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Abstract— This article addresses the problem of autonomous
map building and exploration of an unknown environment
with mobile robots. The proposed method assumes that mobile
robots use occupancy grid maps as the main representation
model for the built maps and a hill climbing local search
algorithm for exploring the environment without any kind
of human intervention. It is demonstrated that hill climbing
based exploration may recover from local minima and cover
completely any environment, if a topological representation of
the environment is created incrementally along the mapping
and exploration mission. The approach is devised for either a
single mobile robot or multiple cooperative mobile robots.

Index Terms— Autonomous exploration, map building, multi-
robot systems, occupancy grids, topological maps.

I. INTRODUCTION

One of the basic capabilities of autonomous mobile robots

performing a mission on an unknown environment (e.g.

surveillance, reconnaissance, tracking moving objects, col-

lecting objects, etc.) is to acquire a representation model of it,

which may be taken as a basis to localization, path planning,

navigation and other mission-specific tasks. This is required

for either indoor [1] or outdoor environments [2].

Simultaneous Localization and Mapping (SLAM) has been

extensively studied for the past few years [3] with the aim of

estimating the robot’s trajectory and build at the same time a

map of the environment. Since SLAM requires that the area

of interest be completely covered by the robots’ sensors, an

important related problem is the action selection problem

which has received surprisingly much less attention than

SLAM, though it is also crucial for deploying autonomous

mobile robots in unknown environments. The action selection

problem can be stated informally as selecting exploration

views which maximize the utility of new sensory information

in every sensing cycle, so as to minimize the time needed to

completely explore the environment. In the multi-robot case,

mobile robots have also to coordinate their actions.

Yamauchi et al. proposed frontier-based exploration [4]

whereby robots are driven towards boundaries between open

space and unexplored regions. More recently, Burgard et al.

used this concept to develop a technique for coordinating a

team of robots when building 2-D occupancy grids [1], which

uses the value iterated algorithm to formalize a balance

between travel cost and utility of unexplored regions, so that

robots simultaneously explore different regions. However, the

technique is computationally prohibitive for large environ-

ments as it is a global search technique that requires the

computation of value functions along the entire environment.

Rocha et al. developed a mapping framework based on

grid maps and entropy [5], [6]. They formalized the Ya-

mauchi’s frontier-cell concept as an empty cell with high

entropy gradient, and the frontier-based exploration as a

hill climbing technique. This local search technique was

also extended to support cooperative multi-robot exploration

[7]. Although the method is computationally more efficient

than the one in [1], it may not be able to cover entirely

any environment because of local minima. The method is

thus complemented in this article with the creation of a

topological graph of the environment containing a roadmap

of free space, which allows to recover hill climbing explo-

ration in the presence of local minima. With residual extra

computational effort, the method is virtually able to explore

any environment, although it is still essentially a local search

method, much more scalable than the approach in [1].

Baños et al. developed the safe region concept and the

next best view (NBV) algorithm [8] within polygonal maps,

in order to select candidate views that balance information

gain against cost. The method presented herein is rooted

on the same basic idea but it is formulated for occupancy

grid maps instead of polygonal maps. Some motion planning

methods, including Probabilistic Roadmaps (PRM) [9] and

Rapidly-exploring Random Trees (RRT) [10], are based on

the exploration of a topological graph of the state space.

The work presented herein also uses this kind of topological

information, but it is driven by an entropy-based measure

rather than performing a random walk in the state space.

Section 2 summarizes entropy-gradient based exploration

[5], [6] and states the local minima problem. Section 3

presents the topological recovery technique for a single

mobile robot, which is extended to multiple robots in section

4. The article ends with conclusions and future work.

II. HILL CLIMBING EXPLORATION

This section summarizes the exploration algorithm pro-

posed in [5], [6]. It was formalized in a framework that
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uses volumetric grid maps to represent the 3-D environments.

Although it is sufficiently generic to support 3-D informa-

tion and information about cell’s coverage1, in this article

conventional 2-D occupancy grid maps [1] are used for the

sake of simplicity.

An occupancy grid map m discretizes the environment

being mapped in an evenly spaced grid of cells mi ∈ m

[1]. Building an occupancy grid map means to calculate

the posterior over maps p(m | z1:t, x1:t), given the set

of all measurements z1:t up to time t and the path x1:t

of the robot. It is commonly assumed that occupancy of

probabilities of different cells are statistically independent.

Thus, being p(mi) the probability that a grid cell is occupied,

the occupancy grid map is just

p(m | z1:t, x1:t) =
∏

i

p(mi | z1:t, x1:t). (1)

Occupancy estimates are extracted from new sensory infor-

mation using an inverse sensor model p(mi | zt, xt). For

each measurement zt, the set of cells mi in its perceptual

field is computed, using a ray-casting technique in the

occupancy grid. New estimates may be integrated in the

map using the log odds implementation of the Bayes filter

described in [1], which estimates p(mi | z1:t, x1:t), given

p(mi−1 | z1:t−1, x1:t−1) and p(mi | zt, xt).
Entropy is a measure of the uncertainty of a probability

distribution. The entropy of a cell is just

H(mi) = −p(mi) log [p(mi)]−(1−p(mi)) log2 [1 − p(mi)] ,
(2)

being H(mi) = 0, for p(mi) = 0 or p(mi) = 1, and

H(mi) = 1, for p(mi) = 0.5, assuming base 2 logarithms.

The entropy value H(mi) is a sample of a continuous

entropy field H : R
2 → R, taken at cartesian position wi ∈

R
2, the center of cell mi. Let mΘ−

i denote the contiguous

cell to mi in the negative direction of axis Θ, and ǫ the

edge of a cell. A reasonable first order approximation to the

entropy gradient at wi is

−→
∇H(mi) ≈

1

ǫ

[

H(mi) − H(mx−
i ), H(mi) − H(my−

i )
]T

,

(3)

having magnitude

∥

∥

∥

−→
∇H(mi)

∥

∥

∥
and direction given by the

unitary vector

p̂(mi) =

−→
∇H(mi)

∥

∥

∥

−→
∇H(mi)

∥

∥

∥

,
−→
∇H(mi) 6=

−→
0 . (4)

Let ρ(x,mi) ∈ [0; 1] denote a coefficient which measures

if a cell mi is in line-of-sight from a position x, which also

implies that cell mi is likely to be empty. This coefficient

can be easily computed from current map p(m | z1:t, x1:t)
using a ray-casting technique in the occupancy grid. Given

the current robot’s position xt, any cell mi is considered as a

frontier cell if ρ(xt,mi) is greater than a given threshold ρth

and entropy gradient H(mi) is greater than a given entropy

1An extension of an occupancy grid map was used which is able to model
cells that are only partially occupied.

threshold Hth > 0. This means that a frontier cell is an

empty cell, in line-of-sight from current robot’s position,

which is contiguous to an unexplored cell mj (p(mj) ≈ 0.5).

Let denote the applied vector connecting a cartesian po-

sition x ∈ R
2 to the center of a cell mi as −→

u (x,mi) =
w(mi) − x. The exploration algorithm computes the set of

frontier cells located in a neighborhood with radius ε

N (xt, ε) =
{

mi :u(xt,mi)‖ ≤ ε, ρ(xt,mi) ≥ ρth,
∥

∥

∥

−→
∇H(mi)

∥

∥

∥
≥ Hth

}

, (5)

whose centers w(mi), mi ∈ N (xt, ε), are candidate explo-

ration views. The best frontier cell is selected as

ms
i = argmax

mi∈N (xt,ε)

[

ρ(xt,mi)
∥

∥

∥

−→
∇H(mi)

∥

∥

∥

]

. (6)

Then the robot navigates straight towards the position w(ms
i )

with a gaze on arrival defined by the direction of p̂(ms
i ).

The hill climbing technique summarized in equation (6)

is successful if N (xt, ε) 6= ∅, otherwise there is no any

frontier cell and the robot is stuck on a local minima of

the map’s entropy gradient. Fig. 1 shows an example of

map building in a typical office environment: on the left, it

shows the environment and the places visited by the robot,

on the middle the occupancy grid map (black, white and grey

regions mean, respectively, high occupancy, low occupancy

and high entropy) and on the right the entropy field. The

two rows in the figure depict two different situations of

hill climbing exploration: on the top row, the robot selects

successfully the best frontier cell in its neighborhood (top-

right graph); conversely, the bottom row presents a situation

wherein entropy is virtually null in the robot’s neighborhood,

corresponding to a local minima situation. A method is

required to overcome this situation and re-start exploration

on farther regions (bottom-right graph).

III. TOPOLOGICAL RECOVERY OF LOCAL SEARCH

EXPLORATION WITH A SINGLE ROBOT

The situation depicted on the bottom of Fig. 1 demon-

strates the need for a method to recover the local search hill

climbing exploration algorithm from a local minima. There

is only one particular case in which a local minima is a

desirable situation: the end of the exploration. In this case,

there is no any position xt for which the set of cells given

by equation (5) is not empty, therefore the local minima

found by the mobile robot is indeed a global minima. In

other cases, the local minima means that the robot did not

explore completely every frontier cells along its exploration

path, since the beginning of the process, and therefore should

revisit previous places where there are still regions to be

explored (see the bottom-middle map in Fig. 1).

A. Topological map

In order to find previous places that should be revisited,

it is necessary to keep track of the environment topology

during the exploration process. The solution is to estimate the

occupancy grid map and, simultaneously, build incrementally
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(a) (b) (c)

Fig. 1. Hill climbing exploration, a local search algorithm that selects exploration views with high entropy gradient in the vicinity of the mobile robot.
Each row depicts the following information at two different instant times: trajectory and topological map built by the mobile robot while exploring a typical
office environment with several rooms and corridors (left); occupancy grid map of the environment (middle); entropy gradient field (right). The top-right
graph shows the most frequent exploration scenario wherein the mobile robot seeks and selects line-of-sight, neighbor regions (pink circle) having high
entropy gradient. The bottom-right graph depicts an example wherein the maximum entropy gradient value in the robot’s vicinity (pink circle) is quite
residual. In the latter case, a method is required to recover hill climbing exploration on farther regions with significant gradient (see the arrow).

a topological map which defines a roadmap for path planning

and navigation within already explored regions. Stachniss et

al. used a similar representation to actively closing loops in

the context of SLAM [11]. See an example of a topological

map overlayed on the bottom-left of Fig. 1.

The topological map is a Voronoi graph G whose nodes

n ∈ G represent distinct places in the environment, where the

robot has already acquired range measurements, and edges

(ni, nj), ni, nj ∈ G, represent routes to other places that

a robot can traverse safely because are clear of obstacles.

For each node, it is stored the cartesian position of the place

that it represents. Edges are always assumed herein to be

bi-directional, i.e. an edge (ni, nj) means that mobile robot

can either navigate safely from ni to nj or from nj to ni.

Whenever the robot acquires sensor data, it localizes itself

in the topological map, i.e. it determines nt ∈ G (see Fig.

2-d). If there is no any place (node) n′ in line-of-sight (see

Fig. 2-b), or the distance to the closer known place n′ is

greater than a given distance threshold dth (see Fig. 2-a,c),

a new node nn is created at current robot’s position xt,

which becomes the current robot’s topological position nt,

and an edge (nt−1, nt) is created to the node where the robot

was previously located in the previous exploration cycle.

A straight edge (nt−1, n
′) is also created if n′ exists and

n′ 6= nt−1 (see Fig. 2-c). The numbering sequence of nodes

in the topological map shown in the bottom-left of Fig. 1

represents therefore the sequence of places that the robot has

explored until current instant time. A ray casting technique

is used in the occupancy grid m to determine if a node

n ∈ G is visible from a position x; this is denoted as the

boolean function is visible(n,x). This function is used by

the function nearest visible place(x) to return the nearest

visible node from x (if any) and its distance.

The detailed algorithm for updating the topological map is

presented in pseudo-code in Table I. Fig. 2 depicts the four

more frequent cases implicit in the algorithm: lines 2 to 11

encompass the cases wherein there is no any visible node at

a distance less than dth (see Fig. 2-a-c) and lines 12 to 21

the opposite case (see Fig. 2-d).

B. Topological recovery

The topological map built by the mobile robot during

the mapping and exploration process can be used by the

hill climbing algorithm to recover from a local minima. If

equation (5) does not return any frontier cell, shortest paths

from current node nt to any other node ni 6= nt, ni, nt ∈ G,

are computed using the Dijkstra algorithm [12]. Then the

local search algorithm is used to compute frontier cells in the
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Fig. 2. Typical cases on topological map updates: (a) distance threshold (dth) is exceeded – a new node is created, which becomes the new robot’s
topological position nt; no visible place at a distance less than dth – a new place is created, which becomes nt, and edge (nt−1, nt) is created with a
way point at xt−1; (c) distance dth is exceeded and nodes nt−1 and n′ are both visible – a new node is created at xt, which becomes nt, and edges
(nt−1, nt) and (nt−1, n′) are created; (d) nearest visible place n′ at a distance less than dth, with n′ 6= nt−1 – n′ becomes nt and edge (nt−1, nt)
is created.

TABLE I

ALGORITHM FOR UPDATING THE TOPOLOGICAL MAP G .

update topological map(xt,G).

1: (n′, d)← nearest visible place(xt)
2: if (n′ does not exist or d > dth) then

3: Add a new place nn at xt and make nt ← nn.
4: if [(n′ does exist and n′ = nt−1) or

is visible(nt−1,xt)] then

5: Add a straight edge (nt−1, nt).
6: else

7: Add a polygonal edge (nt−1, nt) with the way point xt−1.
8: endif

9: if (n′ does exist and n′ 6= nt−1 and

edge (n′, nt−1) does not exist already) then

10: Add a straight edge (n′, nt−1).
11: endif

12: else

13: Make nt ← n′.
14: if (n′ 6= nt−1 and

edge (n′, nt−1) does not exist already) then

15: if (is visible(nt−1,xt)]) then

16: Add a straight edge (n′, nt−1).
17: else

18: Add a polygonal edge (n′, nt−1) with the way point xt.
19: endif

20: endif

21: endif

vicinity of the position xi of nodes ni, i.e. for every places

visited by the robot since the beginning of the mission, in

ascending order of the distance to nt. As soon as the local

search algorithm succeeds for one of the explored nodes ns
i ,

the best frontier cell is selected through equation (6), with

xt = xs
i , and the exploration is recovered. Then a shortest

path is extracted to navigate the robot from xt to xs, where

the mapping process is continued. Note that at least one node

ns
i exists for which N (xs

i , ε) 6= ∅, except if the environment

has already been completely explored.

Fig. 3 shows four snapshots of the exploration of a typical

office environment by a mobile robot using the proposed

method. Each row corresponds to a situation wherein a local

minima occurred. On the left, it is shown the topological map

(blue), the selected path to recover exploration (red), and

the far selected exploration view (green). On the right, it is

shown the occupancy grid map immediately before the local

minima occurrence (local search radius in pink). The bottom-

right occupancy grid map demonstrates that the method was

able to explore completely the environment.

IV. COMPLETE, COORDINATED LOCAL SEARCH

EXPLORATION WITH MULTIPLE ROBOTS

This section describes how the hill climbing exploration

method with topological recovery may be extended to a set
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Fig. 3. Complete hill climbing exploration of a typical office environment
by a single mobile robot equipped with a ring of 16 sonars.

of cooperative mobile robots. The goal is to take advantage

of robots’ spatial distribution so as to reduce the time

required to complete the exploration. This is viable unless (a)

robots share efficiently information and (b) they coordinated

properly their exploration actions.

A. Efficiently sharing useful information

In [6], a distributed cooperative architecture model was

formulated in the context of the mapping framework de-

scribed in section II, whereby each robot is altruistically

committed to share useful range measurements with other

robots. The concept of useful information was formally

defined using information theory. In summary, each robot

is able to build a map upon measurements from its own

range sensors and, whenever it acquires a new batch of

measurements, communicates to other robots a subset of

useful measurements, using a formal measure of information

utility.

B. Coordinated exploration

In spite of the problem regarding local minima, which is

only addressed herein, a coordinated exploration method was

devised within the same distributed model [7]. The multi-

robot version of the exploration algorithm assumes that each

robot is aware of the other robot’s exploration state: it knows

the selected exploration view of each robot and an estimate

of its visibility range. This is easily achieved if each robot

communicates to its teammates this data, whenever it is

changed. Therefore, in the multi-robot case, each robot uses

an extension of equation (6), which takes into account the

other robots’ state. Given a set of frontier cells N (xt, ε) in

the robot’s vicinity, the best frontier cell is selected using the

following criteria:

ms
i = argmax

mi∈N (xt,ε)

[

ρ(xt,mi).λ(mi).η(mi).
∥

∥

∥

−→
∇H(mi)

∥

∥

∥

]

.

(7)

Function λ : m → [0, 1] computes the non-redundancy

coefficient, which is maximum when the robot’s sensor field

does not overlap with the sensor field of other robots. This

ensures that robots tend to explore different regions so as to

take maximum advantage from spatial distribution. Function

η : m → [0, 1] computes the non-interference coefficient,

which is maximum when there is no any teammate within

the robot’s sensor field. This situation yields undesirable

occlusions and increases the exploration time.

C. Extension of topological recovery to the multi-robot case

The topological recovery presented in section III may be

readily extended to the multi-robot case, if three aspects are

taken into account.

Firstly, whenever a robot receives measurements from

other robot, the algorithm described in Table I is used

to include the exploration status of other robots in the

topological map, but a robot’s identifier must be stored on

each created node. This information can be used to verify if

some edge exists between a node created by the robot itself

and a node created by other robots; otherwise, nodes created

by other robots will not be worth to recover exploration.

Secondly, whenever each robot receives measurements

from other robot, it checks if there is some connectivity with

nodes created by that robot; if not, it tries to find a node

created by itself that is visible from the newly created node,

in an attempt to ensure connectivity. Sooner of later, this will

happen: it suffices that both robots become in line-of-sight

at least once.

Thirdly, when a local minima occurs, the nodes where

other robots are located should not be included in the

topological search described in section III-B, in order to

ensure that any path selected by the robot to navigate towards

a far exploration view will be not blocked by other robots.
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Fig. 4. Exploration of a typical office environment by two cooperative
mobile robots: topological map at the beginning of the mission (left), after
the two robots becoming in line-of-sight for the first time (middle) and at
the end of the mission (right).

1

1
1

2

2

2

Fig. 5. Occupancy grid maps of a typical office environment, obtained by
two cooperative mobile robots equipped with a laser range finder: snapshots
at three different instant times, being the last one at the end of the mission.

Fig. 4 depicts topological maps built by two cooperative

mobile robots (with respect to blue robot) at three different

instant times of the mapping and exploration process. At the

beginning of the mission (left), node 3, which was created by

the other robot (red robot), is still not connected with nodes

1 and 2 created by blue robot. On the middle, nodes 1 and 3

became connected when blue robot received measurements

taken by red robot at node 3. On the right, it is shown the

topological map at the end of the mission.

Fig. 5 depicts the occupancy grid map of blue robot at

three instant times of the mission2. Both robots started the

mission at the bottom-left room (left). Afterwards blue robot

explored the upper-right rooms and red robot the bottom-

right rooms. Finally, the mobile robots finished the mission

with the exploration of the upper-left rooms.

Given the environment represented in Fig. 4, the perfor-

mance of teams with varying number of robots is compared

in Fig. 6. The graph on the left compares the mission exe-

cution time and the graph on the right the speedup measure.

This measure reveals how much more efficient are several

robots than just one. Teams with up to 4 robots present super-

linear performance (speedup greater than one), therefore are

proportionally more efficient than a single robot. Being n

the teamsize, this means that their mission execution time is

lower than the time required by a single robot divided by

n. Note the remarkable mission time decrease achieved for

n = 2.

V. CONCLUSION

Although SLAM has known recently important advances,

the action selection problem has received much less atten-

tion. This article addressed this problem in the context of

2Note that these maps are a result of either measurements acquired by
the robot itself and measurements received from the other robot.
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Fig. 6. Performance of multi-robot exploration as a function of teamsize:
mission execution time (left) and speedup measure (right).

building a map of an unknown environment, with either

a single autonomous mobile robot or multiple cooperative

robots, using a local search exploration algorithm. The main

contribution was a topological method to ensure that, despite

the greedy nature of the algorithm, the environment is

completely explored.

The proposed exploration method is going to be used as

a module for supporting a robotic mission wherein a set

of cooperative mobile robots are deployed in an unknown

environment with the goal of exploring it, in a preliminary

phase, and then carrying out surveillance missions.
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