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Abstract— In this text we present a Bayesian system of
auditory localisation in distance, azimuth and elevation using
binaural cues only; we focus mainly on implementation details
and the calibration procedure, and present experimental results.
This binaural system is also integrated in a spatial representa-
tion framework for multimodal perception of 3D structure and
motion — the Bayesian Volumetric Map (BVM). This solution
will enable the implementation of an active perception system
with great potential in applications as diverse as social robots
or even robotic navigation.

Index Terms— Bioinspired Perception, Sound-Source Local-
isation, Binaural Cues, Bayesian Inference, Occupancy Grids.

I. INTRODUCTION

Although vision might be the dominant sense in humans,
we rely on hearing as our only panoramic, long-range sensory
system. The ability not only to detect and identify a sound,
but also to pinpoint swiftly and accurately the location of its
source can bring substantial advantages. This applies equally
to a predator stalking its prey in the wild [1] and to robotic
applications such as [2], [3] and many others. Moreover,
auditory stimulus localisation is also an important component
driving attention and gaze shifts, especially when the target
is not in sight.

In this text we present a Bayesian system of auditory local-
isation in distance, azimuth and elevation using binaural cues
only. We briefly summarise its driving theoretical background
(presented in greater detail, together with preliminary results,
in [4]), describe implementation details and its calibration
procedure. The binaural system is also integrated in a spatial
representation framework for multimodal perception of 3D
structure and motion, the Bayesian Volumetric Map (BVM)
— for more details, please refer to [5].

To support our research work, an artificial multimodal
perception system (IMPEP — Integrated Multimodal Per-
ception Experimental Platform) has been constructed at
the ISR/FCT-UC consisting of a stereovision, binaural and
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Fig. 1. View of the current version of the Integrated Multimodal Perception
Experimental Platform (IMPEP), on the left. On the right, the IMPEP
perceptual geometry is shown: {E} is the main reference frame for the
IMPEP robotic head, representing the egocentric coordinate system;{Cl,r}
are the stereovision (respectively left and right) camera referentials; {Ml,r}
are the binaural system (respectively left and right) microphone referentials;
and finally {I} is the inertial measuring unit’s coordinate system.

Fig. 2. Typical application context of the IMPEP active perception system.

inertial measuring unit (IMU) setup mounted on a mo-
torised head, with gaze control capabilities for image sta-
bilisation and perceptual attention purposes — see Fig. 1.
The stereovision system is implemented using the STH-
MDCS2/-C Stereo Head from Videre Design (http://
www.videredesign.com), the binaural setup using two
AKG Acoustics C417 linear microphones (http://www.
akg.com/) and a FA-66 Firewire Audio Capture interface
from Edirol (http://www.edirol.com/), and the mo-
torised head using the pan and tilt unit model PTU-46-17.5
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Fig. 3. The IMPEP Bayesian binaural system.

from Directed Perception (http://www.dperception.
com/). The miniature inertial sensor, Xsens MTi (http://
www.xsens.com/), provides digital output of 3D acceler-
ation, 3D rate of turn (rate gyro) and 3D earth-magnetic field
data for the Inertial Measurement Unit (IMU). This solution
will enable the implementation of an active perception system
with great potential in applications as diverse as social robots
or even robotic navigation (Fig. 2).

II. BAYESIAN BINAURAL SYSTEM DESCRIPTION

The Bayesian binaural system presented herewith is com-
posed of three distinct and consecutive processors (Fig. 3):
the monaural cochlear unit, which processes the pair of
monaural signals {x1, x2} coming from the binaural audio
transducer system by simulating the human cochlea, so as
to achieve a tonotopic representation (i.e. a frequency band
decomposition) of the left and right audio streams; the bin-
aural unit, which correlates these signals and consequently
estimates the binaural cues and segments each sound-source;
and, finally, the Bayesian 3D sound-source localisation unit,
which applies a Bayesian sensor model so as to perform
localisation of sound-sources in 3D space.

A. Cochlear and auditory periphery processing

The first stages of auditory processing consist of cochlear
and auditory periphery processing, which produces what is
called an auditory image model (AIM) [6]. The AIM proces-
sor implements a functional model of a cochlea that simulates
the phase-locked activity that complex sounds produce in the
auditory nerve.

Spectral analysis, the first stage of the AIM, is performed
by a bank of auditory filters which converts each digitised
wave that composes the stereo signal into an array of filtered
waves. This processing is done using gammatone filters [7],
[8], linearly distributed along a frequency scale measured

in equivalent rectangular bandwidths (ERBs), as defined
by [9] for simulating the cochlea, obtaining a model of
basilar membrane motion (BMM) through frequency band
decomposition.

The second stage of the AIM simulates the mechani-
cal/neural transduction process performed by the inner hair-
cells. It converts the BMM into a neural activity pattern
(NAP), which is the AIM’s representation of the afferent
activity in the auditory nerve [6]. In this stage the envelopes
of the signals are first compressed, and then subjected to
halfwave rectification followed by a squaring and lowpass
filtering, resulting in m stereo audio signal pairs correspond-
ing to m frequency channels with respective frequency centre
fk

c ,
{
x′1(n), x′2(n)

}
fk

c
, k = 1 · · ·m.

B. Binaural cue processing

Sound waves arising from a source on our left will arrive
at the left ear first. This small, but perceptible, difference in
arrival time (known as an ITD, interaural time difference) is
an important localisation cue and is detected by the inferior
colliculus in primates, which acts as a temporal correlation
detector array, after the auditory signals have been processed
by the cochlea. Similarly, for intensity, the far ear lies in the
head’s “sound shadow”, giving rise to interaural level dif-
ferences (ILDs) [1], [10]. ITDs vary systematically with the
angle of incidence of the sound wave relative to the interaural
axis, and are virtually independent of frequency, representing
the most important localisation cue for low frequency signals
(< 1500 Hz in humans). ILDs are more complex than ITDs
in that they vary much more with sound frequency as a
function of distance and elevation. Low-frequency sounds
easily travel around the head and produce negligible ILDs.
ILD values produced at higher frequencies are larger, and
are increasingly influenced by the filter properties of each
external ear, which imposes peaks and notches on the sound
spectrum reaching the eardrum. Instead of being centred
on the interaural axis, cones of confusion associated with
particular ILD values take a different shape for each sound
frequency.

Moreover, when considering sound sources within 1 − 2
meters of the listener, binaural cues alone can even be
used to fully localise the source in 3D space (i.e. azimuth,
elevation and distance). Iso-ITD surfaces form hollow cones
of confusion with a specific thickness extending from each
ear in a symmetrical configuration relatively to the medial
plane. On the contrary, iso-ILD surfaces, which are spherical
surfaces, delimit hollow spherical volumes, symmetrically
placed about the medial plane and centred on a point on the
interaural axis [11]. Thus, for sources within 2 meters range,
the intersection of the ILD and ITD volumes is a torus-shaped
volume [11]. If the source is more than 2 meters away, the
change in ILD with source position is too gradual to provide
spatial information (at least for an acoustically transparent
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head), and the source can only be localised inside a volume
within the cone of confusion delimited by the respective iso-
ITD surfaces [11].

Given this background, we have decided to adapt the so-
lution by Faller and Merimaa [12] to implement the binaural
processor. Using this algorithm, interaural time difference
and interaural level difference cues are only considered
at time instants when only the direct sound of a specific
source has nonnegligible energy in the critical band and,
thus, when the evoked ITD and ILD represent the direction
of that source (corresponding to the process involving the
superior olivary complex (SOC) and the central nucleus of
the inferior colliculus (ICc) in mammals). They show how
to identify such time instants as a function of the interaural
coherence (IC). The source localisation suggested by the
selected ITD and ILD cues are shown to imply the results
of a number of published psychophysical studies related to
source localisation in the presence of distractors, as well as
in precedence effect conditions [13]. This algorithm thus
amplifies the signal-to-noise ratio and facilitates auditory
scene analysis for multiple auditory object tracking, and is
briefly summarised in the following paragraphs — for more
details, please refer to [12].

The ITD and IC, denoted respectively by τ(n) and c12(n),
where n indexes the sample currently being processed, are
estimated from the normalised cross-correlation functions
of the signals from left and right ear for each centre fre-
quency fc, respectively x′1 and x′2. The normalisation of
the cross-correlation function is introduced in order to get
an estimate of the IC, defined as the maximum value of
the instantaneous normalised cross-correlation function. This
estimate describes the coherence of the left and right ear input
signals. In principle, it has a range of [0; 1], where 1 occurs
for perfectly coherent x′1 and x′2. However, due to the DC
offset of the halfwave rectified signals, the values of c12 are
typically higher than 0 even for independent (nonzero) x′1
and x′2. Thus, the effective range of the interaural coherence
c12 is compressed to [a; 1] by the neural transduction. The
compression is more pronounced (larger a) at high frequen-
cies, where the low pass filtering of the half-wave rectified
critical band signals yields signal envelopes with a higher DC
offset than in the signal wave forms [12].

The ILD, denoted as ∆L(n), is then computed using the
signal levels at the corresponding offsets [12]. Note that due
to the envelope compression the resulting ILD estimates will
be smaller than the level differences between the ear input
signals. For coherent ear input signals with a constant level
difference, the estimated ILD (in dB) will be 0.23 times that
of the physical signals [12].

When several independent sources are concurrently active
in free field, the resulting cue triplets {∆L(n), τ(n), c12(n)}
can be classified into two groups [12]: (1) Cues arising
at time instants when only one of the sources has power

Fig. 4. Example of the use of an adaptation of the cue selection method
proposed by [12] using a 1 s “multiple looks” buffer. Represented in the
figure is a histogram of collected ITD cues corresponding to high IC levels
for a particular frequency channel of a 1 s audio snippet. This histogram
is interpreted as a distribution corresponding to the probability of the
occurrence of ITD readings, which is then used as a conspicuity map in
order to perform a summary cross-correlogram over all frequencies (see
main text for more details).

in that critical band. These cues are similar to the free-
field cues — localisation is represented in {∆L(n), τ(n)},
and c12(n) ≈ 1. (2) Cues arising when multiple sources
have non-negligible power in a critical band. In such a
case, the pair {∆L(n), τ(n)} does not represent the di-
rection of any single source, unless the superposition of
the source signals at the ears of the listener incidentally
produces similar cues. Furthermore, when the two sources
are assumed to be independent, the cues are fluctuating and
c12(n) < 1. These considerations motivate the following
method for selecting ITD and ILD cues. Given the set of
all cue pairs, {∆L(n), τ(n)}, only the subset of pairs is
considered which occurs simultaneously with an IC larger
than a certain threshold, c12(n) > c0. This subset is denoted

{∆L(n), τ(n)|c12(n) > c0} (1)

The same cue selection method is applicable for deriving
the direction of a source while suppressing the directions of
one or more reflections. When the “first wave front” arrives at
the ears of a listener, the evoked ITD and ILD cues are similar
to the free-field cues of the source, and c12(n) ≈ 1. As soon
as the first reflection from a different direction arrives, the
superposition of the source signal and the reflection results
in cues that do not resemble the free-field cues of either
the source or the reflection. At the same time IC reduces
to c12(n) < 1, since the direct sound and the reflection
superimpose as two signal pairs with different ITD and ILD.
Thus, IC can be used as an indicator for whether ITD and
ILD cues are similar to free-field cues of sources or not,
while ignoring cues related to reflections.

Faller and Merimaa’s cue selection method, as the authors
point out, can be seen as a “multiple looks” approach for
localisation, which provides the motivation for our imple-
mentation. Multiple looks have been previously proposed to
explain monaural detection and discrimination performance
with increasing signal duration [14]. The idea is that the
auditory system has a short-term memory of “looks” at the
signal, which can be accessed and processed selectively.
In the context of localisation, the looks would consist of
momentary ITD, ILD, and IC cues. With an overview of a

1724



set of recent cues, ITDs and ILDs corresponding to high IC
values are adaptively selected and used to build a histogram
that provides a statistical description of gathered cues (see
Fig. 4).

Finally, the binaural processor capitalises on the multiple
looks configuration and implements a simple auditory scene
analysis algorithm for detection and extraction of important
auditory features to build conspicuity maps and ultimately a
saliency map, thus providing a functionality similar to the
role of the external nucleus of the inferior colliculus (ICx) in
the mammalian brain. The first stage of this algorithm deals
with figure-ground (i.e. foreground-background) segregation
and signal-to-noise ratio. In signal processing, the energy of
a discrete-time signal x(n) is given by [15]

E =
∞∑
−∞

|x(n)|2

Using this notion, a simple strategy can be followed to
selectively apply the multiple looks approach to a binaural
audio signal buffer so that only relevant audio snippets
are analysed. This strategy goes as follows: given a bin-
aural signal buffer of N samples represented by the tuple
{x′1(n), x′2(n)}, the average of the energies of the component
signals x′1(n) and x′2(n) is

Eavg =
∑N

1 |x′1(n)|2 +
∑N

1 |x′2(n)|2

2
(2)

and can be used as a noise gate so that only when Eavg >
E0 ITDs, ILDs and ICs triplets are collected for the buffer,
yielding multiple looks values only for relevant signals (just
the ITD-ILD pairs corresponding to high IC values are kept in
conspicuity maps per frequency channel), while every other
buffer instantiation is labelled as irrelevant noise. E0 can be
fixed to a reasonable empirical value or be adaptive, as seems
to happen with human hearing.

Once the multiple looks information is gathered, since
ITDs are proven to be stable across frequencies for a specific
sound source at a given azimuth regardless of range or
elevation, the ITD conspicuity maps may be summed over
all frequencies, in a process similar to what is believed
to occur in the ICx, in computational terms known as a
summary cross-correlogram (again, see Fig. 4). From the
resulting one-dimensional signal, the largest peaks may be
taken as having been effected by the most important sound-
sources represented in the auditory image. Then, a search is
made across each frequency band to find the closest ITD and
its ILD pair, for each reference ITD, thus building n-sized
measurement vectors (for m = n−1 frequency channels) for
each relevant sound source of the form

Z = [τ,∆L(f1
c ) · · ·∆L(fm

c )] (3)

TABLE I
PROBABILITY TABLE FOR P (SC |OC C) ≡ P (SC |OC)

[OC = 0] [OC = 1]

[SC = 0] 1 .5
[SC = 1] 0 .5∑

P (sc|OC) 1 1

C. Bayesian sensor model

Finally, regarding the Bayesian 3D sound-source localisa-
tion unit, auditory sensor space is defined as a log-spherical
volumetric occupancy grid Y , with each cell being indexed
by its far corner C ≡ (logb ρmax, θmax, φmax) ∈ C ⊂ Y — this
configuration follows the same formalism as the Bayesian
Volumetric Map (BVM) framework, described in [5], and has
the advantage of providing a natural setting for the integration
of auditory cues, since the latter are directly a function of
egocentric spherical coordinates. Moreover, logarithmic parti-
tioning of distance accounts for the increasing just-noticeable
differences (JND) of auditory distance cues corresponding
to sound-sources at increasing distances, thus promoting an
efficient use of memory resources.

The binaural sensor model Bayesian Program (BP), a
formalism first defined by Lebeltel [16] that describes all
relevant variables and distributions and the decomposition of
the corresponding joint distribution, according to Bayes’ rule
and dependency assumptions1, is summarised by the Bayes
network presented on Fig. 5 — for an in-depth description of
the model, please refer to [4]. The use of the auxiliary binary
random variable SC , which signals the presence or absence
of a sound-source in cell C, and the corresponding family
of probability distributions P (SC |OC C) ≡ P (SC |OC),
promotes the assignment of probabilities of occupancy close
to 1 for cells for which the binaural cue readings seem
to indicate a presence of a sound-source and close to .5
otherwise (i.e. the absence of a detected sound-source in
a cell doesn’t mean that the cell is empty). This family of
distributions is defined in Table I.

Three separate, essential problems (in Lebeltel’s formalism
referred to as “questions”) can be solved through Bayesian in-
ference: (1) P (oc|z c); (2) max, arg maxC P ([SC = 1]|z C);
and (3) P (z|oc c). The first question corresponds to the
classical occupancy grid formulation, which will be used in
the results section; the second question corresponds to the
estimation of the position of cells most probably occupied by
sound sources, yielding a gaze direction of interest in terms
of auditory features for the multimodal attention system;
finally, the third question represents the direct binaural sensor
model, where the influence of SC has been removed through

1Using this formalism, random variables are denoted through upper-case
(e.g. SC ), and specific instantiations either stated explicitly using square
brackets (e.g. [SC = 1]) or implicitly through lower-case (e.g. c instead of
C).
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Fig. 5. Bayes network corresponding to the Bayesian Program for the binaural sensor model presented in [4]. The model’s random variables are defined
as follows: C indexes a cell in log-spherical space; OC denotes the occupancy of a specific cell (either 0 for empty or 1 for occupied — this general case
is needed for the BVM [5]); SC signals the special case of the occupancy of a specific cell with a sound-source (either 0 or 1 for “not occupied by a
sound-source” or “occupied by a sound-source”, respectively); the remainder denote the binaural cue readings, which have been defined earlier on.

marginalisation (i.e. sum over all possible values of SC), and
is used as a sub-BP for the BVM in [5].

III. CALIBRATION, IMPLEMENTATION AND RESULTS

As can be seen on the BP in Fig. 5, calibration
of the binaural system involves the characterisation of
the families of normal distributions P (τ |SC OC θmax) and
P (∆L(fk

c )|τ SC OC C) ≈ P (∆L(fk
c )|SC OC C) through

descriptive statistical learning of their central tendency and
statistical variability. This is done in an equivalent manner as
with commonly used head-related transfer function (HRTF)
calibration processes (see, for example, [17]) and is described
in the following paragraphs.

A set Mc of n-dimensional measurement vectors such as
defined in equation (3) is collected per cell c ∈ C. The full
set of collected measurement vectors for all cells in auditory
sensor space Y is expressed as M =

⋃
Mc. Denoting Mc̄ =

M \ Mc as the set of measurements for all cells other than
c, the statistical characterisation process of each family of
distributions is effected for each cell c through

P (τ |[Sc = 1] Oc θmax) ≡ N (τ, µτ (Mc), στ (Mc)) (4a)
P (τ |[Sc = 0] Oc θmax) ≡ N (τ, µτ (Mc̄), στ (Mc̄)) (4b)

P (∆L(fk
c )|[Sc = 1]Oc c) ≡

N (∆L(fk
c ), µ∆L(fk

c )(Mc), σ∆L(fk
c )(Mc))

(4c)

P (∆L(fk
c )|[Sc = 0]Oc c) ≡

N (∆L(fk
c ), µ∆L(fk

c )(Mc̄), σ∆L(fk
c )(Mc̄))

(4d)

Auditory calibration is performed by presenting a broad-
band audio stimulus through a loudspeaker positioned in
well-known spatial coordinates corresponding to the geomet-
ric centre of each cell c ∈ C so as to sample space according
to the auditory sensor space Y . The experimental setup used
for this purpose is described in Fig. 6.

The acquisition method may be simplified by a factor
of 4 by taking into account the spatial redundancies of
auditory sensing, namely the symmetry enforced by the back-
to-front ambiguity and the left-to-right antisymmetry for both
ITDs and ILDs, to reduce calibration space to the front-left

Fig. 6. Experimental setup for the binaural system calibration procedure.

quadrant. A further simplification of the procedure consists
in positioning the loudspeaker, for each of the Nd considered
distances from the binaural system, precisely in front of the
active perception head (i.e. (θ, φ) = (0, 0)) and to rotate
the active head so that the whole range of azimuths and
elevations of the auditory sensor space is covered. This re-
places the several minutes taken to reposition the loudspeaker
by hand (which this way only happens Nd times) by a few
seconds of head motions for each cell. The full procedure is
depicted in Fig. 7 for a typical calibration context.

Some results obtained for a single classical occupancy
grid inference step as described earlier on are presented on
Figs. 8 and 9, using a uniform prior on occupancy. These
are outcomes of offline processing using MATLAB; the
algorithms are currently being ported to C++ for realtime
processing in active perception applications.

IV. CONCLUSIONS

Full 3D auditory localisation has rarely been explored in
robotic applications (see, for example, [17] for a review on
this subject); this work contributes with a novel probabilis-
tic solution that produces localisation estimates based on
binaural cues yielded by a robust binaural processing unit.
This solution has been designed so as to provide a sensor
model to be used by a multimodal perception framework, the
Bayesian Volumtric Map, described in [5]. Further details can
be found at http://paloma.isr.uc.pt/~jfilipe/
BayesianMultimodalPerception.
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Fig. 7. Schematic of the experimental acquisition method of the auditory
calibration procedure. A typical auditory sensor space was used, roughly
based both on known human auditory precision ratings [17] and the
specifications of the pan and tilt unit model PTU-46-17.5 from Directed
Perception, characterised by an azimuthal range of [0o; 90o] with ∆θ = 2o

resolution and an elevation range of [−30o; 30o] with ∆φ = 10o resolution,
and a number of partitions N = 4, of which only the furthest Nd = 2
partitions would be used — the number of cells to sample amount to
[(90/2) × (60/10) × 2] = 540. Thus, for 20 readings of a 1 s broadband
stimulus per cell and approximately 1 s to set up each position for the
loudspeaker, calibration would take about 10800×2 s = 6 h. This procedure
allows partitioning calibration into one session per loudspeaker distance, in
this case of ≈ 3 h.

Fig. 8. Occupancy results for the processing of an audio snippet of a human
speaker placed in front of the binaural perception system — cells within the
log-spherical sensor-space with probabilities of occupancy greater than .75
are depicted in red, and the egocentric referential in blue (X-axis, Y -axis and
Z-axis indicate right-to-left, upward and forward directions, respectively).
On the left, result of inference using ITDs only; on the right, result of adding
ILDs: note the effects on distance and elevation.
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