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Abstract 
One interesting feature of the human visual system 

is the topological transformation of the retinal image 
into its cortical projection. The excitation of the cor- 
tex can be approximated by a log-polar mapping of the 
eye’s retinal image. In this tutorial paper we describe 
the log-polar mapping and its main properties. 

1 Introduction 
One interesting feature of the human visual sys- 

tem is the topological transformation ([Schwartz 84, 
Sandini et al. SO]) of the retinal image into its corti- 
cal projection. In our own human vision system, as 
well as in those of other animals, it has been found 
that the excitation of the cortex can be approximated 
by a log-polar mapping of the eye’s retinal image. In 
other words, the real world projected in the retinas of 
our eyes, is reconfigured onto the cortex by a process 
similar to log-polar mapping before it is examined by 
our brain [Schwartz 841. 

In the human visual system, the cortical mapping is 
performed through a space-variant sampling strategy, 
with the sampling period increasing almost linearly 
with the distance from the fovea. Within the fovea the 
sampling period becomes almost constant.This retino- 
cortical mapping can be described through a transfor- 
mation from the retinal plane ( p ,  8 )  onto the cortical 
plane (log(p), 6 )  as shown in figure 1. This transfor- 
mation presents some interesting properties as scale 
and rotation invariance about the origin in Cartesian 
plane which are represented by shifts parallel to real 
and imaginary axis, respectively. This transformation 
is applied just on the non-foveal part of a retinal im- 
age. If (x ,y )  are Cartesian coordinates and ( p , B )  are 
the polar coordinates, by denoting z = x + j y  = pej’ 
a point in the complex plane, the complex logarithmic 
(or log-polar) mapping is 

w = l n ( z ) .  (1) 

for every z # 0 where Real(w) = ln (p)  and I m ( w )  = 

Jorge M. Dias 

Department of Electrical Eng. 
University of Coimbra 

Coimbra, PORTUGAL 3030 

Figure 1: Log-polar transformation. Any point (xi, yi) 
in the image plane (left) can be expressed in terms of 
(p ,  0) in the cortical plane (right) by (lnb(p), 0 ) .  

0 + 2kn .  However we constrain angle 8 to the range 
of [0,27r). This logarithmic mapping is a known con- 
formal mapping preserving the angle of intersection of 
two curves. 
1.1 Log-Polar Mapping and its Properties 

Log-polar mapping can be performed from reg- 
ular image sensors by using a space-variant sam- 
pling structure similar to the structure proposed in 
[Massone et al. 851. This mapping is characterized by 
a linear relationship between the sampling period and 
the eccentricity p ,  defined as the distance from the 
image center. The figure 2 gives one example of these 
type of sampling structures. 

The spatial variant geometry of the sampling points 
is obtained through a regular tesselation and a sam- 
pling grid formed by concentric circles with Nang sam- 
ples over each circle. The number of samples for each 
circle is always constant and they differ by the arc 

27r 

Nang 
between samples. 

expressed by and an equation of the type 
For a given Nang,  the radius p,. of the circle i is 
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Figure 2: Graphical representation of the sampling 
structure. In this example the number of angular sam- 
ples Nang = 60.In this scheme the sampling point is 
shifted half sample period between consecutive circles. 

with i = O..NciTc and pfovea > 0 and representing the 
minimum radius of the sampling circles. The trans- 
forrnation for discrete entries of cortical plane is per- 
formed by using the following expressions 

(4) 

with A =  
N o n g  ' 

For the example illustrated in figure 2 the base b is 

(5) 

For different types of sampling strategies (different 
bases b )  the concentric circles are always sampled with 
the period 

For the case where the base is expressed by (5) each 
sample covers a patch of the image corresponding to 
a circle with radius given by 

The value for p f o v e a  could be chosen equal to the min- 
imum sampling period to  cover all the image center 
without generate oversampling in the retinal plane. If 
we want to obey to this constraint then 

In this sampling structure the angular sampling 
is shifted by half sampling period between successive 

Figure 3: Example of images sampled by regular sam- 
pling structure and remapped by using a space-variant 
structure. The original image has 256 x 256 samples 
and the cortical plane has 71 x 60 samples. 

Figure 4: Graphical representation of a more simple 
sampling structure. The figure represents a structure 
with Nang = 60 angular samples. 

sampling circles and the expression 
tion is given by 

for the equa- 

27T o d d ( i )  
ori = - ( j  + 7) 

Nang (9) 

where j = 0.. Naris. 
Results from this kind of transformation are ilus- 

trated in figure 3.The intensity value in the cortical 
plane is obtained by the mean of the intensity val- 
ues inside the circle centered at  the sampling point 
(prir 6 r i ) .  That is the case of the images in figure 3.  

This space-variant sampling structure can be mod- 
ified for a more simplified sampling structure as it is 
illustrated in Figures 4 and 5. This simplified struc- 
ture does not use as many samples as the structure 
described before and it is useful to  speedup the algo- 
rithms based on this type of data sampling. 

This structure is similar to the structure described 
above. The spatial variant geometry of the sampling 
points is also obtained through a tessellation and a 
sampling grid formed by concentric circles with Naris 
samples over each circle. The number of samples for 
each circle is also constant and for a given N a n g ,  the 
radius basis b is expressed by 
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Figure 5: Example of images remapped in logpolar 
using the simplified version of sampling. The original 
images have 256 x 256 samples and the cortical plane 
only have 20 x 60 samples. 

b = (1 + *) 9 

b - N a n g + T T  
N..---T 

Nang + r 
Nang - r 

b =  

262144 samples 6540 samples 

262144 samples 1860 samples 

with i = 0..N,irc and p f o v e a  the minimum radius of 
the sampling circles. The radius pT of the circle is 
expressed by 

The concentric circles are sampled with the period de- 
scribed by the expression (2) and each sample covers 
a patch of the image corresponding to a circle with 
radius given by 

The value pfoveu could be chosen equal to  t,he min- 
imum sampling period to cover all the image center 
without generating oversampling in the retinal plane. 
This constraint is expressed by 

Examples of images sampled with this structure are 
shown in Figure 5. The intensity value at  each point 
of the cortical p lane  are obtained by the mean of the 
intensity values inside the circle centered at the sam- 
pling point ( p r i ,  Ori).  This image presents some gaps 
between the circles but a better result is obtained if 
the area around the sampling point is filled in. 

This simplified version of space variant structure 
needs less storage then the first sampling structure, as 
we can verify in the Table 1 

1.1.1 Log-Polar Properties 

The log-polar mapping has number of important prop- 
erties that make it useful as a sampling structure. The 
mapping of two regular patterns as shown in figure 6 

I 1 Reg. Samp. I Log-Polar 

Table 1: Different sampling schemes also require dif- 
ferent storage in memory. 

" tl 

Figure 6: The log-polar mapping applied to regular 
patterns. (a) Applied to concentric circles in the zm- 
age plane are mapped in vertical lines in the cortzcal 
plane. (b) Applied to radial lines in the zmage plane 
are mapped in horizontal lines in the cortzcal plane. 

results in similarly regular patterns in the other do- 
main. From the figure 6(a) the concentric circles in 
the image plane become vertical lines in the cortacal 
plane. A single circle maps to a single vertical line 
since the constant radius T at all angles 8 of the circle 
gives a constant pc coordinate for all Bc coordinates. 
Similarly an image of radial lines which have constant 
angle but variable radius, result in a map of horizontal 
lines. 

These mapping characteristics are fundamental for 
some properties such as rotation and scaling invari- 
ance. Rotation and scaling result in shifts along the 8, 
and pc axis, respectively. For rotation invariance no- 
tice that all possible angular orientations of a point at  
given radius will map to  the same vertical line. Thus, 
if an object is rotated around the origin, between suc- 
cessive images, this will result in only a vertical dis- 
placement of the mapped image. This same result is 
valid for radial lines. As a radial line rotates about the 
origin, its entire horizontal line mapping moves only 
vertically. 

Scaling invariance is another characteristic of this 
log-polar mapping. From the figure 6(b) we seen that 
as point moves out from the origin along a radial line, 
its mapping stays on the same horizontal line mov- 
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Figure 7: The effect of rotation and scaling with log- 
polar mapping. The original image in the left is ro- 
tated and scaled. The effect in the cortical plane is 
an image with similar shape with the edges at  differ- 
ent position but equivalent to  a circular shift in the 
cortical plane. 

ing from the left to  the right. The mappings of the 
concentric circles remain vertical lines and only move 
horizontally as the circles change in size. 

The images of figure 7 illustrate these two proper- 
ties. The original image is rotated and scaled and the 
images correspondent to the cortical planes before and 
after the transformation are similar. The edges have 
similar shape at position equivalent to  a circular shift 
in the cortical plane. These properties were funda- 
mental for the development of algorithms for pattern 
recognition [Reitboeck et al. 841, [Massone et al. 851. 

Another property is related with projection of the 
images when the sensor translates. The images of Fig- 
ure 8 show the mapping of the optic flow vectors for 
different types of translational motion of the sensor. 
Notice that when the sensor translates in same direc- 
tion as the optical axis the optical flow generated ap- 
pears as vectors diverging from the image center. The 
effect in the cortical plane is a set of lines with vectors 
with the same orientation, as illustrated in Figure 8. 
1.2 Normal Optical Flow on Log-Polar 

The space variant resolution and sampling exhibits 
interesting properties for the optical flow. In this point 
we study some of these properties of the optical flow. 

The relate the optical flow field in log-polar coor- 
dinates with the 2D velocity field in Cartesian coordi- 
nates let us write 

where b, e,  x, stand for the derivatives with respect 
to time. Substituting the partial derivatives by their 

t e 

f m w d  motion lateral motion iateni motion 

Figure 8: The optical flow vectors for different types 
of translational motion. For lateral motion the opti- 
cal flow vectors generate in the cortical plane, stream 
lines of vectors with the same orientation. For forward 
motion these lines are equal in all the plane. 

expressions we obtain 

Defining 
P 

P f o v e a  
< = lnb - 

and y = 0,  the relationship between the time deriva- 
tives of < and p is given by 

From (15)  and using (17) we obtain the relation- 
ship between the motion field in Cartesian coordinates 
( 5 ,  y) and log-polar coordinates (<, +) as 

c o s y  * [ ] = d m  [ m "  - s in7  cosy I n b  ] [ ] . (18) 

The relative motion of the observer with respect to 
the scene gives rise to motion of the brightness pat- 
terns in the image plane. The instantaneous changes 
of the brightness pattern in the image plane are ana- 
lyzed to  derive the optical flow field, a two-dimensional 
vector field ( U ,  U )  reflecting the image displacements. 

The optical flow value of each pixel is computed 
locally - that is, only information from a small spatio- 
temporal neighborhood is used to  estimate it. In gen- 
eral, it is not possible to  compute the true velocity 
of an image point just by observing a small neigh- 
borhood. Suppose that we are watching a feature (a  
piece of contour or a line) at  two instants of time and 
through a small aperture smaller than the feature - 
see figure 9. 
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Final edge 
pasition 

\ \ Candidate motions of 
a p i n 1  in Ule edge 

Figure 9: A line feature or contour observed through 
a small aperture at time t moves to  a new position at  
t imet +&. In the absence of knowledge of camera mo- 
tion, when we are looking at a viewpoint-independent 
edge in an image through an aperture, all we can say 
about the evolving image position of an indistinguish- 
able point along the edges is that this position contin- 
ues to lie somewhere along the evolving image of the 
edge. 

Watching through this small aperture, it is impos- 
sible to determine where each point of the feature 
has moved to. The only information directly avail- 
able from local measurements is the componcnt of the 
velocity which is perpendicular to  the feature, the nor- 
mal flow. The component of the optical flow parallel 
to  the feature can not be determined. This ambiguity, 
is known as the aperture problem and exists indepen- 
dently of the technique employed for local estimation 
of flow. However in cases where the aperture is lo- 
cated around an endpoint of a feature, the true ve- 
locit,y can be computed, because t,he exa.ct, locatlion 
of the endpoint at  two instants of time can be com- 
puted. Thus, the aperture problem exists in regions 
that have strongly oriented intensity gradients, and 
may not exist at locations of higher-order intensity 
variations, such as corners. 

Any optical flow procedure involves two computa- 
tional steps. In the first, assuming the local conserva- 
tion of some form of information, only local velocity is 
computed. In a second step, in order to compute the 
other component of the optical flow vectors, additional 
assumptions have to be made. 

The approach introduced by [Horn et al. 811 is 
based on the assumption that for a given scene point 
the intensity I at the corresponding image point re- 
mains constant over a short time instant. This corre- 
sponds to a brightness constancy assumption, $ = 0, 
that gives a relationship that can be used to  estimate 
the flow parameters directly from the spatial and tem- 
poral grey-level gradients. If a scene point projects 

onto image point ( e ,  y) at time t and onto the image 
point (6 + S(”y + Sy) at time (t + d t )  we obtain the 
optical flow constraint equation [Horn et al. $11, 

which relates the flow ( U ,  U) to the partial derivatives 
( I t ,  I T ,  I t )  of the image I .  From this constraint alone, 
without making any additional assumptions, we can 
only compute the normal flow u n l  equivalent to pro- 
jection of optical flow on the gradient direction: 

1 
un = -It- 

IlAIll. 
Let I ( 6 ,  y, t )  denote the image intensity, and con- 

sider the optical flow field v = (U,.) and the 
motion field v, = ( u m , v m )  at the point ( t , y ) ,  
where the normalized local intensity gradient is n = 
( I t ,  1 7 ) / d m .  The normal motion field at point 
(<,y) is by definition 

If we approximate the differential by its total 
derivative we get a relation between the equatioris (20) 
arid (21) 

which shows that the two fields are close to equal 
when the local image intensity gradient A I  is high. 
This confirms that the normal flow is a good mea- 
surement of the normal motion field in locations 
where the intensity gradient exhibits high magnitude 
[Fermuller et al. 951. 
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