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Abstract—The purpose of this paper was to understand how
an agent’s performance is affected when interaction workflows
are incorporated in its information model and decision-making
process. Our expectation was that this incorporation could reduce
errors and faults on agent’s operation, improving its interaction
performance. We based this expectation on the existing chal-
lenges in designing and implementing artificial social agents,
where an approach based on predefined user scenarios and action
scripts is insufficient to account for uncertainty in perception or
unclear expectations from the user. Therefore, we developed a
framework that captures the expected behavior of the agent into
descriptive scenarios and then translated these into the agent’s
information model and used the resulting representation in prob-
abilistic planning and decision making to control interaction. Our
results indicated an improvement in terms of specificity while
maintaining precision and recall, suggesting that the hypoth-
esis being proposed in our approach is plausible. We believe
the presented framework will contribute to the field of cognitive
robotics, e.g., by improving the usability of artificial social com-
panions, thus overcoming the limitations imposed by approaches
that use predefined static models for an agent’s behavior resulting
in non-natural interaction.

Index Terms—Active assisted living, adaptive systems, cloud
robotics, context awareness, decision systems, human–machine
systems, interaction design.

I. INTRODUCTION

IN OUR recent works [1]–[5], we designed and imple-
mented two different approaches of artificial social com-

panions (ASCs). Both approaches aimed to operate as assistive
technology in real-world indoor environments. Their primary
mission was to help older adults in managing activities of
their daily life and staying connected with their social circle.
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Fig. 1. CaMeLi and GrowMeUp systems being tested by older adults.

In CaMeLi,1 we designed and implemented a virtual part-
ner capable of showing a variety of dialogues and a wide
spectrum of animated facial expressions while providing a set
of services to answer the user’s needs/requests. Moreover, in
GrowMeUp,2 we designed and implemented a service robotic
system able to learn an older person’s needs and habits over
time and enhance (grow up/scale up) its functionality to com-
pensate for the degradation of their abilities and to support,
encourage, and engage the older persons to stay active, inde-
pendent and socially involved while carrying out their daily
lives at home. In both systems, we implemented various
degrees of human interaction and autonomy that aimed to per-
form cognitive-like functions and accomplish real-time goals
in terms of interaction and self-sufficiency. In other words,
the user and agent could interact through multiple modalities,
which included speech commands, gestures, touch screen, or
other modes. In both cases, we dedicated most of our efforts
to developing perception capabilities, user interfaces, and the

1http://www.cameli.eu/
2http://www.growmeup.eu/
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integration of these core components that resulted in two fully
functional systems (Fig. 1).

Although some challenges still remain in the design and
implementation of interaction workflows, involving users in
the design process allowed us to tailor the systems functional-
ities to their needs and requirements. However, implementing
interactivity based on predefined user scenarios and action
scripts is not sufficient to take into account the uncertainty
associated with noisy inputs, variation in the conditions of
the operating environment, or unclear expectations from the
user. It is not realistic to expect that users always use the
same interaction patterns and never commit a mistake or that
environment conditions remain unchanged.

We believe that part of the solution to this problem is
to incorporate redundancy and fall-back strategies in terms
of interaction functionalities, resulting in the agent’s self-
adaptation to its context (e.g., user model and environment
conditions).

Based on this background, this paper was performed aim-
ing at understanding how an agent’s performance is affected
when interaction workflows are incorporated in its infor-
mation model and decision-making process. Therefore, we
developed a framework that captures the expected behav-
ior of the agent into descriptive scenarios, translates these
into the agent’s information model and uses the resulting
representation in probabilistic planning and decision making
to control interaction.

Our expectation was that adopting this framework could
reduce errors and faults in the agent’s operation, resulting in
improved performance while interacting with the user.

Other researchers dedicated their efforts to developing
approaches that address the challenge of adapting an agent’s
interaction to the user and involving context; we summarize
their efforts in the next section.

A. Related Work on Adaptive Artificial Social Companions

Regarding related work on adaptive ASCs, the approaches
presented in [1] and [6]–[8] discuss the fundamentals of
context-aware adaption for cyber-physical systems (including
virtual and robotic agents). In these works, the focus was
mainly on context features related to the conditions of the envi-
ronment that characterize the situation, where the interaction
between the agent and the user occurs. Alami et al. [9] dis-
cussed a decisional framework for human–robot interactive
task achievement that aimed to allow the robot to produce
behaviors that support its engagement vis-a-vis its human
partner and to interpret human behaviors and intentions. On
the other hand, state-of-the-art interaction models similar to
that proposed by Sili et al. [10] typically refer to some
degrees of adaptation for the customization of multimodal
user interfaces, but explicit models must be provided to
rule out the behavior of the system. Devin et al. [11]
summarized the essential building blocks to design archi-
tecture for cognitive and interactive robots. The concepts
presented may be generalized for human–machine systems
overall.

Regarding user-adaptiveness, we have found, essentially,
three types of user-adaptive ASC systems: systems that adapt
without explicit knowledge about the user, systems that keep
a static user model and systems that keep a dynamic user
model. The works presented in [12] and [13] do not maintain
an explicit model of the user. Instead, these systems achieve
the user-adaptiveness as a collateral effect of their main goal.
In fact, the system of [12] adapts to the user by monitoring
accessible areas for vacuuming, and that of [13] adapts to
the user by estimating their intention in the cooperative task
of selecting ingredients for a recipe. Static user models, such
as those in [14]–[16] can also be used for adaptation. These
systems make use of immutable information on the user, such
as their persona [14], [17], personality [15], and physical capa-
bilities [16], to generate adapted behavior. The unchanging
nature of the user models employed do not allow for systems
to gain information on the user from direct interaction and hin-
der interaction to naturally fleeting characteristics of the user,
such as their mood. Despite the lack of dynamism in the user
model, these systems are very successful at adapting to these
wider, unchanging traits of the user and achieve interesting
results in their specific applications. Dynamic user models,
such as those found in [18]–[20], can be used to adapt the
system’s behavior to the user’s dynamic characteristics, thus
achieving higher levels of adaptivity and potential interaction
quality. The dynamic nature of the user model allows the
system to learn from the user in loco while the interaction
is taking place. Systems of this nature have been applied to
strict human–robot interaction (HRI), such as in [19], or in
roboticized versions of classical human–computer interaction
problems, such as learning assistance for children [18] and in
robotic recommender systems [21].

In a similar manner, other authors developed approaches
dedicated to generating task-oriented interactions of ser-
vice robots or attempted to modeling the duration of the
user interest during interaction with an artificial agent.
Kim and Yoon [22] defended that “to obtain appropriate
human aid for conducting tasks, a robot should be capable of
generating meaningful questions regarding the task procedures
in real time and applying the results to modify its task plans
or behaviors.” They concluded that few studies addressed the
integration of robot task management and HRI in high-level
task planning. For that purpose, they proposed a script-based
scheme for task planning and HRI that supported the planning
and is generated by it. Zhang et al. [23] proposed a hidden
semi-Markov model to track the change of users’ interests.
They were motivated by the observation that “users’ prefer-
ences often change over time” but “most existing approaches
that address time information remain primitive,” thereby justi-
fying their use of a probabilistic approach. Another application
example, by Cheng et al. [24], proposed a semantic Web-based
context ontological reasoning service for multimedia confer-
encing process management that automatically selected the
appropriate means of notifications based on the conference
time and the participant contact details. This last exam-
ple demonstrates the relevance of research on context-based
interaction approaches for improving automatic intelligent
systems.
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B. Summary

Based on the information from our survey and our previous
work [6]–[8], [25], we found that implementing realistic
interaction workflows on interactive agents (e.g., virtual assis-
tants and social robots) is extremely challenging because of
the limitations imposed by the selected system architecture
and the availability of perception features that operate cor-
rectly in multiple environments (i.e., contexts). On the other
hand, the dominant approach used to capture the user’s per-
spective regarding the expected behavior of the agent is based
on describing different situations in the form of static user
scenarios and is unable to describe all possible variability in
operation conditions. In the following sections, we present, in
Section II, the conceptual approach for the context-aware HRI
(CAHRI) framework. Details on implementation aspects are
presented in Section III. We present and discuss our experi-
mental results in Section IV. Section V concludes this paper
summarizing our major findings and identifying relevant topics
for future work.

II. CONTEXT-AWARE HUMAN–ROBOT

INTERACTION FRAMEWORK

Our understanding of ASCs is tightly coupled with their
capacity for self-development over time. We consider that an
ASC should be capable of including new information into its
knowledge base for later use when interacting with new users
or operating in new contexts (i.e., “learning new things” during
its life cycle).

To achieve self-development over time, we require a strat-
egy that can translate the user’s descriptions into knowledge
representation and apply this knowledge during the agent’s
operation in such a manner that ensures an expected function-
ality in the face of context changes.

Thus, we examined current cognitive development theories
for inspiration on how to design our framework to allow for
the artificial agent to develop similarly to the human mind
or at least take into consideration some basic factors (e.g.,
scalability of the knowledge representation, representation of
the user model, and representation of context model).

A. Cognitive Development Theories

Troadec and Martinot summarized the last two decades of
cognitive development theories in [26]. The overall conclu-
sion is that the study of the mind suffered a shift from the
classical conception as rational, abstract, universal, central,
nonbiological, a-historic, emotionless, asocial to a new con-
ception of the mind as positioned, framed by real time, guided
by daily routines, and culture-dependent. In summary, cog-
nition is now thought to be context-dependent and strictly
related to biologic principles. Further, in their book, we found
three main models for context-dependent cognitive develop-
ment: 1) the developmental niche from Charles Super and
Sara Harkness; 2) the ecocultural theory from John Berry;
and 3) the ecological model from Urie Bronfenbrenner. The
first two models are more focused on systemic approaches
to the influence of cultural and societal aspects on the men-
tal development of the individual. Hence, context is defined in

Fig. 2. Ecological model of development.

terms of cultural variables. The third model involves the entire
ecological system in which development occurs, including the
biological and genetic aspects of the person (Fig. 2). Other
theoretical approaches and authors, such as Hoc [27], have
proposed models of human cognitive activity especially in the
case of human–machine cooperation. Moreover, as extended
by Pacaux-Lemoine and Itoh [28], they have also distinguished
between the interactions of one agent with another agent and
the interaction with the context (more related to the task they
have to perform to control a situation). Such models are also
useful in distinguishing different levels of activity and differ-
ent levels of information, with the goal of achieving a reliable
and robust interaction workflow. From this concise overview,
we may assume the following.

1) An ASC must also be capable of context-dependent
development (i.e., its perception and knowledge rep-
resentation must take into account how to represent a
context model).

2) The ecological model better fits the design and imple-
mentation of ASC because it allows us to conceptualize
the individual (represented by our user model) and its
relationship with different contexts (represented by our
knowledge model).

B. Proposed Architecture

Inspired by the previous model, we propose a CAHRI
framework consisting of three major blocks (Fig. 3): 1) deci-
sion process; 2) knowledge model (i.e., upper ontology and
scenario ontology); and 3) user model.

1) Decision Process: In command-driven approaches, we
explicitly describe the protocols for interaction, which impose
a limitation on the agents’ interactivity (i.e., it will only exe-
cute predefined rigidİ interaction patterns). CAHRI aims to
overcome such limitation by using a knowledge representa-
tion that allows us to represent known interaction plans in the
form of asserted graphs, which can be completed as the agent
infers new relationships in data (e.g., using a reasoner). This
information will be later used in the decision process, which,
when formulated as a probabilistic graphical model, simplifies
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Fig. 3. Overall system architecture.

the integration between knowledge representation and execu-
tion. Moreover, the decision process can add complementary
information about the interaction protocols by determining the
likelihood of certain interaction workflows [i.e., policies in a
partially observable Markov decision processes (POMDPs)] to
occur.

As described in [7], the mathematical formalism of POMDP
is well-suited to our problem because we require an approach
that takes into consideration aspects regarding limitations in
a priori planning (i.e., we cannot plan every possible course
of actions a priori) and the limited capability of measuring
the state of the world (i.e., limited perception capability).
These two aspects introduce uncertainty into the decision
process; such uncertainty is not fully considered by other
approaches commonly used in decision making (e.g., deci-
sion trees, influence diagrams, multicriteria decision making,
or Markov chains). On the one hand, we assume interaction
workflows follow a Markovian process [i.e., an interaction
workflow depends solely on the preceding state of the system
(i.e., context)]. On the other hand, our problem addresses deci-
sion making (i.e., choose the right actions); thus, it addresses
planning and control, not exclusively addressing perception or
actuation.

Therefore, in our approach, we define a POMPD model
for each context and represent the resulting policies (i.e.,
interaction workflows) in the scenario ontology, as depicted
in Fig. 4. During execution, an ASC will adapt its decision
process to different contexts by querying its knowledge model
for the most suitable scenario ontology.

In this paper, we summarize the components involved in
a POMDP; however, we do not present the details of the
associated mathematical formalism that can be found, for
example, in [8]. It suffices to note that a POMDP model is
defined by the tuple {S,A,O,�, T, R}, in which each vari-
able specifies the state of the world, the set of actions, the finite
set of observations, the observation function that expresses the
relationship between the state and the observations, the tran-
sitions function that expresses the likelihood of transitioning
from state s with action a to new state s′, and the reward
function, respectively.

The goal of the POMDP solver is to find a value func-
tion (VF) V(b) that represents the optimal policies over the

Fig. 4. Context representation in the scenario ontology modifies the
components of the decision process at each moment in time.

belief distribution b, where b is defined with parameters
p1, p2, . . . , pN , the beliefs of corresponding state, where N is
the number of states. Moreover, V(b) is defined as

V(b) =
N∑

i=1

vipi (1)

where v1, v2, . . . , vN are the coefficients of a linear function.
For a finite horizon T , (1) is a piecewise linear and convex
VF VT(b) and can be represented by the maximum of a finite
set of linear functions

VT(b) = max
k

N∑

i=1

vk
i pi (2)

where vk
1, vk

2, . . . , vk
N denote the parameters of the kth linear

function.
2) Knowledge Model: Our approach adopts an ontological

representation for capturing and storing knowledge regarding
concepts and their relationships. This type of representation
allows us to capture the types of knowledge required to fully
represent the cognitive model, including concepts related to the
person, environment, physical interaction, social interaction,
and machine/robot interaction and algorithms.

The knowledge model (Fig. 5) captures the relevant infor-
mation involved in the HRI process. We define the upper
ontology for this framework based on four main entities:
1) machine; 2) human; 3) interaction; and 4) context. From
these entities, we can define other entities as associated sub-
classes and establish relationships between entities that encode
the semantics of their associations. A more detailed representa-
tion is explained in our previous work [8], of which we provide
an updated iteration resulting from the current experimental
application.3

Moreover, this set of concepts extends the core ontology
for robotics and automation [29] and can be proposed to be
included in the standard ontology for autonomous robots under
development by the autonomous robotics working group.4 In
this paper, the focus is on the concepts related to the context-
based human–machine interaction.

The entities defined and their relationships allow for the
representation of the components of the system involved in
the interaction process at each time.

3This model is available to be incorporated or extended by other represen-
tations at http://www.contextawarerobotics.org/cahri/kr/im-cahri.owl.

4https://standards.ieee.org/develop/wg/Autonomous_Robotics.html



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

QUINTAS et al.: TOWARD CAHRI FRAMEWORK BASED ON COGNITIVE DEVELOPMENT 5

Fig. 5. Knowledge model used in the context-based HRI framework.

In addition to defining classes’ taxonomy, we define object
properties (OPs) and data properties (DPs) that will establish
the relationships between individuals of each class. Our current
model includes the following OPs.

1) (OP) hasActivityMission.
2) (OP) hasActuator (Domain: robot/Range: actuator).
3) (OP) hasContext (transitive).
4) (OP) hasEnvironmentCondition.
5) (OP) hasIdentity.
6) (OP) hasInteraction.
7) (OP) hasInteractionWorkflow.
8) (OP) hasRequirement (transitive).
9) (OP) hasSensor (Domain: robot/Range: sensor).

10) (OP) isActivityMissionOf (inverse of hasActivityMis-
sion).

11) (OP) isEnvironmentConditionOf (inverse of hasEnviron-
mentCondition).

12) (OP) isInteractionWorkflowOf (inverse of hasInterac-
tionWorkflow).

13) (DP) policyGraph (string).
3) User Model: We can say that the decision process and

the knowledge model are fundamental parts of any automatic
system. Nevertheless, if the purpose of the system is to interact
with humans, it becomes clear that models about the users are
relevant to understand actions, intentions and more globally
the context. To this end, any user model can be used as long
as it provides the necessary inputs for the decision process.
Hereafter, we describe an example for the user model adopted
in our framework, which we refer to as the Bayesian user
model. The main goal of the model is to infer a vector of
the user’s characteristics, C ∈ N

n, taking as input a vector
of evidence E ∈ N

m. The main output of the system is the
distribution

P(C|E, I) ∝ P(C)P(E, I|C) (3)

which encodes the user I’s characteristics revealed by the evi-
dence. By performing maximum a posteriori estimation [30]
over this distribution, we can obtain the characteristics that
each user is the most likely to exhibit.

The instantiation process is split into modules, with each
module inferring one of the characteristics of the C vector.
For each model, a Bayesian model is used to infer the charac-
teristic. Once instantiated, the inferred characteristics can be
used by the underlying system for interaction.

The model learns by fusing tuples of the form

Ti = (Li, E, hi) (4)

where L ∈ N is the label obtained for characteristic Ci, via
maximum a posteriori estimation, and hi is the entropy of the
distribution P(Ci)) ≈ P(Ci|E, I), to a global likelihood that is
propagated across the system.

This fusion process yields a new likelihood obtained via

P(E = e, I = u|C = Li)k+1

= 1

μ

(
P(E = e, I = u|C = Li)k + 1

h
σc

)
(5)

where e is the combination of evidence that generated the
classification, c is the label obtained, μ is a normalization
factor, k denotes the previous and updated likelihoods, u is
the identity of the current user, and σc is an impulse function
that is equal to 1 on c.

This fusion mechanism is able to accommodate both hard
and soft labels. If hard evidence is received by the system,
then Li is set to the corresponding value and P(C) becomes
nonzero only for the corresponding value, thus conveying the
certainty of hard evidence.

III. FRAMEWORK IMPLEMENTATION

We adopted a technical implementation process based on
the behavior driven development methodology, wherein we
achieve the following.

1) Describe the agent’s behavior by creating user stories
that explain different scenarios of operation.

2) Create an upper ontology (classes, properties) that cap-
tures the information that is common across the domains
of all scenarios associated with the feature (im-cahri-
top, corresponds to the knowledge model presented in
Section II).

3) Create a lower ontology (instances) that represents the
scenarios as graphs.

4) Use the lower ontology to model the plan for interaction
workflows in the decision process algorithm to adapt
the actions in run time according the plan for a given
situation (scenarios can interchange; thus, the context of
operation changes).

A. Describing the Agent’s Behaviors: Gherkin Scenarios
and Creating Scenario Specific Ontologies

We describe the agent’s desired behavior by creating user
stories that explain different operation scenarios for some
relevant application scenario. In our case, we refer to the
conclusions from the SocialRobot and GrowMeUp projects



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

in [31], which identified natural robot–user communication
(e.g., via facial recognition, voice commands, and audio/video
conferencing) as user needs. The interaction design of both
systems was framed in well-identified requirements for the
robotic platform that was developed. Of particular interest, in
terms of HRI, we highlight the following.

1) The robot should be able to guide or follow someone in
the environment.

2) The robot should be able to track a person (Haar-like
features).

3) The robot should be able to perceive person poses.
4) The robot should be able to identify a person (via face

recognition or reading some ID tag).
These requirements were later extended into use case sce-

narios in [32]. Specifically, we consider “Scenario 4: Face
Recognition, Navigation, and Tracking—Elderly Care Centre
Use” that sets the extended background for the two features
(in Fig. 6) using the Gherkin scenario pattern as described
in [33].

Persona: George is an 81-year old man having some light
memory problems and some difficulties in balancing by walk-
ing; he is used to staying alone at home. After a fall, during
the night, George decided that it was better for him to stay in
an elderly care center because the only person who could take
care of him was his daughter, who lives far away in another
city, and he is not a very communicative person, making him
reluctant to ask for support from his neighbors.

User Scenario: In the elderly house one morning George
decided to walk to the small, sunny and warmer living room
instead of going to the big and colder one at the main entrance.
SocialRobot identified him sitting there alone and asked him
if he would like to tell his friend Kostas to join him. George
responded that he would like to have his friend Kostas around.
SocialRobot went around the elderly center and found his
friend Kostas, a 78-years old man who has similar disabil-
ities and behaviors as George. Both became friends in the
elderly care center. SocialRobot asked Kostas if he wanted
to join George in the small living room because he was sit-
ting there alone. After Kostas answered yes and SocialRobot
accompanied him in the small sunny living room. George and
Kostas were happy to be together chatting and enjoying the
sun. SocialRobot recorded that they both like this room, and
next time, it will inform them again if it finds one of them
sitting there alone.

In the Gherkin scenario of Fig. 6, we write each sentence as
similarly as possible to an ontology triple format (i.e., subject-
predicate-object). The domain-specific ontology related to the
previous example is illustrated in Fig. 7. This ontology rep-
resents the corresponding instances in the scenario and their
relationships by means of a graph.

The resulting assertions are represented using OWL; see
the listing in Fig. 8 for a snippet of the representation for the
asserted axioms referring to individual context1.

B. Using Knowledge in Decision Process

The last step on our framework consists of using the lower
ontology to model the plan for interaction workflows.

Fig. 6. Elderly care center user scenario—Gherkin scenario example.

To this end, we train the decision process model (i.e.,
POMDP) for the specific scenario. Assuming that our model
converges for an infinite horizon, it is possible to define a
policy graph that can be used latter at run time (i.e., planning
phase). This result will be stored as the value for the instances
of class InteractionWorkflow in Fig. 5 that correspond to
interactionPolicy1 in the example illustrated above in Fig. 7.
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Fig. 7. Gherkin scenario (feature1-scenario 1) represented in terms of an
ontology, instantiating classes from the upper ontology defined in Fig. 5.

Fig. 8. Snippet of OWL representation for the Gherkin scenario illustrated
in Figs. 6 and 7.

The great advantage of using an ontology representation is
that after asserting a set of axioms, we can use a Reasoner to
infer new knowledge from the relationships between instances
(i.e., this process is also known as classifying the ontology).

Fig. 9. SPARQL query to obtain all contexts for all robots defined in the
knowledge representation using rdflib for a Python implementation.

In other words, we only need to define explicitly that the
interactionPolicy1 requires algorithm1 as the Reasoner would
infer that interactionPolicy1 also requires sensor1, given that
hasRequirement is a transitive OP. Another advantage is the
scalability and flexibility of merging different ontologies into a
“unique” knowledge base. The result of inferring new knowl-
edge by the Reasoner can be made permanent by adding
the inferred axioms to initially asserted ones. This result is
particularly useful for applications where a Reasoner is not
available or for improved searching because inference can
become impractical for large ontologies.

In runtime, we may use any programming library that can
manipulate RDF/RDFS/OWL (e.g., rdflib, Sesame for Python,
or Java implementations, respectively) to query our knowl-
edge representation (also known as a triple store), using
SPAQRL language, to obtain useful information from our
asserted axioms and conduct the interaction workflow (i.e.,
following the policy graph stored previously). An example of
these types of queries is illustrated in Fig. 9.

IV. EXPERIMENTAL DESIGN, RESULTS,
AND DISCUSSION

The experimental validation of this paper replicated the con-
ditions of the scenarios described in Fig. 6. The goal of the
experiment was to answer our research question, studying the
effects of integrating a decision process that selects interaction
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TABLE I
RELEVANT CHARACTERISTICS OF ENVIRONMENT CONDITIONS

(CONTEXT OF OPERATION). *DEPENDING ON SENSOR RANGE

workflows to automatically adapt to different environment
conditions (i.e., context) aiming to: 1) improve the usabil-
ity of an interactive agent and 2) make the human–machine
interaction component of the system more robust (i.e., fewer
failures).

A. Experimental Design

We structured the experiment according a multivariate anal-
ysis of variance, a repeated measures design in which the
samples are analyzed by all different approaches being studied,
comparing the difference between means. In this experiment,
we were focused on the analysis of the effects on speci-
ficity for each approach used. We considered as our primary
variables the light intensity and number of persons in the
scene. Considering that this experiment would lead to a very
large number of images to analyze (i.e., a large population),
we decided to use random samples of data to perform our
trial. The sample size was calculated using the “Test 1 Mean:
1-Sample, 1-Sided” [34] method, which is useful for tests con-
cerning whether a given result is equal to a reference value.
In our case, we want to measure the result for specificity of
the different algorithms; hence, based on previous work [8],
we used the values for the null hypothesis mean (μ0) equal to
0.5, the true mean (μ) equal to μ0 ± 0.05, the error standard
deviation equal to 0.2, the power equal to 0.85 and the Type I
error rate α equal to 0.1. The resulting minimum sample size
n was equal to 73 images.

B. Experimental Setting

In our experimental setting we prepared the environment in
such terms that it could replicate typical living room condi-
tions. The data collection procedure included acquisition of
visual data and light conditions (i.e., rgb camera plus light
sensor). Consequently, the resulting dataset considers the typ-
ical changes of the environment of operation as they are
observed in relevant application environments (i.e., not in the
controlled environment of a laboratory). More specifically,
we performed an initial characterization of light conditions
considering different variations of light intensity and illumi-
nation source, as summarized in Table I. Finally, we conducted
our data collection in a room environment with normal
and dimmed light conditions with luminance between 0 and
20 lux.

Fig. 10. Box plot for specificity.

C. Experimental Implementation

First, we used Protege5 for designing and working with
ontologies. The next step was to study the behavior of the
algorithms using our previous approach described in [8],
where we used the INRIA dataset6 for people detection and
measured precision, recall, f -measurement, and computational
time for the Haar-like features and histograms of oriented
gradients (HOG) algorithms. From this paper, our problem
was defined as POMDP and solved for an infinite horizon
that converged for a tolerable range of marginal improve-
ment for the resulting policy graph. To achieve this solution,
we used Anthony Cassandra’s POMDP solve.7 The resulting
policy graph was incorporated into the specific ontology for
our particular scenarios as the literals of the DP policyGraph
in InteractionWorkflow class (instanciated in interactionPol-
icy1). Following this initial setup, we collected a dataset of
aggregated visual and light information (i.e., video with 78
frames plus time-stamped light data in an additional file). We
selected two algorithms that are commonly used for person
detection—Haar-like features and HOG. These two approaches
implemented the same functionality, but their performance
differs depending of illumination conditions.

D. Results and Discussion

We analyzed the data that corresponded to three runs for
each video. In the first run, we used the selected action for
decision process; in the second run, we used only the Haar
detection algorithm; and in the third run, we used only HOG
detection.

The results for the statistical analysis of the detections
outcomes were compiled into Table II and Fig. 10.

In Fig. 11, we present some examples of frames acquired
and a visualization of the recorded hits, misses, and errors for
each run.

The experimental setup described before allowed us to
obtain results that confirm the second objective. From the

5https://protege.stanford.edu
6http://pascal.inrialpes.fr/data/human/
7http://www.pomdp.org/code/index.html
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Fig. 11. Examples of frames from the scenario dataset. From top-left to bottom-right: we see the first two frames and the last, where we have false positives
for Haar and HOG algorithms, but the action from the decision process is check-light, which contributes with less errors; the next three frames represent
examples of correct detections by the Haar or HOG algorithms and the action selected by the decision process corresponding to most probable algorithm to
work under the detected light conditions; at the bottom we summarize the overall results for true positives/negatives in light green, false positives in light
red and false negatives in yellow. The first row represents the periods where light conditions were considered normal or dark. The following rows group the
results for the decision process, Haar and HOG algorithms.

TABLE II
STATISTICAL MEASURES OF THE OVERALL PERFORMANCE FOR

DECISION PROCESS COMPARED TO SINGLE SELECTION

OF BODY DETECTION ALGORITHMS

obtained results, two main advantages can be observed from
the statistical measures: first, the specificity value for DP is on
average 2.5 times the specificity for the Haar and HOG algo-
rithms when used in single operation (i.e., getting less errors
resulted in a higher value for the true negative rate); second,
precision for the DP is 11% less than that of the HOG algo-
rithm, which showed the best overall performance. Attending
to these results, we confirmed the second statement in our
hypothesis.

Nevertheless, the main limitation observed from the statisti-
cal measures is that our approach resulted in lower recall. This

limitation may be due to limited variations in the environment
conditions, which may have not covered in sufficient detail the
behavior of the overall system (i.e., our test focused mainly the
operation in a room with normal and dimmed light conditions).
Analyzing Fig. 11, we observe that for constant “dark-light”
conditions, these observations resulted in the decision process
constantly selecting action “check-light” (i.e., using the pol-
icy graph from interactionPolicy1). This action corresponds
to a sensing action instead of trying to perform detection.
Comparing the outcome of this action with the two other
options, we observe that performing Haar detection would
result in an equivalent recall rate but with much less precision
and specificity. Alternatively, using HOG detection would
result in higher recall but at the same time lose specificity.
Overall, assuming the issues involved in interactive features
and based on the lessons learned from previous works [2],
preventing erroneous detections is as relevant as the hit rate.
By proving our second objective, we can claim the implicit
demonstration of the first part of our hypothesis. Given that the
usability of an agent is intrinsically related with not only per-
forming the correct action but also not performing the wrong
one, it becomes trivial that our approach can achieve this first
objective. Nevertheless, we will plan for future work gathering
more information to better corroborate this claim.

This experiment was designed with a clear intention
of proofing the concept that incorporating redundancy and
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fall-back strategies in interaction functionalities should result
in the agent’s self-adaptation to its context. Therefore, these
results are compared mainly in terms of the specificity of
the CAHRI framework in relation to the previous results
of mainstream research projects in this field—CaMeLi and
GrowMeUp. In these particular examples, the feature for
person detection was implemented using only the Haar-like
features algorithm. Hence, using CAHRI can improve their
specificity for this feature in near 2.5 times. Because we did
not focus on implementing new classification methods that
could be compared to other mainstream approaches (e.g., clas-
sifiers for people detection), a thorough comparison between
the performances of different classification approaches was
not covered in this paper. Nevertheless, we foresee that exist-
ing systems and mainstream research results may improve
using the proposed framework. For example, in a related
work in progress experiment, we are using YOLO [35] for
practical assisted living applications in a home environment.
In this setting, we are observing YOLO has high recall for
person recognition. However, regarding object recognition it
falls lower than required for practical application. We believe
this situation could be improved if each neural network is
previously trained to perform in a specific context and then
we use our framework to select the best neural network for
the context of operation.

V. CONCLUSION

The purpose of this paper was to understand how an agent’s
performance is affected when interaction workflows are incor-
porated in its information model and decision-making process.
To achieve this objective, we must overcome current limita-
tions of information sharing in decision processes and find
computationally effective methods to build complex decision
processes involved in the interaction process. We hypothesized
that part of our solution could incorporate redundancy and fall-
back strategies in terms of interaction functionalities that could
result in the agent’s self-adaptation to its context (e.g., user
model and environment conditions). This incorporation would
also result in fewer errors during operation. In our experi-
mental validation, we considered how to improve the person
detection feature in an environment with changing lighting
conditions (i.e., environment context changes). This feature is
particularly relevant because it is considered by end-users as a
core functionality and was previously implemented in the two
ASC systems (i.e., CaMeLi virtual assistant and GrowMeUp
social robot), as demonstrated in our previous work. The
results confirmed that our approach can indeed improve the
agent’s performance, maintaining precision while improving
specificity. However, we must recognize that we still face
some challenges in designing and implementing interaction
workflows. Involving the users during the design process is rel-
evant to the identification of needs and capturing requirements,
but implementing interaction workflows based on predefined
user scenarios and static action scripts is not sufficient to take
into account uncertainty associated with noisy inputs, varia-
tion in the conditions of the operating environment, or unclear
expectations from the user. Hence, this framework represents

a contribution to the field of cognitive robotics by improv-
ing the usability of ASCs. Our future work will continue to
develop this framework and will focus on usability validation
and implementation of a distributed processing approach for
planning algorithms.
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