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Abstract

A unified formulation that accounts for the dynamics of a general class of aquatic multi-body, soft-structured robots is

presented. The formulation is based on a Cosserat formalism where the description of the ensemble of geometrical entities,

such as shells and beams, gives rise to a multi-soft-body system capable of simulating both manipulation and locomotion.

Conceived as an advanced tool for a priori hardware development, n-degree-of-freedom dynamics analysis and control

design of underwater, soft, multi-body, vehicles, the model is validated against aquatic locomotion experiments of an

octopus-inspired soft unmanned underwater robot. Upon validation, the general applicability of the model is demonstrated

by predicting the self-propulsion dynamics of a diverse range of new viable combinations of multi-soft-body aquatic system.
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1. Introduction

Fostered by the growing needs of the marine and maritime

industry to perform increasingly daunting tasks in always

more forbidding environments, a renovated effort is being

made nowadays to endow underwater robots with enhanced

manoeuvring capabilities. On the one hand this has entailed

the revision of traditional systems (Elvander and Hawkes,

2012; Vaganay et al., 2009; Vasilescu et al., 2010), or by

improving navigation and positioning systems, i.e. by com-

bining data collected jointly from doppler velocity log-

ger (DVL), GPS, pressure-depth sensors, synthetic aper-

ture sonars, and multi-beam echo sounders (Hover et al.,

2012). On the other hand, alternative design criteria have

been taken in consideration by capitalizing on the study of

water-dwelling organisms.

In recent times underwater robotics has largely bene-

fited from the growing fascination for bioinspired aquatic

locomotion and, motivated by the abundance of outstand-

ing feats that aquatic animals display, has started to pave

the way for the development of new vehicles capable of

feats yet to be seen in commercially available unmanned

underwater vehicles (UUVs). Hovering, short radius turn-

ing, fast start/slowdown, and low-speed manoeuvring are

just few examples that highlight how the design of under-

water robots can profit massively from the investigation of

the swimming strategies, hydrodynamics, and physiology of

aquatic animals.

Several examples exist of aquatic organisms which have

been taken as the source of inspiration for designing a trust-

worthy robotic replica. These include flagellates (Abbott

et al., 2009), turtles (Licht et al., 2004), eels (Yu et al.,

2012), and, of course, fish. The finned and caudal flapping

of fish (e.g. Conte et al., 2010; Saimek and Li, 2001), has

gathered the most recognition in the scientific community,

in part because of the sound understanding of the under-

lying physics involved in their locomotion (Colgate and

Lynch, 2004).

The locomotion of aquatic organisms and their robotics

counterparts commonly involves periodic oscillatory defor-

mations of one or more body parts that, in turn, give

rise to the unsteady hydrodynamics responsible for gener-

ating thrust. The actuation mechanisms that enable these

deformations in the bioinspired water-dwelling robots has,

in most cases, entailed the replacement of continuously

deforming bodies by reducing the number of degrees of
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freedom (DOFs) with a finite sequence of rigid links and

joints. Alternatively, the compliant nature and the multi-

DOF bending capability of the biological counterpart has

been accounted for by resorting to continuously deforming

soft structures and actuators (Marchese et al., 2014). The

effort in designing structurally compliant underwater robots

is fostered, to a large extent, by the acknowledgement that

safe physical human–robot interaction and manoeuvring in

highly perturbed, unstructured scenarios can effectively be

handled via the recourse to soft-bodied components rather

than by making the control finer (Mortl et al., 2012; Wang

and Iida, 2015; Woodman et al., 2012). Indeed, commercial

underwater robots are safe traveling in open stretches of sea,

but suffer from non-negligible limitations when navigat-

ing close to the seabed or in close proximity to submerged

structures where unintended impacts must be prevented

consistently. The exploitation of soft-bodied vehicles that

benefit of the assets from bioinspired propulsion and manip-

ulation systems can provide a viable solution to complex

tasks that existing remotely operated underwater vehicles

(ROVs) and autonomous underwater vehicles (AUVs) are

unfit for such as operations in current-perturbed domains,

performing maintenance over the hull of ships and harbors

and working in synergy with divers.

This has encouraged the authors to design and develop

an innovative class of soft-bodied, bioinspired, underwa-

ter robots (Figure 1). These consist of octopus-resembling

machines endowed with a number of continuous manipula-

tors (element 4 in Figure 2), and a central unit devoted to

thrust generation (element 1 in Figure 2), which essentially

defines an underwater multi-limbed soft vehicle (Giorgio-

Serchi et al., 2017). The robot is composed by as much

as 90% in volume by elastomeric materials and actuation

is provided by electric motors and cable transmission thus

enabling the robot to profit from a high overall degree of

structural compliance. In analogy with its biological source

of inspiration, this kind of robot is capable of perform-

ing basic manipulation, legged locomotion, and waterborne

propulsion. On one hand, this kind of design offers a num-

ber of assets due to its structure and mode of actuation that

have been covered at length by Giorgio-Serchi et al. (2016,

2015), as far as propulsion is concerned, and by Renda et al.

(2014) for manipulation. On the other hand, however, the

morphology of the robot also requires an ad hoc formula-

tion in order to treat the dynamics of this flexible multi-body

system. This represent the focus of the present work. The

mechanical system of Figure 1, with its articulated configu-

ration and its combination of flexible and rigid components

represents the state-of-the-art paradigm for developing and

validating an advanced mathematical framework capable of

dealing with such complexity.

With the advancement in bioinspired robots, increasingly

sophisticated mathematical models have been developed

with the scope of accounting for the growing complex-

ity of such systems (Krieg et al., 2015). As far as aquatic

robots are concerned, the swimming routine commonly

Fig. 1. (a) The soft, multi-body aquatic robot developed by the

authors. (b) During testing at sea.

Fig. 2. A schematic of the soft, multi-body aquatic vehicle devel-

oped by the authors. Numbers refer to: (1) pulsed-jet thruster; (2)

the nozzle; (3) the cables that drive the shell collapse; (4) the con-

tinuum manipulators; (5) the actuators of the manipulators; (6)

the actuator of the shell; and (7) the cable that drives manipulator

actuation.

entails caudal or finned flapping and whole-body undula-

tory oscillations. An extensive literature exists that accounts

for the dynamics entailed with these kinds of swimming

routines, as well as with the associated accurate flow fea-

tures. Whereas a rigorous treatment of these kinds of sys-

tems requires the solution of a full hydroelastic problem,

physically sound and less numerically intensive approaches

have been found to be well suited for the purpose of control

and design optimization. These have entailed the reduction

of the problem to a coupling between the body, regarded

either as a series of rigid links or as continuously deforming

beams, and the fluid as a quasi-inviscid one, where reac-

tive inertial terms are computed via potential flow theory

and resistive viscous terms are derived from empirically

determined coefficients.

This approach has been applied in recent years to

the swimming of fish via an extended Lighthill model

that expands the large-amplitude elongated body theory

(LAEBT) of (Lighthill, 1970) to the case of self-propelled

three-dimensional swimming (Boyer et al., 2010). This lat-

ter formulation has been employed to encompass the case
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of non-quiescent ambient flows, such as in the Von Karman

vortex street from which a dead fish is shown to extract

energy in order to passively propel itself upstream (Can-

delier et al., 2013). This model accounts for most of fish

morphologies (anguilliform, carangiform) by treating the

fish body as a nonlinear Cosserat beam in finite transfor-

mations (deformations and rotations), i.e. an infinite set

of rigid cross-sections (thus modeling, in a way, the fish

vertebrae) regarded as continuously stacked along the ver-

tebral axis of the animal. It can be shown (Candelier et al.,

2011), by exploiting the tapered shape of the body, that the

fluid forces exerted on a beam cross-section only depend

on the fluid velocities and acceleration of the water slice

that prolongs the beam cross-section in the fish surround-

ing. Based on this remark, it becomes possible to extend

the Newton–Euler-based approach of rigid discrete multi-

body systems dynamics to the case of continuous systems

where the cross-sections label stand for the body index of

the discrete case. In this context, the inverse (computed

torque) algorithm of Luh et al. (1980) has been extended to

the locomotion of continuous elongated systems in Boyer

et al. (2006). Remarkably, the resulting dynamics approach

exploits the topology of these continuous systems to design

fast dynamics algorithms where the usual recursions of the

Newton–Euler algorithms are replaced by ordinary differ-

ential equations (o.d.e.s) that are solved forward and/or

backward along the beams axis in a global time loop. Fur-

thermore, compared with other approaches, such as those

based on the floating frame (Canavin and Likins, 1977),

they can naturally tackle the finite deformations observed

in soft animals, an advantage that is crucial in the context

of this article.

Whereas modern modeling paradigms essentially pertain

to the multi-body or continuous approach, the need arises

to reconcile these supposedly divergent perspectives into a

more general view capable of encompassing both counter-

parts. In the present work, of which a preliminary version

has been presented in Renda et al. (2018), the dichotomy

between the multi-rigid-body and the single-continuous-

body paradigms is relaxed by expressing the whole-body

dynamics of an octopus-like robot via a multi-soft-body

formulation. To do so, we expand on the state-of-the-art

geometrical models of archetypal elements, such as beams

and shells, to construct a unified framework where various

appendages are allowed to participate to the dynamics of

a single entity. As a mean of validating this construct, the

model is employed to replicate the robot depicted in Figures

1 and 2 and compare the simulated with the experimen-

tally observed dynamics during aquatic self-propulsion.

The versatility of the mathematical framework introduced is

demonstrated by extending it to account for a set of diverse

geometrical configurations and actuation routines.

The first section of this paper entails an extended general

description of the mathematical frames exploited through-

out. In Section 3 this is employed to illustrate the mod-

eling formalism adopted for beams and shell-shaped soft

bodies, which are later considered in a unified system

(Section 5). The model thus formulated is then validated

for the case of a four-limbed, self-propelling, soft robot

closely resembling one of the vehicles developed previ-

ously by the authors (Section 6). Eventually, in Section

7 we demonstrated how this unified model for multi-

soft-body vehicles can be exploited with the purpose of

exploring innovative design paradigms by predicting the

locomotion performances of two distinct soft underwater

vehicles.

2. Model description

The basic structure of the model is made by a rigid body,

called rigid root-body, and several soft appendages attached

to it through one extreme or boundary of the soft body

(beams and axisymmetric shells in this work). The rigid

root-body is not kinematically attached to any hard frame,

but instead it is free to move in the 3D space, whereas the

soft appendages are not connected to each other prevent-

ing the realization of closed-loop mechanisms. This kind

of multi-body system is said to have a star structure (Selig,

2007).

Let us call ( o, e1, e2, e3) the inertial frame of the

Euclidean space and ( o, E1, E2, E3) the reference orthog-

onal frame attached to the rigid root-body whose inertial

motion defines the net (rigid overall) motion of the entire

system. The configuration space of the root-body is gr ∈

SE( 3), which maps the inertial onto the reference mobile

frame.

Each of the soft appendages are modeled as Cosserat

medium, which can be intuitively considered as a contin-

uous staking of a rigid small solid named “microstructure”

along one (beam) or two (shell) material dimensions. As

a result, the configuration space of such a medium can be

intrinsically defined as the set of maps (Figure 3):

C = {g :( X 1, X 2, . . . , X p) 7→ g( X 1, X 2, . . . , X p) ∈ SE( 3) }

(1)

where g is a field of rigid transformations mapping the

inertial frame onto the frames attached to each of the

microstructures that constitute the medium. This definition

holds for beams (p = 1) and shells (p = 2).

2.1. Multi-soft-body configuration space

In our definition of the configuration space of the multi-

soft-body system, the net motion is separated from the

deformation of the soft subsystems and the configuration

space of the system is defined as SE( 3) × C × C × · · · × C

where SE( 3) denotes the configuration space of the ref-

erence rigid root-body and each copy C of (1) denotes a

field of transformations mapping a dummy frame connect-

ing the reference rigid body and a soft subsystem onto its

microstructures. In this context, grs, grb ∈ SE( 3) denote the

constant transformations that map the reference frame onto
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Fig. 3. Schematic description of the general configuration of a multi-soft-body system.

the dummy frames attached to shells and beams

( ( Os, E1s, E2s, E3s) ) and ( ( Ob, E1b, E2b, E3b) ) (Figure 4(b)),

respectively, whereas gs( Xs, φ) and gb( Xb) ∈ SE( 3) denote

the set of maps of (1) that map the dummy frame onto the

microstructure frames of the two-dimensional axisymmet-

ric shell, parameterized by the curvilinear abscissa Xs and

the revolution angle around the symmetry axis φ, and to

the material element of the one-dimensional beam, param-

eterized by the curvilinear abscissa Xb, respectively. With

these definitions at hand, the connections between the rigid

and soft subsystem are defined as locked joints through the

equations grgrbgb( 0) = g( 0) and grgrsgs( 0, φ) = g( 0, φ)

for beams and shells, respectively.

It is worth noting that the configuration spaces of the con-

stitutive bodies (soft or rigid) sharing as common structure

the Lie group SE( 3), their dynamic models can be encom-

passed in a common framework that is presented in the

subsequent developments.

3. Cosserat model for soft robotics

In this section, a brief description, based on the authors

previous works (Renda et al., 2014, 2015c), of the kinemat-

ics and dynamics of soft robot arms (SRAs) and soft shell

mantles (SSMs) for underwater soft robotics is given.

3.1. Kinematics

In the Cosserat theory, according to Equation (1), the con-

figuration of a micro-solid of a soft body with respect to the

inertial frame at a certain time is characterized by a position

vector u and a material orientation matrix R, parameter-

ized by the material abscissas, that are φ ∈ [0, 2π [ (the

angle of revolution of the axisymmetric surface) and Xs ∈

[0, Ls] (the abscissa along the meridian) for the SSM; and

Xb ∈ [0, Lb] (the abscissa along the robot arm) for the SRA,

the subscripts s and b denote the shell and beam, respec-

tively. Thus, the configuration space is defined as a curve

g( ·) : Xb 7→ g( Xb) ∈ SE( 3) or a surface g( ·) :( Xs, φ) 7→

g( Xs, φ) ∈ SE( 3), with

g =

(
R u

0 1

)

As described in the previous section, the map g is the

composition of three transformations, gr, grs, and gs for

shells and correspondingly gr, grb, and gb for beams, giving

g = grgrsgs or g = grgrbgb (Figure 5), with

gr =

(
Rr ur

0 1

)
, grs =

(
Rrs urs

0 1

)
,

grb =

(
Rrb urb

0 1

)
, gs =

(
Rs us

0 1

)
, gb =

(
Rb ub

0 1

)

Furthermore, exploiting the axisymmetry of the shell,

the transformation gs can be specified as the following

combination:

gs = g1g2g3 =

(
exp( ẽ3φ) us

0 1

)(
exp( ẽrπ/2) 0

0 1

)

(
exp( −ẽφθ ) 0

0 1

)

where exp is the exponential in SO( 3), the tilde is the

isomorphism between a vector of R
3 and the corre-

sponding skew-symmetric matrix (∈ so( 3)) and θ ( Xs)

is the angle between E3s and the shell microstruc-

ture located at any Xs along the φ-meridian (Fig-

ure 5(a)). In this case us( ·) takes the form: us( Xs) =

( cos( φ) r( Xs) , sin( φ) r( Xs) , z( Xs) )T for which r( .) and

z( .) are two smooth functions that define the radius and

the altitude of the point Xs on the profile (g2 is a con-

stant transformation chosen by the authors for the sake of

convenience).
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Fig. 4. Schematic description of the multi-soft-body configuration and the map’s hierarchy between the frames used in the model.

Based on these kinematics, the strain state of the beam

is defined by the vector field along the curve g( ·) : Xb 7→

g( Xb) given by ξ̂ ( ·) : Xb 7→ ξ̂ ( Xb) = g−1∂g/∂Xb =

g−1
b ∂gb/∂Xb = g−1

b g′
b = ξ̂b( Xb) ∈ se( 3) and the two vector

fields on the surface g( ·) :( Xs, φ) 7→ g( Xs, φ), defined by

the two vector fields: ξ̂1( ·) : Xs 7→ ξ̂1( Xs) = g−1∂g/∂Xs =

g−1
s ∂gs/∂Xs = g−1

s g′
s = ξ̂s1( Xs) and ξ̂2( ·) : Xs 7→ ξ̂2( Xs) =

g−1∂g/∂φ = g−1
s ∂gs/∂φ = ξ̂s2( Xs) (where the hat̂ repre-

sents the isomorphism between the twist vector space R
6

and the Lie algebra se( 3)). After simple algebra based on

the above transformation kinematics, the components of

these fields are specified in the microstructure frames as

ξb =

(
kb

qb

)
, ξs1 =

(
ks1

qs1

)

=




0

0

θ ′

cos( θ ) r′ + sin( θ ) z′

cos( θ ) z′ − sin( θ ) r′

0




=




0

0

µ

λ

β

0




,

ξs2 =

(
ks2

qs2

)
=




sin( θ )

cos( θ )

0

0

0

−r




∈ R
6

where qs( Xs), qb( Xb) represents the linear strains, and

ks( Xs), kb( Xb) the angular strain. It worth noting that

the two fields ξ̂s1 and ξ̂s2 depend only on Xs due to the

shell’s axisymmetry. The time evolution of the configura-

tion curve g( ·) : Xb 7→ g( Xb) and surface g( ·) :( Xs, φ) 7→

g( Xs, φ) is represented by the twist vector fields η̂( ·) :

Xb 7→ η̂( Xb) and η̂( ·) : Xs 7→ η̂( Xs) ∈ se( 3) defined

by η̂( Xb) = g( Xb)−1 ∂g( Xb) /∂t = g−1ġ and η̂( Xs) =

g( Xs, φ)−1 ∂g( Xs, φ) /∂t = g−1ġ, respectively. It can be

shown that these two vector fields can be written as η̂( Xb) =

η̂b +b η̂r and η̂( Xs) = η̂s +s η̂r, where we have defined

η̂b = g−1
b ġb, η̂s = g−1

s ġs and η̂r = g−1
r ġr. Note that

this decomposition is consistent with our definition of the

multi-soft-body configuration space that separates the fields

of inertial transformations on each of the subsystems into

a rigid component gr and a shape component (gb and gs).

These twist can be detailed in terms of their components in

the microstructure frames as

ηb =

(
wb

vb

)
, ηs =

(
ws

vs

)

=




0

0

θ̇

cos( θ ) ṙ + sin( θ ) ż

cos( θ ) ż − sin( θ ) ṙ

0




=




0

0

�

Vx

Vy

0




, ηr =

(
wr

vr

)
∈ R

6

where vb( Xb), vs( Xs), vr and wb( Xb), ws( Xs), wr are the lin-

ear and angular velocity at a given instant, respectively. The

back-superscripts s and b represent an element of the Lie

algebra se( 3) of gr expressed in the microstructure frame of

the shell and of the beam, respectively, while the absence of

any back-superscripts indicate that the Lie algebra element

is expressed in the frame to which it is related. To exploit the

axisymmetry of the SSM, we limit gr of g( Xs, φ) = grgrsgs

to its translational component about the axis of symmetry

E3s, leading to ηr =( 0, 0, 0, ( 0, 0, VE3s
) RT

rs)
T (i.e. the veloc-

ity of the multi-soft-body system in the E3s direction) in

that case. Remembering this distinction, the twist versions
sηr and bηr can be calculated as Ad

g−1
s g−1

rs
ηr and Ad

g−1
b

g−1
rb

ηr,

where Ad is the Adjoint map, defined as

Adg =

(
R 0

ũR R

)

3.1.1. Strain measures. There are different ways to mea-

sure the strain of a continuous media, we choose the most
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Fig. 5. Sketch of the kinematics which show the geometrical meaning of the elements g, ξ and η. The reference frames on the figure

are those used in the model.

commonly used in the specialized literature for the beam

(Simo, 1985) and shell (Simo and Fox, 1989), respectively.

For the SRA, the strains are defined as the difference

between the X -rate of g in the deformed configuration ξ ,

and on the reference configuration ξ ? (denoted with a ?).

In particular, the components of k − k? measure the tor-

sion and the bending state in the two directions. Similarly,

the components of q − q? represent the longitudinal strain

(extension, compression) and the two shear strains.

For the SSM, in accordance with Simo and Fox (1989)

as described in Renda et al. (2015c), the strain tensor field

which describes the membrane strain state in the mid-

surface is e( ·) : Xs 7→ e( Xs) = 1/2( h − h?) ∈ R
2 ⊗

R
2 where h is the first fundamental form of the Reiss-

ner shell equal to h = diag( λ2 + β2, r2). Thus, we have

e =( 1/2) diag( λ2 + β2 − 1, r2 − r?2), in which we have

defined h?
11 = 1. For what concerns the shear strain state,

we have s( Xs) = β − β?. Finally, the flexural strain state

is parametrized by the tensor field d( ·) : Xs 7→ d( Xs) =

k − k? ∈ R
2 ⊗ R

2, where k is the second fundamental

form equal to k = diag( −µλ, −r sin( θ ) ). Thus, we have

d = diag( µ? − µλ, r? sin( θ ?) −r sin( θ ) ). Furthermore, it

is natural to consider that there is no transverse shearing in

the reference resting configuration, i.e. β? = 0.

3.2. Compatibility equations

We have seen above that g( Xb)′ = ĝξb and g( Xs, φ)′ = ĝξs1.

By taking the derivative of these equations with respect to

time and recalling that ġ( Xb) = g( η̂b +b η̂r) and ġ( Xs, φ) =

g( η̂s +s η̂r), we obtain ξ̇b =( ηb +b ηr)
′ +adξb

( ηb +b ηr) and

ξ̇s1 =( ηs +s ηr)
′ +adξs1

( ηs +s ηr), where ad is the adjoint

map defined as

adξ =

(
k̃ 0

q̃ k̃

)

Then, we can simplify these equations by noting

that (b ηr)
′ =( Ad

g−1
b

g−1
rb

ηr)
′ =( Ad

g−1
b

g−1
rb

)′ ηr = −Ad
g−1

b
g−1

rb

( adrξb
ηr) = −adξb

bηr (the same holds for sηr), leading to

the following compatibility equations between velocity and

deformation variables:

ξ̇b = η′
b + adξb

ηb (2)

ξ̇s1 = η′
s + adξs1

ηs (3)

which remarkably depend only on the “shape” component

of the multi-soft-body configuration space.

3.3. Dynamics

The partial differential equations (p.d.e.s) describing the

evolution of a Cosserat rod and shell (not necessarily

axisymmetric) have been derived by Reissner (1990) and

exploited in Simo (1985) and (Simo and Fox, 1989), respec-

tively, for nonlinear finite element analysis. More recently,

they have been used in the context of continuous and soft

robotics in Boyer et al. (2006) Candelier et al. (2013),

Renda et al. (2014), and Renda et al. (2015c). Boyer and

Primault (2005); Boyer and Renda (2016) showed that these

beam (respectively, shell) p.d.e.s, together with their bound-

ary conditions, can be derived directly from an extension of

a variational calculus on Lie groups historically introduced

by Poincaré (1901):

Mb[η̇b + ˙(b ηr)] = (Fbi − Fba)
′ − adT

ξb
(Fbi − Fba) + F̄be

+adT
(ηb+bηr)

Mb( ηb +b ηr)

ηb( 0) = 0, (Fbi − Fba) (Lb) = Fbe( Lb) (4)

Ms[η̇s + ˙(s ηr)] =

[
r?
(
F1

si − F1
sa

)]′

r?
− adT

ξsα

(
F

α
si − F

α
sa

)

+F̄se + adT
(ηs+sηr)Ms( ηs +s ηr)

ηs( 0) = 0,
(
F

1
si − F

1
sa

)
(Ls) = Fse( Ls) (5)
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where Fbi( Xb) and Fα
si ( Xs) are the wrenches of internal

elastic forces in the surface directions given by qb and

qsα (α running over {1, 2}), Fba( Xb, t) and Fα
sa( Xs, t) are

the internal actuation loads, F̄be( Xb) and F̄se( Xs) are the

external wrench of distributed applied forces, Mb( Xb) and

Ms( Xs) are the screw inertia matrix. For the repeated α,

the Einstein convention has to be used as in the rest of the

paper.

Let us specify the angular and linear components of the

internal and external wrenches (for the axisymmetric shell

refer to Renda et al. (2015c) and Antman (2006)):

Fbi =

(
Mbi

Nbi

)
, F

1
si =

(
M1

si

N1
si

)
=




0

0

MX

NX

H

0




,

F
2
si =

(
M2

si

N2
si

)
=




Mφx

Mφy

0

0

0

−Nφ




∈ R
6

Fba =

(
Mba

Nba

)
, F

1
sa =

(
M1

sa

N1
sa

)
=




0

0

Lza

Fxa

Fya

0




,

F
2
sa =

(
M2

sa

N2
sa

)
=




Lxa

Lya

0

0

0

−Fza




∈ R
6

F̄be =

(
mb

nb

)
, F̄se =

(
ms

ns

)
=




0

0

l

fx
fy
0




∈ R
6

where Nα
si( Xs), Nbi( Xb) and Mα

si( Xs), Mbi( Xb) are the

internal elastic force and torque vectors, respectively,

Nα
sa( Xs, t), Nba( Xb, t) and Mα

sa( Xs, t), Mba( Xb, t) are the

internal actuation force and torque, whereas ns( Xs), nb( Xb)

and ms( Xs), mb( Xb) are the external force and torque

for unit of Xs, Xb, r?φ. The screw inertia matrices are

equal to Mb = diag( Ib, Jb, Jb, A, A, A) ρb and Ms =

diag( Js, Is, Js, 2hs, 2hs, 2hs) ρs ∈ R
6 ⊗ R

6, where ρb and ρs

are the body densities, A( Xb) is the section area equal to

A = πh2
b (hb( Xb) being the cross-section radius), hs is the

half of the shell thickness and Js( Xs), Jb( Xb), Is( Xs), Ib( Xb)

are the second moment of inertia of the micro-solid equal

to Jb = πh4
b/4, Js = h2

s /3, Ib = πh4
b/2, and Is ∼ 0.

As for the compatibility equations, we have ˙(b ηr) =

Ad
g−1

b
g−1

rb
η̇r + ˙( Ad

g−1
b

g−1
rb

)ηr = bη̇r −adηb
bηr (the same holds

for sηr), hence the left-hand side of Equations (4) and (5)

become Mb( η̇b+
bη̇r−adηb

bηr) and Ms( η̇s+
s η̇r−adηs

sηr).

The imposed internal actuation wrenches (Fα
sa( Xs, t),

Fba( Xb, t)) represents the input of the model and depends

directly on time. It can be thought of as the action of the

muscle fiber of the body in the case of a living organism or

the result of embedded cable-driven actuation as in Renda

et al. (2014).

3.4. Constitutive equations

A linear viscoelastic constitutive equation, based on the

Kelvin Voigt model, is chosen. Following Linn et al. (2013)

for the SRA and Simo and Fox (1989) for the SSM we

respectively obtain

Fbi = 6( ξb − ξ ?
b ) +ϒ( ξ̇b) (6)

NX =
2Ehs

1 − ν2

[
λ
(

e11 +
ν

r?2
e22

)
− Jsµ

(
d11 +

ν

r?2
d22

)]

+
6υhs

1 − ν2

[
λ
(

ė11 +
ν

r?2
ė22

)
− Jsµ

(
ḋ11 +

ν

r?2
ḋ22

)]

Nφ =
2Ehs

1 − ν2

[
r
( e22

r?4
+

ν

r?2
e11

)
− Js sin( θ)

(
d22

r?4
+

ν

r?2
d11

)]

+
6υhs

1 − ν2

[
r

(
ė22

r?4
+

ν

r?2
ė11

)
− Js sin( θ)

(
ḋ22

r?4
+

ν

r?2
ḋ11

)]

H = 2hsβ

[
G +

E

1 − ν2

(
e11 +

ν

r?2
e22

)]

+2hsβ̇

[
υ +

3υ

1 − ν2

(
ė11 +

ν

r?2
ė22

)]

MX = −
2EhsJs

1 − ν2
λ
(

d11 +
ν

r?2
d22

)
−

6υhsJs

1 − ν2
λ
(

ḋ11 +
ν

r?2
ḋ22

)

Mφx = −
2EhsJs

1 − ν2
r

(
d22

r?4
+

ν

r?2
d11

)
−

6υhsJs

1 − ν2
r

(
ḋ22

r?4
+

ν

r?2
ḋ11

)

Mφy = 0 (7)

where 6( X ) and ϒ( X ) ∈ R
6 ⊗ R

6 are the screw stif-

fness matrix and the screw viscosity matrix, equal to

6 = diag( GIb, EJb, EJb, EA, GA, GA), ϒ = diag (Ib, 3Jb,

3Jb, 3A, A, A) υ, E being the Young modulus (different

between the shell and the beam), G is the shear modulus

(equal to G = E/2( 1 + ν) for an isotropic material with

Poisson ratio ν), and υ is the shear viscosity modulus.

3.5. External loads

The external loads taken into account are those exerted by

the fluid (i.e. drag, added mass, buoyancy, and thrust) in

addition to the gravity load. Mathematically, we have

nb = sb + bb + db + ab (8)
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ns = ds + as + ts (9)

where sb( Xb) is the gravity, bb( Xb) is the buoyancy, ts is the

thrust load, ds( Xs), db( Xb) are the drag, and as( Xs), ab( Xb)

are the added mass, whereas mb = ms =( 0, 0, 0)T .

An exhaustive derivation and interpretation of the fluid

force model for the SSM has been presented in Renda et al.

(2015b), based on the usual model of net external forces

exerted on a rigid rocket, uniformly distributed over the

mantle. In this formulation, certain terms which participate

in the definition of the total propulsive thrust are neglected.

These concern, in particular, the internal pressure contribu-

tion associated with the dynamics of the cavity collapse,

referred to by Krieg and Mohseni (2015) as total jetting

force (see also Anderson and DeMont (2000)), as well as

the positive feedback from the added mass variation of the

collapsible shell (Giorgio-Serchi and Weymouth, 2016a,b).

Here only the final equation is reported, whereas the SSM

gravity and buoyancy loads are accounted for together with

the rigid root-body so that the shell symmetry is not broken.

For the SRA, the fluid force models have been originally

derived in Boyer et al. (2006) and then introduced in a soft

robotics context in Renda et al. (2014).

Gravity and buoyancy are simply the product between the

mass per unit of Xb of the robot arm of the water and the

gravity acceleration, respectively,

sb + bb =( ρb − ρw) ART G (10)

where G is the gravity acceleration vector, equal to G =

( 0, 0, −9.81)T .

The drag load vector is proportional to the square of the

velocity vector and is directed in the opposite direction. The

amplitude of the drag load is also determined by the geom-

etry of section Xs, Xb and by hydrodynamics phenomena

expressed by empirical coefficients. The equations are

db = −ρwDb( vb +b vr) ‖vb +b vr‖ (11)

ds = −RT
s

(
0, 0,

ρwCdAref VE3s
|VE3s

|

2Am

)T

(12)

where Db( Xb) ∈ R
3 ⊗ R

3 is equal to Db = diag( 1
2
πCbx,

Cby, Cbz) hb for circular cross-sections of radius hb; Cbx, Cby,

Cbz being the empirical hydrodynamic coefficients; Cd is

the net drag coefficient of the SSM, Aref is the reference

area equal to π (max( r( X )))2 and Am is the total surface of

the SSM equal to Am =
∫ Ls

0
2πr? dXs.

The added mass load vector is proportional to the accel-

eration vector and is directed in the opposite direction. The

amplitude is also determined by the geometry of section Xs,

Xb and by hydrodynamics phenomena expressed in part by

correction coefficients. The equations are

ab = −
d[ρwFb( vb +b vr) ]

dt

= −ρwFb[v̇b + ˙(b vr)]−( wb +b wr) ×ρwFb( vb +b vr)

(13)

as = −Bsρs2hs[v̇s + ˙(s vr)]

= −Bsρs2hs




V̇x + sin( θ ) V̇E3s
+ � cos( θ ) VE3s

V̇y + cos( θ ) V̇E3s
− � sin( θ ) VE3s

0




(14)

where Bs is the net added mass coefficient and Fb( Xb) ∈

R
3 ⊗ R

3 is a tensor that incorporates the geometric and

hydrodynamics factors, equal to Fb = diag( 0, ABb, ABb),

Bb being the hydrodynamic correction coefficient.

The thrust load is

ts = −RT
s

(
0, 0,

ρwCf U̇ |U̇ |

AnAm

)T

(15)

where An is the nozzle area equal to An = Ano for the out-

flow and equal to An = Ani for the inflow, Cf defines a flow

loss coefficient at the nozzle entrance, which is taken to

vary between 0.6 and 1 (Johnson et al., 1972), and U is the

mantle inner volume equal to U =
∫ Ls

0
πr2

√
λ2 + β2 dXs.

4. Rigid root-body model

We here seek the dynamic model of the system net motions

controlled by the shape deformations of the soft subsys-

tems (Boyer and Porez, 2015). To do that, the kinematics

and dynamics of the rigid root-body that connects the soft

bodies in a star system are presented, together with the reac-

tion wrenches due the soft appendages. This leaves to the

following equation:

Mrη̇r = Fria + Fre + adT
ηr
Mrηr (16)

where Mr is the screw inertia matrix and Fria, Fre are the

internal elastic/actuation (due to the soft appendages) and

external wrench loads acting on the root body, respectively.

This dynamic equation has to be supplemented with the

following kinematic model:

ġr = grη̂r (17)

which plays the role of a reconstruction equation. For our

soft unmanned underwater vehicle (SUUV), the rigid root-

body is composed by four rectangular parallelepiped bars

in a pyramidal configuration (Figure 6), hence, the inertia

matrix takes the form

Mr =

4∑

β=1

AdT

g−1
rrβ

MrrAd
g−1

rrβ

where Mrr = diag( mrr( L2
rr + h2

rr) /12, mrr( L2
rr + h2

rr) /12,

mrr( 2h2
rr) /12, mrr, mrr, mrr) is the principal inertia matrix of

a single parallelepiped (mrr, Lrr, and hrr being its mass,

length, and thickness, respectively) and grrβ (β running

from 1 to 4) is the constant rigid transformation between

the frame ( O, E1, E2, E3) and the principal inertia frame of

the bar β (centered in the middle of the bar and aligned with

the long axis).
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Fig. 6. illustrative scheme of the soft unmanned underwater vehi-

cle (SUUV) kinematics, where ( e1, e2, e3) is the Euclidean fixed

frame, ( E1, E2, E3) represent the root-body net-motion and is the

soft bodies reference frame, and ( x, y, z) is the microstructure

frame.

4.1. Root-body external loads

The external loads comes from the interaction of the rigid

root-body with the environment. In our case, they are equal

to

Fre = Frs + Frb
+

(
0

dr + ar

)
(18)

where Frs is the gravity, Frb
is the buoyancy, dr is the drag

load, and ar is the added mass.

Similarly to Section 3.5, for the external loads we have

Frs + Frb
=( 1 − ρw/ρr)MrAd−1

gr
( 0, 0, 0, GT )T (19)

dr = −
1

2
ρwCrvr‖vr‖ (20)

ar = −
d( mrBrvr)

dt
= −mrBrv̇r − wr × mrBrvr (21)

where ρr and mr are the root-body density and total mass,

respectively, whereas Cr ([m2]) and Br are the empirical

hydrodynamic coefficients.

4.2. Root-body reaction loads

For what concern the reaction loads due to the attached soft

appendages (Fria), it has to be equal and opposite to the

load that support the motion of the soft body through the

junction (Featherstone, 2014). Thus, as for any kinematic

tree, we have

Fria =

4∑

β=1

∫ Lb

0

AdT

g−1
bβ

g−1
rbβ

(
F̄beβ − Mb[η̇bβ + ˙(bβ ηr)]+adT

(ηbβ+bβηr)
Mb( ηbβ +bβηr)

)

dXb+AdT

g−1
bβ

g−1
rbβ

(Lb)
Fbeβ( Lb)

+

∫ Ls

0

∫ 2π

0

AdT

g−1
s g−1

rs

(
F̄se − Ms[η̇s + ˙(s ηr)] + adT

(ηs+sηr)Ms( ηs +s ηr)
)

r? dφ dXs +

∫ 2π

0

AdT

g−1
s g−1

rs (Ls,φ)
Fse( Ls, φ) r?( Ls) dφ

where Fbe( Lb) and Fse( Ls, φ) are the beam and shell

boundary external loads.

Making use of the dynamic equations (4) and (5) (and

their boundary condition), the right-hand side of the equa-

tion above can be derived by integrating the internal and

actuation loads of the soft bodies leading to

Fria =

4∑

β=1

AdT

g−1
bβ

g−1
rbβ

(0)

(
Fbiβ ( 0) −Fbaβ ( 0)

)

+

∫ 2π

0

AdT

g−1
s g−1

rs (0,φ)

(
F

1
si( 0, φ) −F

1
sa( 0, φ)

)
r? dφ

+

∫ Ls

0

∫ 2π

0

( 1 − ρw/ρs) AdT

g−1
s g−1

rs
Ms

Ad−1
g ( 0, 0, 0, GT )T r? dφ dXs (22)

where the neglected gravity and buoyancy loads of the SSM

have been recovered.

5. Multi-soft-body dynamic model

In Section 3, the kinematics, compatibility, and dynamic

equations for two type of soft bodies, i.e. the SRA and

the SSM, have been given, whereas in Section 4, the rigid

root-body kinematics and dynamics governed by the reac-

tion wrenches of the soft appendage have been developed.

Finally, here we are able to present the multi-soft-body sys-

tem model and outline the solution algorithm that leads to

the complete motion of the underwater soft vehicle.

5.1. Star system dynamic model

The final system of equations is composed by the o.d.e.s of

the root-body and the second-order p.d.e.s of the soft bod-

ies. The system of o.d.e.s for the root-body is composed by

the kinematic equation (17) and the dynamic equation (16),

endowed with the reaction load (22) and external loads (19),

(20), and (21). The system of p.d.e.s for the SSM and the

SRA is composed by the kinematics equation presented in

Section 3.1, the compatibility equations (3) and (2), and the
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Fig. 7. Diagram of the time integration loop algorithm. On the left, the current status of the state variables is plug into the multi-soft-

body model where gr transforms the inertial frame into the reference frame of the rigid body, gs transforms the dummy frame of the

shell into the microstructure frames of the shell, gb does the same job for the beam, ξs and ξb represent the strain fields for the shell and

the beam, respectively, ηr is the velocity screw vector of the rigid body, and, finally, ηs, ηb are the velocity fields of the shell and beam,

respectively. On the right, the time evolution of the state variables is the output of the multi-soft-body model.

dynamic equations (5) and (4), in turn complemented with

the internal elastic stresses (7), (6) and the external loads

(10), (11), (12), (13), (14), and (15). Finally, in the state

form ẋ = f ( x, x′, x′′, t), the star system dynamic model is

ġr = grη̂r

ġb = gbη̂b

ġs = gsη̂s

ξ̇b = η′
b + adξb

ηb

ξ̇s1 = η′
s + adξs1

ηs

η̇r = M
−1
r (Fria + Fre + adT

ηr
Mrηr)

η̇b = M
−1
b [(Fbi − Fba)

′ − adT
ξb

(Fbi − Fba)

+ F̄be + adT
(ηb+bηr)

Mb( ηb +b ηr) ] − ˙(b ηr)

η̇s = M
−1
s

[[
r?
(
F1

si − F1
sa

)]′

r?
− adT

ξsα

(
F

α
si − F

α
sa

)

+ F̄se + adT
(ηs+sηr)Ms( ηs +s ηr)

]
− ˙(s ηr)

(23)

In Figure 7 a diagram of the time integration loop is

shown. The input of the model, directly function of time, are

the actuation loads Fba( Xb, t) and Fsa( Xs, t) of the SRAs

and SSM, respectively. They enter in the dynamic equation

of the soft appendages ((4), (5)) as well as in the expressions

of the reaction wrenches acting on the rigid root-body (22).

At each time step, given the current status (composed by

gr, gs, gb, ξs, ξb, ηr, ηs, and ηb) and the actuation input, the

kinematics equations, compatibility equations, and dynam-

ics equations are computed, which returns the time deriva-

tive of the status vector. It is worth noting here that the

dynamic of the soft bodies (5) and (4) take advantage of

the calculation of the root-body dynamic (16) that returns

η̇r to calculate the relative acceleration η̇s and η̇b, as indi-

cate in Figure 7. Furthermore, the system (23) is infinite

dimensional since all its components are some functions

of the profile abscissas Xs and Xb. As a result, it has to be

first space-discretized on a grid of nodes before being time

integrated using explicit or implicit time integrators start-

ing from the initial state. In this grid, all the space deriva-

tives appearing in the p.d.e.s system can be approximated

by finite difference schemes, with the following boundary

conditions given in (5) and (4).

The algorithm has been implemented in MATLAB®.

The numerical scheme used is a decentralized (for the

SRA) and centralized (for the SSM) space differentia-

tion finite difference method, based on a fourth-order

Runge–Kutta time integration with variable time step (by

means of the MATLAB® ode45 function) (Renda et al.,

2014, 2015b). A spatial distribution of one material point

for every 5 mm (for SRA) and 1 mm (for the SSM)

was adopted. Our implementation of the MATLAB® code

is available on GitHub (github.com/federicorenda/Unified-

Multi-soft-body-Dynamics) under the permissive BSD 3-

clause license.
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Fig. 8. Two screenshots from the digital camera recordings taken during robot testing at (a) the start and (b) end point of the experiment.

The robot is portrayed with an arm twirled around a screwdriver [1]; the variable buoyancy module [3] and the LED markers for 3D

tracking [2] are visible.

6. Experimental results

Having defined the modeling framework valid for an arbi-

trary multi-soft-body system, it is necessary to assess the

degree of accuracy of such formulation with respect to

experimental data. With this purpose in mind, the data col-

lected from experimental trials of the vehicle depicted in

Figures 1 and 2 are employed. Upon assessment of the

degree of accuracy of the formulation presented, the model

can be employed for innovative design exploration, as later

demonstrated in Section 7, design optimization and control

purposes.

Tests on the vehicle were performed in a controlled envi-

ronment to provide the basis for model verification. The

tests entailed the robot moving along a straight track inside

a working space with the shape of a rectangular box delim-

ited by eight markers, see Figure 8. By making use of

two cameras and three additional markers (see element

[2] in Figure 8) fitted on the central part of the robot, a

three-dimensional reconstruction of the body position and

orientations is derived via direct linear transformation.

The experiments were performed in a 1150 mm long,

590 mm wide, and 500 mm deep tank filled with fresh

water. The tests consist in recording the displacement of the

body as it propels itself from one end of the tank to the

other. Recordings are performed with a digital camera at

25 fps and later processed with an image tracking software

and a Savitzky–Golay low-pass filter eventually yielding the

displacement and velocity in the surge direction.

The robot is allowed to travel along a straight line inside

the tank by letting the motor revolve at a quasi-constant

angular velocity. The overall body of the vehicle is slightly

negatively buoyant, thus requiring the use of an inflatable

buoyancy module (see element [3] in Figure 8) fitted to the

dorsal part of the robot to achieve a condition of consis-

tent neutral buoyancy. Tests were repeated at motor angular

velocity ranging from 5 to 15 rad/s, i.e. from 0.8 to 2.4

pulsations per second (pps). The vehicle is allowed to trans-

late along the surge direction only, whereas the motor is

Fig. 9. Cables tension of a forcedly not moving prototype with a

motor frequency of 2 pps (pulsations per second).

supplied with a constant voltage. The result of the pulsed-

jet mode of propulsion generates a quasi-sinusoidal velocity

signal.

In addition, from the recordings of electric current, the

tension of the cable bundle at the crank is derived; this is

taken as the input force in the elastodynamics model. The

electric current supplied to the motor throughout the pulsa-

tion cycle was measured in the case of a forcedly stationary

prototype. This grants that the dynamic effect of the exter-

nal flow during vehicle displacement could not affect the

load acted upon the shell during actuation. A short sec-

tion of the recordings of the cable tension pattern during

actuation of the prototype is shown in Figure 9.

6.1. Underwater locomotion comparison

The separated model for the SRA and the SSM have been

experimentally validated in Renda et al. (2014) and Renda

et al. (2015b), respectively (see also Renda et al. (2015a)
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for the SSM in steady-state condition). Taking advantage

of this fact, the same mechanical and dynamical parame-

ters obtained there are applied here to the new geometries.

The geometry of the SSM has been represented with an half

sphere with a radius Ts = 31 mm truncated with a rigid cup

on the section of angle π/4 and merged with a cylinder of

length 94 mm, for a total profile length of Ls = 118 mm.

The shell half thickness is homogeneously equal to hs =

1 mm. The SRA has a conical shape with a radius linearly

decreasing from hbmax = 10 to hbmin
= 2 mm and a length

of Lb = 245 mm. These descriptions, together with the nat-

ural assumption of no shear in the reference configuration

define the initial condition for the kinematics maps gb and

gs. The mechanical, dynamical, and geometrical parame-

ters are summarized for the SRA and the SSM in Table 1.

For what concerns the rigid root-body, the geometrical and

inertia parameters have been measured directly whereas

the dynamical parameters have been calibrated manually

to minimize the experimental error, which includes the

effect of the buoyancy module. Each of the four bars has a

length equal to Lrr = 141mm, and a width equal to hrr =

5mm. The total mass of the root-body is 204 g, hence we

assume the mass of a single bar to be mrr = 51 g. The ini-

tial condition for the map gr is simply the identity I4 (i.e.

the Euclidean fixed frame ( o, e1, e2, e3) and the reference

frame ( o, E1, E2, E3) coincide at t = 0). The dynamical and

geometrical parameters of the root-body are summarized in

Table 2. The constant maps grs and grbβ are fixed and deter-

mined by the design of the prototype. In our case we have

(reference unit [mm]):

grb1 =




0.70 −0.71 0.06 76

0.70 0.71 −0.06 76

0.09 0 0.99 −90

0 0 0 1


 ,

grs =




0 0 1 90

0 1 0 0

−1 0 0 −50

0 0 0 1


 ,

grr1 =




0.45 −0.71 −0.54 38

0.45 0.71 −0.54 38

0.77 0 0.64 −45

0 0 0 1




whereas grb2, grb3, grb4 and grr2, grr3, grr4 are obtained by

repetitively rotating grb1 and grr1, respectively, by π/2 with

respect to the axis E3.

To derive a force input for the model, readings from the

motor encoder are employed. Given a torque constant of

6.6 mNm/A, a motor maximum efficiency of 79% and a

gearhead transmission efficiency of 73%, the estimate of

time-varying experimental torque output, and hence model

force input, is computed from current data as depicted in

Figure 9. The harmonic oscillations depicted in Figure 9

are associated with the stages of inflation and deflation of

the elastic shell which result in the periodic pull and release

exerted upon the cables, as discussed at length in Giorgio-

Serchi et al. (2016). The input of the model is the rhythmic

actuation of the SSM provided by the cables. This can be

modeled by taking the radial force fr( Xs, t) as a T-periodic

function with two phases: a contraction phase and a relax-

ation phase, with the period T being the inverse of the

motor frequency of the experiments. The actuation pres-

sure fr( Xs, t) has been taken equal to zero for all the Xs

except for a central interval of application [Xs1
, Xs2

] (equal

to 85 mm in our case). At these points, fr( Xs, t) has been

modeled as the ratio of the sum of the cable tension (F( t),

Figure 9) and the surface of the area of application, giv-

ing fr( Xs, t) = −F( t) /
∫ Xs2

Xs1
2πr? dXs. The SRAs have not

been actuated in these experiments, i.e. Fba( Xb, t) = 0. It

can be shown that to have a radial pressure on the SSM with

distribution fr( Xs, t) the internal actuation wrench takes the

form

Fsa( Xs, t) =




RT
s




− sin( φ)

cos( φ)

0


 fr

r?

(∫ Xs2
Xs

zr? dXs − z
∫ Xs2

Xs
r? dXs

)

RT
s




cos( φ)

sin( φ)

0


 fr

r?

∫ Xs2
Xs

r? dXs




(24)

where the lower bound of the integral therein becomes equal

to Xs1
for all Xs ≤ Xs1

and Xs2
for all Xs ≥ Xs2

. Furthermore,

to meet the experimental constraint of traveling on a straight

line, the pitch and lift motions have been controlled.

The results of the comparison for three motor frequen-

cies (1.89, 1.51, and 1.26 pps) are shown in Figure 10. The

distance between the two values has been evaluated with

respect to the mean swimming velocity V̄E3s
, thus the error

is defined as: e = |V̄E3s
− V̄ ∗|/V̄ ∗ where V̄ ∗ is the aver-

age experimental swimming speed. The error for the three

experiments are 15.5%, 18.4%, and 22.9%, respectively,

from the fastest (1.89 pps) to the slowest (1.26 pps) case.

At present, the main source of error pertains to the hydro-

dynamic loads prediction that is largely affected by the dif-

ficulty to estimate in closed-form solution the contribution

from the time-varying shape variations inside and around

the SSM body. Inertial and viscous effect during expulsion

and suction of fluid from the cavity do represent prominent

terms in the dynamics of the shell. However, given the accu-

racy of the validation, it is reasonable to expect that, for the

range of actuation frequencies investigated, neglecting these

terms may represent an acceptable assumption.

7. Exploration of alternative designs

In this section, we explore the capabilities of the model to

predict the dynamics of new conceptual prototype which are

based on different arrangements of the baseline reference

structures. In particular, the behavior of an underwater soft

robot, referred to as Quadropus due to its four-limbed struc-

ture, with four SRAs stacked at the back of the SSM is
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Table 1. Parameters of the SRA and the SSM.

Beam parameter Value Shell parameter Value

Young modulus E 110 kPa Young modulus E 40 kPa

Poisson ratio ν 0 Poisson ratio ν 0

Shear viscosity modulus υ 300 Pa·s Shear viscosity modulus υ 500 Pa·s

Mass density ρb 1080 kg/m3 Mass density ρs 7415 kg/m3

Hydrodynamic coefficient Cbx 0.01 Drag coefficient Cd 1.7

Hydrodynamic coefficient Cby 2.5 Added mass coefficient Bs 1.1

Hydrodynamic coefficient Cbz 2.5 Flow loss coefficient Cf 1

Hydrodynamic coefficient Bb 1.5 Length Ls 118 mm

Length Lb 245 mm Thickness hs 1 mm

Maximum radius hbmax
10 mm Cylinder radius Ts 31 mm

Minimum radius hbmin
2 mm Outflow area Ano 491 mm2

Inflow area Ani 1400 mm2

Left limit actuation Xs1 25 mm

Right limit actuation Xs2 110 mm

Table 2. Parameters of the rigid root-body for the Poseidron, Quadropus, and Monopus.

Parameter Poseidron Value Parameter Quadropus and Monopus Value

Parallelepiped mass mrr 51 g Body mass mrr 204 g

Drag coefficient Cr 0.02 m2 Drag coefficient Cr 0.02 m2

Added mass coefficient Br 0 Added mass coefficient Br 0

Parallelepiped length Lrr 141 mm Body length Lrr 112 mm

Parallelepiped thickness hrr 5 mm Body radius hrr 20 mm

analyzed, and the navigation capabilities of a vehicle, called

Monopus, with one single SRA used as a steering mecha-

nism are shown. These examples demonstrate the capability

of the model to deal with simultaneous actuation of dif-

ferent modules during six-dimensional underwater swim-

ming scenarios. Whereas these analyses are not meant to be

conclusive, we aim at demonstrating the flexibility of the

present model to treat a broad range of geometrical config-

urations and actuation routines and how these can be used

to infer critical design parameters relevant to robot design

such as power consumption and control optimization. Ulti-

mately, this kind of analysis may be of value to study aquatic

living organisms to derive an accurate biomechanical char-

acterization of their swimming strategies.

In Figure 11, the new configurations of the soft bodies

and the rigid root-body for the Quadropus and the Monopus

is illustrated. From a modeling perspective, the description

of these new morphological configuration is reflected in the

value of the constant transformations grr, grs, grbβ (Quadro-

pus), and grb (Monopus), which are the only variations that

need to be implemented to model the new systems. The

values used in the simulations are (reference unit [mm]):

grb =




0 0 1 −110

0 1 0 0

−1 0 0 0

0 0 0 1


 , grb1 =




0 0 1 −112

0 1 0 0

−1 0 0 −10

0 0 0 1


 ,

grs =




0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1


 , grr =




0 0 1 −84

0 1 0 0

−1 0 0 0

0 0 0 1




whereas grb2, grb3, and grb4 (Quadropus) are obtained by

repetitively rotating grb1 by π/2 with respect to the axis E1

(Figure 11).

For both of these designs, the parameters that define the

SRA and SSM are kept as in the previous section and sum-

marized in Table 1. The rigid root-body, on the other hand,

is now a solid cone 112 mm long, with a base radius of 20

mm and the same mass and hydrodynamic coefficients of

the prototype root-body (Table 2). Hence, the only varia-

tion introduced in terms of parameters lies in the different

rotational inertia of the cone geometry with respect to the

four-bar system.

7.1. Quadropus dynamics

The Quadropus represents an octopus-like body that is able

to exploit the combined effects of pulsed-jetting as well as

the sculling of its tentacles. Pulsed-jet activation is imple-

mented as a force acting along the circumference of the

shell and given by F2
sa( Xs, t) = (0, 0, 0, 0, 0, −Fza( Xs, t) )T ,

where Fza( Xs, t) is a time-dependent triangular-shaped

function with a frequency of 1.51 pps and a negative ampli-

tude (i.e. contracting force) from 0 to −15/r?( Xs). To
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Fig. 10. Real and simulated swimming velocity of the soft robot

for tests performed at 1.89, 1.51, and 1.26 pps.

qualitatively estimate the swimming performance of the

Quadropus, the locomotion velocity profile is compared

for different actuation of the SRAs. As a matter of fact,

the Quadropus design can benefit of impulsive accelera-

tion thanks to the coordinated actuation of the SRAs at the

beginning of the sequence. This swimming mode is used

by the octopus during fast escape maneuvers and has been

thoroughly studied and implemented in a octopus inspired

prototype in Sfakiotakis et al. (2014). To reproduce such

Fig. 11. illustrative scheme of the kinematics of the new struc-

tures explored. The new structures are obtained simply by modi-

fying the value of the constant transformations grs and grb and the

number of SRAs.

behavior in our model, the following actuation wrench for

each SRAs is used:

Fba( Xb, t) =




0

0(
mbaz −

mbaz

Lbt/1t
Xb

)
H (Lbt/1t − Xb)

0

0

0




(25)

for 0 < t ≤ 1t, whereas Fba( Xb, t) = (0, 0, 0, 0, 0, 0)T oth-

erwise. Here, H( ·) is the Heaviside step function, mbaz is

the maximum torque load experienced by the Xb = 0 sec-

tion, and 1t is the time of recruitment of all the sections.

Hence, the function F( Xb, t) =
(

mbaz −
mbaz

Lbt/1t
Xb

)
assigns a

linear decreasing torque load to each section Xb whereas the

function H (Lbt/1t − Xb) recruits a portion of the sections

(from the base to the tip) proportional to the portion of time

elapsed before the total recruitment time 1t.

The employment of different amount of torque in the

actuation of the SRMs for mbaz respectively equal to 0, 5,

and 7 ([mN-m]) yields different swimming speeds shown

in Figure 12, where the high acceleration of the Quadro-

pus with active arms can be appreciated. A sequence of

snapshots of the fast escape maneuver are presented in

Figure 13.

Decomposition of the force contributions to the whole-

body dynamics from the actuated components can be

observed in Figure 14. The force exerted by the arms at

the three actuation values can be appreciated during the

initial phase of arm expansion (1.0 < t < 2.0) followed

by the thrust peak coincident with the arm sudden closure.

From this point onwards, the arms remain unactuated and

the effect of their passive elasticity is projected on the root-

body dynamics as a periodic retarding effect. This is due to
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Fig. 12. Comparison between the swimming performance of the

Quadropus under different SRAs actuations.

alternate phases of stretching and compression of the back-

bone under the co-axial contribution of the thrust force

generated by the pulsed jetting. This analysis highlights

how force characterization in such complex morphological

structures can be performed in a segregated manner.

We estimate efficiency of this system by using the defi-

nition of Maertens et al. (2015) for fish. This is the quasi-

propulsive efficiency ηQP = Pout

Pin
and it is defined by the

ratio between the useful work Pout and the expended energy

Pin, i.e. the power required to overcome the resisting viscous

forces at the terminal speed recorded

Pout=−

∫ Ls

0

∫ 2π

0

(
0, 0, VE3s

)
Rsdsr

? dφ dXs

−

∫ Lb

0

( vb +b vr)
T dbdXb − vT

r dr (26)

and the power required to actuate the pulsed jetting with

Pin =

∫ Ls

0

∫ 2π

0

F
2T
sa ξ̇s2r? dφ dXs (27)

Because the analysis must be performed at steady state, the

initial contribution from the sculling arms does not partic-

ipate in the estimation of the quasi-propulsive efficiency.

The comparison between actuation power and steady-

swimming power is portrayed in Figure 15. Based on these,

an estimate efficiency of 31% is inferred, which falls within

the range of values observed for fish in Maertens et al.

(2015).

7.2. Monopus dynamics

A further example of the capabilities of the presented model

is provided by the case of a sperm-like body actuated by

the synergic actuation of a pulsed-jetting shell and by the

flapping of a rear-pointing soft manipulator. The SRA, in

Fig. 13. Few snapshots of the fast escaping maneuver of the

Quadropus with active arms (mbaz = 5 [mN-m]).

Fig. 14. Comparison of force exchange between the arms and

root-body in the three actuation scenarios. The load exerted by

the pulsating shell is also reported.

this case, is studied as a mean of steering actuator for the

system. This example lends itself to the analysis of the turn-

ing moments generated by the actuation of differential parts
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Fig. 15. Comparison between the input and output power during

swimming at steady-state conditions.

within the system. In this case, the SSM of the Monopus

is actuated as in the previous example with a frequency of

1.51 pps, whereas the SRA is bent in different directions

to produce a 6D underwater turning motion. The actuation

wrench for the SRA takes the form

Fba( Xb, t) =




0

0

F( Xb, t) H (Lbt/1t1 − Xb)

0

0

0




,

Fba( Xb, t) =




0

F( Xb, t) H
(

Lb

1t3
( t − 1t1 − 1t2) −Xb

)

0

0

0

0




(28)

respectively for 0 < t ≤ 1t1 and 1t1 + 1t2 < t ≤

1t1+1t2 +1t3, whereas Fba( Xb, t) = (0, 0, 0, 0, 0, 0)T oth-

erwise. This implies that the SRA is first gradually bent

and released, from the base to the tip, around the local

z-axis and than around the local y-axis. This results in a

smooth and natural rotation, as reported in the sequence of

Figure 16.

The dynamics of the Monopus is decomposed with the

purpose of inferring baseline metrics that are commonly

employed in manoeuvring tests of aquatic vehicles. With

reference to the screw parameters (Murray et al., 1994):

r =
‖w̃rvr‖

(Ls+Lb)‖wr‖2 for w 6= 0

m = ‖wr‖ for wr 6= 0

(29)

Fig. 16. Few snapshots of the 6D underwater locomotion of the

Monopus (mbaz = 5 [mN-m]).

These enable the derivation of the non-dimensional time-

dependent radius of curvature defined as the distance from

the axis of rotation scaled by the total length of the Mono-

pus (r [−]), as shown in Figure 17. Similarly, the mag-

nitude of angular velocity (m [rad/s]) can be derived to

yield the values depicted in Figure 17. The turning radius

varies according to the speed of the body, thus explain-

ing the initial values of about 1 and the latter decrease to

∼ 0.3, which falls within the range commonly encountered

for sea-dwelling organisms (Domenici et al., 2004). As the

body approaches a straight swimming direction, the radius

of curvature tends to infinity.

8. Conclusion

In this work, a geometrically exact model for underwater

soft robots is presented. The model is capable of represent-

ing a group of soft bodies connected together via a rigid
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Fig. 17. Turning radius and speed of angular velocity of the

Monopus for two values of the SRA actuation.

root-body; this is done by taking into account the geometri-

cal nonlinearity of the soft bodies (treated here as a Cosserat

medium) along with the elastic responses, the mechanical

actuation and the inertial loads exchanged by the intercon-

nected bodies. This model is of general applicability since

the dynamic equations of the soft bodies are derived from

the unique knowledge of the Lagrangian density by means

of a continuous extension of Poincaré’s equations. To the

best of the authors’ knowledge, this is the first example in

the literature where such a multi-soft-body geometrically

exact model has been presented and used for the a priori

evaluation of possible robotics design.

The work described in this manuscript constitutes the first

milestone in our road map to the modeling and control of

soft robots inspired from flexible aquatic organisms such as

cephalopods. The difficulty to exhaustively address the cou-

pled fluid–solid interactions acting upon the shell currently

represents the major limitation of this formulation.

In particular, the model of the internal and external

pressure due to the soft robot motion is simplified using

the well-known solution of a one-dimensional momentum

equation for a neutrally buoyant, rigid body translating in

water (as explained in Renda et al. (2015b)) that drastically

neglects potentially significant dynamical terms associated

with body-shape modification. Indeed, the formal definition

of the total propulsive force is simplified. Although it does

not prevent the model from capturing the overall dynam-

ics of the vehicle in surge motion, further refinements are

sought for in order to attain a more sound representation

of the complex physics involved in the system. Evidence is

emerging that a substantial contribution to the total thrust

of jetting bodies lies in the linked internal–external fluid

dynamics of the collapsing shell. To acknowledge these

terms in detail, a fully coupled fluid–structure interaction

solver is mandatory. However, for the purpose of controller

design and quick dynamics investigation, a fast and compu-

tationally inexpensive alternative must be looked into. This

can be found from a coupled model that encompasses a

quasi-analytic solutions of unsteady potential flows of radi-

ally varying slender, axisymmetric bodies (see Karamcheti

(1966) and Anderson et al. (2001)) and an integral descrip-

tion of the internal pressure of the deforming cavity body,

as in (Krieg and Mohseni, 2015). In this formulation, a pre-

scribed kinematics of the shape-changing body enables the

estimation of the added-mass variation as well as supplying

the condition for accurate estimation of the forces generated

by the expulsion of fluid across the nozzle. Despite the lim-

ited degree of reproducibility of the experiments, the model

has been experimentally compared with a real multi-soft-

body prototype with satisfactory results and then used to

explore the design space of underwater soft robots charac-

terized by different morphologies and actuation strategies.

We show the varied range of dynamical analysis that can be

performed on the newly designed conceptual prototypes by

deriving quasi-propulsive efficiency of a four-arm pulsed-

jetting octopus-like body and the time-dependent radius of

curvature of a sperm-like vehicle. These demonstrate the

capability of this mathematical formulation to represent an

unlimited range of possible designs as well as to perform

a priori evaluation of their maneuvering capabilities and

swimming performances.

The authors believe that the versatility, accuracy and con-

ceptual simplicity of the model presented here make this

approach one of the most suitable in the frame of mobile

soft robotics.
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Nomenclature

? Variable in the reference configuration.

· Derivative with respect to time.
′ Derivative with respect to space.

̂ Converts R
6 into se( 3).

˜ Converts R
3 into so( 3).

t ∈ R Time.

Xb ∈ R Abscissa along the robot arm.

Xs ∈ R Abscissa along the meridian.

φ ∈ S1 Revolution angle.

g ( Xb) ∈ SE( 3) Beam configuration matrix.

gb ( Xb) ∈ SE( 3) Beam shape-configuration matrix.

g ( Xs, φ) ∈ SE( 3) Shell configuration matrix.

gs ( Xs, φ) ∈ SE( 3) Shell shape-configuration matrix.

gr ∈ SE( 3) Rigid-Root body configuration matrix.

η̂ ( Xb) ∈ se( 3) Beam velocity vector.

η̂b ( Xb) ∈ se( 3) Shape-dependent addendum of the beam

velocity vector.

η̂ ( Xs) ∈ se( 3) Shell velocity vector.

η̂s ( Xs) ∈ se( 3) Shape-dependent addendum of the shell

velocity vector.

η̂r ∈ se( 3) Rigid-Root body velocity vector.

ξ̂b ( Xb) ∈ se( 3) Beam strain vector.

ξ̂s(1,2)( Xs) ∈ se( 3) Shell strain vector respectively in the

direction Xs and φ.

Fbi ( Xb) ∈ R
6 Beam wrench of internal elastic force.

Fba( Xb) ∈ R
6 Beam wrench of internal actuation loads.

F̄be ( Xb) ∈ R
6 Beam wrench of distributed external loads.

F
(1,2)
si ( Xs) ∈ R

6 Shell wrench of internal elastic force

respectively in the direction Xs and φ.

F
(1,2)
sa ( Xs) ∈ R

6 Shell wrench of internal actuation loads.

F̄se ( Xs) ∈ R
6 Shell wrench of distributed external loads.

Fri ∈ R
6 Root-body wrench of internal force.

Fra ∈ R
6 Root-body wrench of actuation loads.

Fre ∈ R
6 Root-body wrench of external loads.

Appendix

Index to multimedia extensions

Archives of IJRR multimedia extensions published prior

to 2014 can be found at http://www.ijrr.org, after 2014

all videos are available on the IJRR YouTube channel at

http://www.youtube.com/user/ijrrmultimedia

Table of multimedia extensions.

Extension Media Type Description

1 Video This video shows our jet-

propeller multi-arms under-

water soft robot and depicts

how it has been modeled

with our unified multi-soft-

body dynamic model

2 Video Then the video shows how

the model can be used to

design different underwater

soft robots with complicated

morphology and actuation

system




