)
- GPU : Nvidia GTX480
- FPGA: Xilinx Virtex-7 VX1140T

0.35

0.1

1.06

Speedup (vs. Number of chains)

GPU can reach FPGA performance only for massive chain population

- \rightarrow in reality, no gain in mixing after 100-200 chains
- CPU much slower

Performance increase

Can we boost the performance further?

Yes, we can !!!

Tuning arithmetic precision

- Resources = Performance in FPGAs
- Double/single precision floating point is the de facto precision in MCMC
 - Is it really necessary?
- FPGAs: Can use custom precision in **parts** of MCMC sampler to speedup performance.
 - In which parts? What is the impact?
- Trade-off: Speed vs. Accuracy

Precision: Effect on FPGA resources

Cost of 1 logarithm operator 1000<u>More</u> <u>parallelism</u> 00 3 20 22 24 6 1816 12 14 W_E 108 86 Floating point W_F exponent bits Floating point mantissa bits

Precision: Effect on sampling accuracy

Custom precision in Population-based MCMC

Scheme 1: Mixed precision

- Idea: Use double precision only in the first chain
- Correct sampling is guaranteed
- Penalty paid: Mixing might drop due to low precision in auxiliary chains

Custom precision in Population-based MCMC

10^{3} 10² 10^{1} ۲ 10⁰ 10 ESS ratio (MCMC-related) Effective speedup vs. seq. SW 10^{-2} Double precision 10^{-3} 20 24 40 53 4 6 14 Mantissa bits

Scheme 1: Mixed precision

- Baseline: Single core CPU
- Mixing speedup tradeoff
- Optimal precision maximizes effective samples per second

Custom precision in Population-based MCMC

- Idea: Sample in reduced precision, use weights to correct estimates
- Similar to Importance Sampling
- Penalty paid: Mixing + effect of IS

Population-based MCMC: Performance comparison (Mixture model)

FPGA (Mingas et al. 2012) vs CPU vs GPU (Lee et al. 2010)

Generic MCMC precision optimization

Previous custom precision methods:

- No bias
- Specific for Population-based MCMC

This method:

- Bias allowed but controlled
- Optimize precision given a user-specified bias tolerance
- <u>Applies to any MCMC method</u>

Precision: Effect on MC estimate

 $E_p[f(\theta)] = \int f(\theta) p(\theta) d\mathbf{x}$

Proposed bias estimator

Short MCMC pre-runs to estimate bias integrals

Optimization process on FPGA

1) Target standard deviation 2) Tolerable bias

Optimization process

Target standard deviation
Tolerable bias

Optimization process

Target standard deviation
Tolerable bias

Optimization process

FPGA configuration 1

Short MCMC pre-runs in all candidate precisions

Optimization process

Choose the lowest precision for which: $P(|bias| < SD_T \cdot T_{bias}) > 0.95$

Evaluation

MCMC target: Mixture model (Jasra et al. 2007)

SDτ	Tbias	Optimized precision	Speedup vs. DP FPGA
0.05	100%	(8,13)	4.48x
0.05	50%	(8,13)	4.59x
0.02	50%	(8,15)	4.10x

Exact MCMC acceleration using mixed-precision

Method-Specific Accelerator (PT-MCMC) *Generic Accelerator (but biased)*

Unbiased Generic Accelerator

What to keep from the talk

- Summary:
 - Benefits from spatial computation
 - Benefits from custom precision
 - Population-based MCMC (+ custom precision)
 - Generic precision optimization but bias
 - Generic precision optimization without bias
- Device choice depends on many factors but FPGAs are cool...
 - More freedom to exploit the characteristics of the application, interaction between algorithmic design and algorithmic implementation
 - Frequently (but not always) faster than GPUs
 - More power efficient

What we plan to do

- Closer collaboration with statistics community:
 - Which are the most promising methods? SMC^2, Firefly MC, Sequential Quasi-MC,...
 - Which are the really demanding applications? Why?
- Working with large datasets (Big Data):
 - Keeping data inside the chip for as long as possible is critical for performance...
 - Do not move the data around → consumes power
- Computing with unreliable components:
 - Devices will become less reliable
 - Clock them beyond the safe frequency

Back to the Future...

Is FPGAs the future of statistical computing?

Probably not

Heterogeneous Systems (multi-core with a GPU and FPGA-like in the same chip)

We need tools, libraries and MCMC algorithms **aware** of hardware We need to work on it (We := Hardware Designers, Software Programmers, Statisticians)

The future will be interesting

Questions?

Team working on this topic:

- Grigoris Mingas
- Shuanglong Liu
- Stelios Venieris

http://cas.ee.ic.ac.uk/people/ccb98/

ccb98@ic.ac.uk

