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Abstract—Robotic implementations of gaze control and image
stabilization have been previously proposed, that rely on fusing
inertial and visual sensing modalities. They are bioinspired in
the sense that human and biological system also combine the
two sensing modalities for the same goal. In this work we
build upon these previous results and, with the contribution of
psychophysical studies, attempt a more biomimetic approach
to the robotic implementation. Since Bayesian models have
been successfully used to explain psychophysical experimental
findings, we propose a robotic implementation using Bayesian
inference.

I. INTRODUCTION

It is well known that the information provided by the

vestibular system is used during the execution of visual

movements such as gaze holding and tracking [1]. Neural

interactions of human vision and vestibular system occur at

a very early processing stage [2]. Human sense of motion

is derived from two main factors: the contribution of the

vestibular system and retinal visual flow. The inertial in-

formation enhances the performance of the vision system,

and the visual cues aid the spatial orientation and body

equilibrium.

Artificial systems should also exploit this sensor fusion [3].

Micromachining enabled the development of low-cost single

chip inertial sensors that can be easily incorporated alongside

the camera’s imaging sensor, providing an artificial vestibular

system. Inertial sensors coupled to cameras provide valuable

data about camera ego-motion and how world features are

expected to be oriented [4]. Object recognition and tracking

benefits from both static and inertial information.

Perception has been regarded as a computational process of

unconscious, probabilistic inference. Aided by developments

in statistics and artificial intelligence, researchers have begun

to apply the concepts of probability theory rigorously to

problems in biological perception and action. One striking

observation from this work is the myriad ways in which

human observers behave as near-optimal Bayesian observers,

which has fundamental implications for neuroscience, partic-

ularly in how we conceive of neural computations and the

nature of neural representations of perceptual variables [5].

∗This work is partially supported by EC-contract BACS FP6-IST-027140.

The fact that there is strong evidence for a probabilistic

computational framework in the human brain for perception,

also brings forth the notion of optimal percept, or, in other

words, that our percepts are our best guess as to what is in

the world, given both sensory data and prior experience [6],

[7]. Such an “optimal guess” based on priors also suggests

an explanation to why biological perception systems, when

faced with perceptual scenarios which do not comply to the

statistics of natural environments or when impaired due to

disease or cerebral lesions, often fail to perceive the world

as it is, substituting its correct description by the erroneous

percepts called perceptual illusions — these are a direct

result of perceptual ill-posed problems [8]. On the other

hand, at present, the performance of the human perceptual

system is superior in almost every respect to that of machine

perception systems. Due to this fact, a significant amount of

current research on artificial perception is shifting towards

a bioinspired approach, implying a Bayesian framework for

artificial perception models.

A. Related Work

Comparison of camera rotation estimate given by image

optical flow with output from a low cost gyroscope was

done for gaze stabilisation of a rotating camera [9]. In [10]

the integration of inertial and visual information in binocular

vision systems was studied. The image stabilization proposed

in [11] relies on a self-tuning neural network that combines

inertial and optic flow motion cues and generates oculo-motor

compensatory behaviours that stabilize the visual scene.

The learning scheme adapts the neural network parameters

after a short training period. Critical performance issues are

the delays in the visual and inertial loops, as well as the

saturation of optical flow measures in the simplified model

used.

More recently, a high speed gaze control system based on

the Vestibulo-Ocular Reflex has been proposed [12]. The

gaze controller involves a feedback control system based

on the retinal position error measurement and a feedfor-

ward control system based on the angular head velocity

measurement. The performance in terms of head rotational

disturbance rejection is comparable to that afforded by the

human vestibulo-oculomotor system. Visual fixation has also
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been suggested as a mechanism for image stabilization [13].

To better exploit the benefits of combining the two sensing

modalities in artificial systems, a clear understanding of

biological systems is important. Vestibular information is

necessary not only for vestibular reflexes but also in various

cognitive functions for our adequate behaviour in three-

dimensional space. In [14] the regions of the cerebral cortex

where vestibular information is represented is investigated.

Perception and action influence each other [15], making some

biological systems highly coupled and complex, from which

direct models for sensor fusion are not easily derived. In [16],

[17] the role of gravity in visual perception and how the brain

deals with the ambiguity between inclination and body ac-

celeration is investigated. In [18], [19] the motion perception

inferred from visuo-vestibular cues is studied. The perceived

relative motion is important for posture control [20]. Taking

advantage of improved brain imaging techniques, a better

understanding of the visual motion and self-movement in-

teractions has been pursued [21], [22]. A Bayesian model

of human processing of vestibular information is proposed

by [23], obtaining satisfactory responses to complex motion

stimuli.

II. IMAGE STABILIZATION AND GAZE CONTROL

Our robotic implementation of gaze control and image

stabilization will basically perform visuo-inertial servoing,

exploring the complementarity of the two sensing modalities,

but the sensory inputs will be processed using Bayesian

inference.

The image optical flow provides motion data from the

visual sensor that complements the inertial data.

Taking as a reference the visual servo control topology

presented in [24], fig. 1 presents the system block diagram

for our robotic system.

A. Probabilistic Block Matching Optical Flow

Recent findings regarding human perception strongly sug-

gest that the brain codes even complex patterns of sensory

uncertainty in its internal representations and computations
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Fig. 1. System block diagram for our robotic system implementation of
gaze control and image stabilization.

An example of a common neuronal representation of uncer-

tainty in the human brain is believed to be neural population

coding (e.g., average firing rate) [5], [25].

With this in mind, we set off in implementing a simple

probabilistic optical flow algorithm that would encompass

the notion of a population code-type data structure storing

two-dimensional pdf s on the image velocity space (∆u, ∆v)
as an output. The immediate advantage of such an implemen-

tation would be the availability of confidence measures per

local image velocity measurement taken from the covariance

matrix of the corresponding pdf. A further advantage would

be the possibility of future use of powerful probabilistic/belief

propagation methods to allow for temporal integration of

several frames. Finally, the probabilistic nature of such an

algorithm will allow effortless integration with higher-level

Bayesian cue integration modules.

The algorithm is primarily based on Zelek’s [26] adapta-

tion of the block matching (correlation) algorithm presented

in [27].

A smooth motion field is assumed and also a Gaussian

prior probability density in which slower speeds are more

likely. The output of the algorithm is a Gaussian distribution

over the space of image velocities, at each position in the

image. The mean of the distribution is a gain-controlled

modification of the basic optical flow solution. The co-

variance matrix captures directional uncertainties, allowing

proper combination with inertial data.

B. Bayesian processing of inertial data

To process the inertial data, we follow the Bayesian model

proposed by Laurens and Droulez [23], adapted here to the

use of inertial sensors instead of the vestibular system. The

aim here is to provide an estimate for the current angular

position and angular velocity of the system, that mimics the

human vestibular perception.

To overcome the non-linearity of the motion equations and

the high dimension space of possible distributions, particle

filtering is used. The fact that some motions are more prob-

able than others in human head motion is also replicated in

the robotic version, limiting periods of sustained acceleration

and also long duration rotations at constant velocity.

1) Motion variables: In this model, X, Y and Z refer

to the three axes of the robotic vision head in egocentric

coordinates. The orientation of the system in space is encoded

using a rotation matrix Θ. Angular velocity of the head is

encoded using the yaw y, pitch p and roll r conventions.

Yaw rotations are rotations around the Z axis; pitch around

the Y axis and roll around X. When a rotation consists of a

combination of yaw, pitch and roll rotation, the three rotations

are applied successively and in this order. The rotation update

is given by

Θ
t+δt = Θ

t.R(δy, δp, δr) (1)

444



where R(y, p, r) =




c(y).c(p) c(y).s(p).s(r) − s(y).c(r) c(y).s(p).c(r) + s(y).s(r)
s(y).c(p) c(y).c(r) + s(y).s(p).s(r) −c(y).s(r) + s(y).s(p).c(r)
−s(p) c(p).s(r) c(p).c(r)





where c() and s() are short form for cos() and sin().
The instantaneous angular velocity is defined as the vector:

Ω =

(

δy/δt
δp/δt
δr/δt

)

Linear motion of the head is described by the position of the

centre of the head in a geocentric reference frame, defined as

a position vector M . The linear acceleration A is the second

derivative of M over time. In our case we are only concerned

with the linear acceleration, since gravity will provide an

absolute reference for orientation only when A = 0.

The sate of our system at time t is therefore defined by

(Θt,Ωt,At,F t).
2) Sensory input: The calibrated inertial sensors in the

Inertial Measurement Unit (IMU) provide direct egocentric

measurements of body angular velocity and linear accelera-

tion (including gravity G). Given the motion of the system,

we can define the probability distribution of the sensory

inputs.

The gyros will measure Ω
t with added Gaussian noise, i.e.

Φ
t = Ω

t + ηt
Φ, where ηt

Φ is a three-dimensional vector, the

elements of which follow independent Gaussian distributions

with mean 0 and standard deviation σΦ.

The accelerometers will measure the gravito-inertial accel-

eration F with added Gaussian noise, i.e. Υ
t = F t + ηt

Υ,

where ηt
Υ is a three-dimensional vector, the elements of

which follow independent Gaussian distributions with mean

0 and standard deviation σΥ. F is the resultant acceleration

due to linear acceleration and gravity. Given the geocentric

body linear acceleration A and the system orientation Θ,

we can compute F . In a geocentric frame of reference

gravity is a vector G = (0, 0,−9.81), and the gravito-inertial

acceleration is given by G−A, transforming to the egocentric

frame of reference we have

F = Θ
−1.(G − A) (2)

The sensor data at time t is therefore defined by (Φt,Υt).
3) A priori: As suggested in [23], even in the absence

of any sensory information, motion estimates for which

the rotational velocity and acceleration are low are more

probable. This can be described in a simple way using a

Gaussian distribution. Having

Nx,µ,σ =
e−(x−µ)2/(2.σ2)

√
2.π.σ2

the probability distribution for acceleration is given by

P (At) ∝ N|At|,0,σA
. Similarly for angular velocity Ω we

have P (Ωt) ∝ N|Ωt|,0,σΩ
.
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Relevant variables:

ξt = (Θt,Ωt, At, F t): state variables,

St = (Φt,Υt): sensor variables.

Decomposition:

P (ξt ∧ ξt−δt ∧ St... ∧ S0) =

P (St|ξt).P (Ωt).P (At).P (Θt|Θt−δt ∧ Ω
t)

.P (F t|Θt ∧ At).P (ξt−δt ∧ St−δt... ∧ S0)

Parametric forms:

P (St|ξt) = P (Φt|Ωt).P (Υt|F t)

: sensor model, Gaussians and Dirac delta function;

P (Ωt), P (At): a priori for state, Gaussians;

P (Θt|Θt−δt ∧ Ω
t), P (F t|Θt ∧ At)

: state dynamic model, Dirac delta functions;

P (ξt−δt ∧ St−δt... ∧ S0): previous iteration,

distribution computed at last time step.

Identification:

Parameters of the Gaussians: σΦ, σΥ, σA and σΩ .

Question:

P (ξt|St ∧ ... ∧ S0)

Fig. 2. Bayesian program for processing of inertial data.

4) Bayesian inference: The Bayesian Program formalism,

as first defined by Lebeltel [28], will be used throughout

this text. The Bayesian program shown in fig. 2 will be

used to compute the probability distribution for the current

state given all the previous sensory inputs and initial known

distribution.

To simplify notation, state variables are grouped in a vector

ξt = (Θt,Ωt,At,F t) and sensor variables in a vector St =
(Φt,Υt)

At time t the Bayesian program computes the probability

distribution of the current state ξt given all the previous

sensory inputs the initial distribution ξt. For the above

Bayesian program the inference of current state is done by

applying the conjunction and marginalization rule, applying

a summation over state variables at the previous time step

so that no decision is taken about these values, summarizing

all the past in the answer to the estimation question in the

previous time step, and can be formulated by:

P (ξt|St ∧ ... ∧ S0) = 1
K .
∑

ξt−δt P (St|ξt)

.P (F t|Θt ∧ At)

.P (Ωt).P (At).P (Θt|Θt−δt ∧ Ω
t)

.P (ξt−δt ∧ St−δt... ∧ S0)
where:

• K is a normalization constant;
• P (St|ξt) = P (Φt|Ωt).P (Υt|F t) is the sensor model, i.e.,

the probability distribution of sensor inputs given the sate.
P (Φt|Ωt) and P (Υt|F t) are Gaussians;

• P (F t|Θt ∧At) a Dirac delta function, equal to 1 if and only
if (2) is verified;

• P (Ωt), P (At) represent a priori knowledge about state
variables, both Gaussians;

• P (Θt|Θt−δt ∧ Ω
t) is the system dynamic model for state

variable Θ, i.e., the probability distribution of rotation Θ given
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the previous rotation and current angular. P (Θt|Θt−δt ∧Ω
t)

is a Dirac delta function, equal to 1 if and only if (1) is verified;
• P (ξt−δt ∧St−δt...∧S0) is the probability distribution com-

puted at last time step, i.e., from previous iteration of the
Bayesian filter.

We can see also that the first-order Markov assumption

is present in both the state dynamic model and sensor

model: time dependence has a depth of one time step. The

stationarity assumption is also implicit: models do not change

with time. The filter iterates for each new time step, but the

relationships between these variables remain the same for all

time steps. This greatly reduces the complexity.

For the implementation the space of ξt−δt that needs to

be scanned has 3 dimensions: Θ
t−δt. For a given ξt−δt,

the space of possible ξt has 3 dimensions, so the total

search space has 6 dimensions. Resampling is applied, so that

unlikely particles are deleted and likely ones are duplicated,

in order to avoid having all particles drift towards improbable

states. At each iteration a new set of N samples is drawn from

the previous set of particles. Each particle of the previous set

has a probability wi to be chosen for each new particle. The

weights in the new set to 1/N .

C. Bayesian program for Image Stabilization and Gaze Con-

trol

Having the estimate for the current angular position and

angular velocity of the system, we now need to implement a

compensatory control so that the motors stabilize the image.

The Bayesian program shown in fig. 3 implements the image

stabilization for fixed gaze, using the inertial sensors data as

input and the pan and tilt as actuators. This is an increment

to the previous program that essentially adds a motor model

to the Bayesian filter, with the motor model depending only

on the current state and previous motor commands.

The actuator control is based on current angular position

and velocity of the system. The pan and tilt units are

controlled with combined commands for end position and

velocity. The motors will move to the desired target position

with the selected velocity and stop. The motor model takes

this into account by having the current motor command

depending on the current state and also on the previous

motor commands. The remaining angular degree of freedom

corresponds to rotating about the camera optical axis, and is

done by digitally rotating the image after capture.

The following variables will be used: angular position

composed of yaw, pitch and roll angles θ = (y, p, r), Θ

is the corresponding rotation matrix. Therefore the state ξ,

as defined above, has all the information about θ; angular

velocity, as defined above: (Ωy,Ωp,Ωr); target pan&tilt:

αy, αr; pan motor velocity and end position: Pω,Pθ; tilt

motor velocity and end position: Tω, Tθ; and image rotation:

Rθ.

Fig. 3 presents the Bayesian program of image stabilization

for fixed gaze. To simplify notation, state variables are
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Relevant variables:

ξt = (Θt,Ωt): state variables,

Mt = (Pω ,Pθ, Tω , Tθ,Rθ): motor variables.

S: sensor variables

α: target

Decomposition:

P (ξt ∧ Mt|St ∧ αt) =

P (ξt|St).P (Mt|ξt ∧ αt).

Parametric forms:

P (ξt|St) direct from Bayesian program

that processes inertial data ;

P (Pω |ξ
t ∧ αt), P (Tω |ξ

t ∧ αt), P (Pθ|ξ
t ∧ αt),

P (Tθ|ξ
t ∧ αt), P (Rθ|ξ

t ∧ αt)

: Gaussians with mean based on simple control.

Identification:

fixed control rules ( or some learning of motor behaviour...)

Question:

P (Mt|St ∧ αt)

Fig. 3. Bayesian program for motor control.

grouped in a vector ξt = (Θt,Ωt) and motor variables in a

vector M t = (Pω,Pθ, Tω, Tθ,Rθ)
A very simple deterministic proportional control was used

for the motor control. The pan velocity counteracts the

observed yaw angular velocity, limited by the maximum

motor velocity, and the pan position angle has to take into

account the desired target and the rotation between frames

of reference. And likewise for tilt and pitch. Since the image

rotation does not affect the IMU position, we simply rotate

the image according to the estimated roll.

In order to format the stabilization control to a probabilistic

framework, we considered Gaussian distributions about the

mean given by the simplistic control. This will later be

replaced by a better controller, to include different priors

and even learning of the control, using the same Bayesian

program.

The optical flow contribution will be added to enable gaze

following of moving targets, and eventually as input for

image cropping to have a stabilized output stream of images

to overcome the dynamic limitations of the motors.

III. RESULTS

A. Experimental Setup

The robotic gaze control has been implemented on an

experimental setup using standard equipment, as shown in

fig. 4. This setup, the Integrated Multimodal Perception

and Experimental Platform (IMPEP), has been assembled

to provide a common experimental platform for our work

on multimodal perception computational models for visuo-

auditory, visuo-haptic and visuo-inertial sensing.

For this work only the monocular camera, the inertial

sensors and the pan and tilt motors will be used. The

miniature inertial sensor used, Xsens MTi, provides digital
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a) b)

Fig. 4. Integrated Multimodal Perception and Experimental Platform
(IMPEP): a) stereo camera, monocular fast camera, inertial sensor, stereo
microphones and laser range finder; b) mounted on pan&tilt and onto a
camera tripod for manipulation.

output of 3D acceleration, 3D rate of turn (rate gyro) and 3D

earth-magnetic field data. With this setup we will explore the

use of the inertial sensor coupled directly to the camera as

shown in fig. 4.

B. Results

For comparison with our Bayesian implementation, the

Xsens IMU firmware MotionTracker was used to provide at-

titude estimation. The Motion Tracker implements a weighed

filtering of the accelerometer, gyro and magnetic data to

provide sensor angular position, including an adaptive filter

used to correct for magnetic disturbances. The added data

from the magnetic sensor enables the firmware estimation

filter to provide a relative ground truth for our experimental

work.

The above described Bayesian processing of inertial data

was implemented in C with the ProBT library. Fig. 5 shows

results for 1D single yaw rotation axis. The magnetic data

enables the Xsens filter to outperform the Bayesian filter,

as seen in the plot the probabilistic value accumulates some

drift. Fig. 6 shows the result for pitch where gravity is taken

into account by the Bayesian Filter to bound accumulated

drift. Here a particle filter with just 200 particles was used,

using σA = 0.3m.s−2 and σΩ = 1rad.s−1. The system is

initially calibrated [29], to have the rigid rotation between the

inertial sensor and the camera, so that inertial measurements

can be expressed in the egocentric vision system coordinates.

The pan and tilt motors are aligned with the camera, provid-

ing camera yaw (pan) and pitch (tilt). The control system

is running at about 2 Hz, limited by the pan&tilt hardware.

The optical flow algorithm was implemented in C++ using
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Fig. 5. Bayesian processing of inertial data, showing result for yaw angle
at 100 Hz sample rate.
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Fig. 6. Bayesian processing of inertial data, showing result for pitch where
gravity is taken into account to bound accumulated drift.

the OpenCV library with Intel acceleration, obtaining 1.6fps
on a standard PC.

Fig. 7 shows a set of results for image stabilization. Even

though the signals have distinct sampling frequencies, the

three plots denote the same time period. For every 100

samples from the IMU we have 30 images and slightly over 4

pan&tilt commands. We can see a strong correlation between

the pan and yaw, and tilt and roll signals, since the pan&tilt

is compensating the observed motion at a low sample rate.

The results show that the controller works but produces

a noisy response due to the dynamic control limitations of

the pan and tilt units. A new robotic vision head under

construction will enable smooth motion control so that a

better mechanical stabilization can be performed.

IV. CONCLUSIONS AND FUTURE WORK

We reported our work towards having a working robotic

biomimetic implementation of image stabilization and gaze

control based on using Bayesian inference. The Bayesian pro-

gram was presented, and applied the robotic vision system.

Current work is being done to optimize the optical flow code

to have a full working real-time solution.

The IMU MotionTracker estimator, used for comparison

in the results, factors in the magnetic data and provides a

better estimate than the Bayesian processing of inertial data;

however the Bayesian program will allow tuning to known

priors, fusion with the visual input, and learning of motor

behaviours.

Preliminary results show that the image stabilization yields

satisfactory results, when subject to motions similar to what

humans experience in normal conditions, but the current

setup has clear limitations in dynamic response.

The optical flow contribution will enable gaze following of

moving targets, and eventually as input for image cropping

to have a stabilized output stream of images to overcome the

dynamic limitations of the motors.

The construction of a a custom system with a better dy-

namic performance has been initiated. This binocular active

vision system will allow stereo vergence with an adjustable

baseline, with common head tilt and neck pan, mimicking the

human degrees of freedom. Future work will address adding

the magnetic data to our Bayesian implementation, providing

a more robust attitude estimation.
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and José Marinho on the technical implementation.

447



20 40 60 80 100 120 140 160 180 200
−4
−2

0
2
4

frames

p
ix

e
ls

 

 

100 200 300 400 500 600 700 800

−10

0

10

samples

d
e

g

 

 

image sequence

100 200 300 400 500 600 700 800
−20

−10

0

10

samples

d
e

g

 

 

Tilt

Roll

Pan

Yaw

Horizontal Optical Flow

Vertical Optical Flow

Fig. 7. Observed yaw and roll, pan and tilt motor control, and remaining observed optical flow.

REFERENCES

[1] H. Carpenter. Movements of the Eyes. London Pion Limited, 2nd
edition, 1988. ISBN 0-85086-109-8.

[2] Alain Berthoz. The Brain’s Sense of Movement. Havard University
Press, 2000. ISBN: 0-674-80109-1.

[3] Peter Corke, Jorge Lobo, and Jorge Dias. An introduction to inertial
and visual sensing. The International Journal of Robotics Research

(IJRR) Special Issue from the 2nd Workshop on Integration of Vision

and Inertial Sensors., 26(6):519–535, June 2007.

[4] Jorge Lobo and Jorge Dias. Vision and inertial sensor cooperation using
gravity as a vertical reference. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 25(12):1597–1608, December 2003.

[5] David C. Knill and Alexandre Pouget. The Bayesian brain: the
role of uncertainty in neural coding and computation. TRENDS in

Neurosciences, 27(12):712–719, December 2004.

[6] Yair Weiss, Eero P. Simoncelli, and Edward H. Adelson. Motion
illusions as optimal percepts. Nature Neuroscience, 5(6):598–604,
2002.

[7] Wilson S. Geisler and Daniel Kersten. Illusions, perception and Bayes.
Nature Neuroscience, 5(6):508–510, June 2002.

[8] Francis Colas, Julien Diard, and Pierre Bessire. Common Bayesian
Models For Common Cognitive Issues. Bacs deliverable 3.1: Re-
view report of bayesian approaches to fusion multimodality, conflicts,
ambiguities, hierarchies and loops, Bayesian Approach to Cognitive
Systems (IP FP6-IST-027140), January, 11th 2007.

[9] Francesco Panerai and Giulio Sandini. Oculo-motor stabilization re-
flexes: integration of inertial and visual information. Neural Networks,
11(7-8):1191–1204, October 1998.

[10] Francesco Panerai, Giorgio Metta, and Giulio Sandini. Visuo-inertial
stabilization in space-variant binocular systems. Robotics and Au-

tonomous Systems, 30(1-2):195–214, January 2000.

[11] F. Panerai, G. Metta, and G. Sandini. Learning visual stabilization
reflexes in robots with moving eyes. Neurocomputing, 48(1-4):323–
337, October 2002.

[12] Stephane Viollet and Nicolas Franceschini. A high speed gaze control
system based on the vestibulo-ocular reflex. Robotics and Autonomous

Systems, 50(4):147–161, March 2005.

[13] Karl Pauwels, Markus Lappe, and Marc M. Van Hulle. Fixation as a
mechanism for stabilization of short image sequences. International

Journal of Computer Vision, V72(1):67–78, April 2007.

[14] Kikuro Fukushima. Corticovestibular interactions: anatomy, elec-
trophysiology, and functional considerations. Experimental Brain

Research, 117(1):1–16, October 1997.

[15] Susan Hurley. Perception and action: Alternative views. Synthese,
129(1):3–40, October 2001.

[16] Gilles Leone. The effect of gravity on human recognition of disoriented
objects. Brain Research Reviews, 28(1-2):203–214, November 1998.

[17] D E Angelaki, M Q McHenry, J D Dickman, S D Newlands, and
B J Hess. Computation of inertial motion: neural strategies to resolve
ambiguous otolith information. The Journal Of Neuroscience: The

Official Journal Of The Society For Neuroscience, 19(1):316–327,
January 1999.

[18] Laurence R. Harris, Michael Jenkin, and Daniel C. Zikovitz. Visual and
non-visual cues in the perception of linear self motion. Experimental

Brain Research, 135(1):12–21, October 2000.
[19] Gilles Reymond, Jacques Droulez, and Andras Kemeny. Visuovestibu-

lar perception of self-motion modeled as a dynamic optimization
process. Biological Cybernetics, 87(4):301–314, October 2002.

[20] Jonathan W. Kelly, Jack M. Loomis, and Andrew C. Beall. The
importance of perceived relative motion in the control of posture.
Experimental Brain Research, 161(3):285–292, March 2005.

[21] Jeremy Beer, Colin Blakemore, Fred Previc, and Mario Liotti. Areas of
the human brain activated by ambient visual motion, indicating three
kinds of self-movement. Experimental Brain Research, 143(1):78–88,
March 2002.

[22] Fred H. Previc, Mario Liotti, Colin Blakemore, Jeremy Beer, and Peter
Fox. Functional imaging of brain areas involved in the processing of
coherent and incoherent wide field-of-view visual motion. Experimen-

tal Brain Research, 131(4):393–405, April 2000.
[23] Jean Laurens and Jacques Droulez. Bayesian processing of vestibular

information. Biological Cybernetics, 96(4):389–404, April 2007.
[24] Peter Corke and M.C. Good. Dynamic effects in visual closed-loop

systems. IEEE Transactions on Robotics and Automation, 12(5):671–
683, October 1996.

[25] A. Pouget, P. Dayan, and R. Zemel. Information processing with
population codes. Nature Reviews Neuroscience, 1:125–132, 2000.
Review.

[26] John S. Zelek. Towards bayesian real-time optical flow. Image and

Vision Computing, 22(12):1051–1069, October 2004.
[27] Ted Camus. Real-Time Quantized Optical Flow. In IEEE Computer

Architectures for Machine Perception, September 18–20 1995.
[28] O. Lebeltel. Programmation Baysienne des Robots. PhD thesis, Institut

National Polytechnique de Grenoble, Grenoble, France, September
1999.

[29] Jorge Lobo and Jorge Dias. Relative pose calibration between visual
and inertial sensors. The International Journal of Robotics Research

(IJRR) Special Issue from the 2nd Workshop on Integration of Vision

and Inertial Sensors., 26:561–577, 2007.

448


