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Abstract
This work presents a survey on the usage of user-adaptive techniques for human interface with Social Robots, with focus
on non-physical interaction. The work is based on an analysis of a number of recent scientific works, and aims to uncover
existing scientific and technological gaps which can serve as basis for future research and development work. User-adaptive
systems consist of autonomous agents that are able to use some manner of information on their user in order to adapt to them.
Through their adaptive nature, these systems have been shown to be easier to accept by end-users, and to lead to improvements
in a myriad of objective and subjective performance measurements. Thus, in the context of a growing domestic Social Robot
industry, it becomes of key importance to study the scientific and technological frontiers of this field. In order to uncover
potential lines of future research, we propose a taxonomy for the classification of works, which we use to analyse the works
under survey, exposing the current scientific frontiers of the area. Aiming to establish the overall readiness of the field, we
also analyse the maturity of the works under survey, exposing the current technological level of the techniques at hand and
discussing a number of technological challenges.

Keywords User-adaptive systems · Social robotics · User modelling · Survey

1 Introduction

This article presents a survey of user-adaptive techniques
used to implement human interfaceswith Social Robots, with
focus on non-physical interaction. The main aim of this text
is to establish the scientific and technological frontiers con-
cerning non-physical user-adaptive systems inSocialRobots,
in order to support future research and development endeav-
ours.

As robots move from factories into homes, the study and
optimization of HRI becomes an increasingly important fac-
tor. Whereas in industrial environments the users adapt to
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the characteristics of the robotic equipment they must use as
part of their activity, domestic users must adopt and invest in
these technologies of their own volition. Thus, the issue of
technological acceptance becomes central to the success of
the Social Robots of the future.

Human–computer interaction (HCI) studies the issues
that arise from the interaction between a computerized sys-
tem, such as a computer or smart device, and a human,
using their limited interaction modalities: keyboards, touch-
screens, occasional voice input, etc. In this context, it has
long been established that user-adaptive interfaces lead to
significantly improved acceptance when compared to non-
adaptive ones [61]. Social Robots, on the other hand, can
use any natural communication channel employed by their
users, resulting in much higher potential for user-adapted
behaviour. Thus, it becomes interesting to study the phe-
nomenon of user-adaptiveness in the context of HRI.

To provide a comprehensive overview of the field, we have
collected a number of recent scientificworks, narrowed down
from a large-scale initial sample by our inclusion and analy-
sis methodology. The works are discussed in a bisected way,
first from the scientific perspective, and then from the tech-
nological maturity perspective.
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1.1 Role of User Models in Adaptive Systems

User-adaptive systems are based on information on the
users, usually (but not necessarily) contained in user models.
These models are, conceptually, akin to those constructed by
humans when interacting with each other, allowing us to “get
to know” and familiarizewith each other, an effect that can be
exploited by user-adaptive systems. User models encode the
attributes of the user that are relevant to the operation of the
system, such as the user’s expertise level or preferences. This
information is used by the system to generate behaviour that
conforms to the idiosyncrasies of the user, resulting in a sys-
tem that conforms to the user it is interacting with, boosting
user satisfaction and acceptance levels.

The usage of these techniques has the potential to enable
a Social Robot system to interact on the same performance
level with a multitude of different users. This is analogous
to the autonomous characteristics exhibited by systems that
are able to adapt to different operational conditions, employ-
ing techniques that allow for context analysis and to adjust
their operation accordingly. Thus, we dub this character-
istic of user-adaptive robots as autonomy in interaction:
user-adaptive systems generate autonomous behaviour in the
context of an interaction with a particular user who is differ-
ent from all others and, as a consequence, are able to interact
equally well with all users.

1.2 Applications of User-Adaptive Systems

User-adaptive technology can easily be found in everyday
devices. Systems such as smartphones and tablets, per-
sonal computers and even cable TV systems incorporate
user-adaptive facilities to enhance their user’s experience.
Cloud-based services such as Google Assistant, Apple’s Siri
or Amazon’s Alexa, learn from their users usage of their
devices in order to improve the future interactions they share
with their users. These systems enjoy widespread use and
commercial success, even if they are seen as gimmicky or
useless by some users. We have found a limited number
of technologically-mature social systems that are also user-
adaptive in their function, which we present in this section.

The Paro robot [64], also discussed in [84] and other
research papers, is a seal-like therapeutic robot aiming at
helping depressed patients. It communicates solely via its
movements and chirping sounds, reacting to the user’s touch
and voice. It employs a reinforcement learning algorithm
to gradually adapt to the user’s preferred behaviours, for
instance learning the name that the user prefers to call it
by, not necessarily relying on a user model per se.

The Jibo [67] robot is a personal assistant robot, aiming
at aiding users in their day-to-day activities, such as order-
ing food or taking pictures. It is not mobile, but does employ
moving joints for expressiveness. Information on Jibo’s inner

workings is scarce, but it is able to learn the user’s prefer-
ences regarding the robot’s actions, as well as their habits. In
terms of user-adaptiveness, and assuming that the system is
able to autonomously gather the data needed to perform its
function, it is on-par with some of the most intricate systems
since it needs to, at least, create a static model of the user’s
preferences in order to operate.

Similarly, Buddy [31] intends to be a personal assistant for
the home. Unlike Jibo, it is mobile and able to roam around
the house. In terms of user-adaptiveness, it seems able to get
to know its users in much the same way as Jibo, learning
their schedules, names and habits, and we postulate that it
operates on a static user profile that it builds in the first or
first few interactions with the user.

Pepper [2] is a humanoid domestic robot, which aims at
interacting with its users emotionally. It is able to recog-
nize the user’s emotional state from their voice and facial
expression, and adapts to the state the user is in. In terms of
user-adaptivity, Pepper uses immediate information to reac-
tively adapt its actions to the user’s state and, to the best of
our knowledge, this is the only user-adaptive ability of this
robot. Naturally, the robot is also adaptable, which means it
can be configured by the user to act as they want, namely via
the installation of apps. This represents a relatively limited
form of user-adaptiveness, when compared to some of the
systems analysed before. However, this simplicity allows the
system to be robust and, as such, more suitable to the target
environment and users.

Despite the technological maturity of the systems dis-
cussed in this section, most of them are not actually available
to the general public yet. Indeed, with the exception of
Pepper, these systems are locked behind pre-order, crowd
funding and issues with product delivery, resulting in appar-
ent commercial success but low actual user adoption.

1.3 Key Definitions

In order to ensure the clarity of the technical terms used
throughout the remainder of the text, this section presents
the definitions of the main terms used.

Adaptivity We define adaptivity as a system’s ability to
perform its function in different scenarios by automati-
cally changing its operational parameters accordingly. These
parameters can be any controllable aspects that affect the per-
formance of the system, e.g. an air conditioning machine can
adapt to the outside temperature by changing the velocity of
its cooling fan.

User-adaptiveness User-adaptiveness is defined as the sys-
tem’s ability to adapt to its user’s characteristics. This
definition falls in line with previous work [54,61]. User-
adaptiveness can be observed in systems that deal with
differing scenarios that emerge from a switch in user-related
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conditions, such as the user’s identity, preferences, expertise,
etc.

User model As seen in [54], a user model can be seen as
an explicit repository of knowledge on the user, which can be
used by an adaptive system to retrieve the information needed
for adaptation. User models can be represented in many
different ways, ranging from a single attribute representing
some relevant characteristic of the user, to probabilistic mod-
els that combine the representation of the model with its
inference. In our view, user adaptivity does not require a user
profile, as a system can adapt to its user simply by changing
its operational parameters on the fly to suit the user. Model-
based systems, on the other hand, explicitly maintain a cache
of data on the user that can be, at every step, used to fine-tune
the system’s mode of operation.

1.4 Structure of this Manuscript

This article is structured as follows. Section 2 presents the
taxonomy employed to classify the surveyed works, as well
as our analysis methodology. Section 3 presents a short
description of the works under survey. Section 4 discusses
these works according to our methodology from the sci-
entific perspective, uncovering a number of research gaps.
Section 5 analyses the works from the technological maturity
perspective, exposing a number of technological challenges
and opportunities. Section 6 presents a summary of our find-
ings and concluding remarks.

2 Taxonomy of User-Adaptive Systems

In this section we present a taxonomy, inspired by early sur-
veys [14,54,61], which is used to categorize the works under
review. These categories will be used throughout the remain-
der of the text, namely in Sect. 3, for describing, analysing
and discussing the systems under survey as groups. The
categories are presented considering two key factors: the
existence of an explicit user model, and its persistence in
time. They are enumerated as follows:

1. Adaptive systemswith no usermodel these systems are
characterized by a reactive behaviour with respect to the
user’s immediate feedback. They do not keep an explicit
cache of information on the user;

2. Systems based on static user models these systems
use predefined information about the user’s relevant
attributes, making use of this explicit knowledge for
adaptation;

3. Systems based on dynamic user models like the previ-
ous, these systemsmaintain an explicit model of the user,
tailored to the task at hand. Additionally, these systems
update user information as they operate.
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Fig. 1 An illustration of the generic user-adaptive framework
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Fig. 2 An illustration of the general architecture of an adaptive sys-
tem that does not rely on persistent knowledge on the user. The user’s
feedback is directly employed in changing the behaviour of the system

The enumerated categories aim to represent different variants
of a user-adaptive system. We aim to advance beyond the
methodology of recent surveys [53,69] by providing a more
in-depth analysis of the works under survey, as well as an
additional discussion on technological maturity.

Figure 1 illustrates the generic framework for a user-
adaptive system. The framework is generically composed of
two main components.

– Interface the layer where the information exchange
between the system and the user occurs. It is constituted
by sensors and actuators that perceive and deliver stimuli
to the user.

– Decision making module The layer where decision algo-
rithms [25] take as input the perceived information, and
generate a future response action that will be synthesized
by the interface.

As seen in [61], in order to be a user-adaptive system, having
information about the user is key. This information is usu-
ally kept in the form of a user model, describing the aspects
pertaining to the user that are of importance towards the oper-
ation and adaptation of the system. This has led to the birth
of the field of user modelling, of which we can find an early
survey in [54], a field concerned with the organization, repre-
sentation and acquisition of information on a system’s user.

The user’s model can be implicit in the design of the adap-
tive system itself [54]. This results in a system that is able
to achieve adaptive behaviour without persistent information
on its user, as illustrated in Fig. 2.
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Fig. 3 An illustration of the general architecture of an adaptive system
that relies on a user model for user-adaptiveness
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Fig. 4 An illustration of the general architecture of an adaptive system
that relies on a user model for user-adaptiveness. The user’s feedback
is employed in building and refining a cache of data on the user, which
is then used to refine the system’s behaviour

These techniques perform reactive adaptation by adapting
their behaviour to immediate information on their users, such
as their intention or walking speed. Changes in the user’s
behaviour that the system is monitoring trigger immediate
changes in the system’s operational mode, and are not stored
or updated in a model of the user.

A system can be user-adaptive using a static, immutable
view of the user during the whole interaction period, as illus-
trated in Fig. 3. This static user model can be obtained by
the system using two different mechanisms: (1) the model
is created by the system itself during the beginning of the
interaction or (2) it can be provided a priori by an external
agent, for instance, using a questionnaire or a form. These
category of systems is unable to dynamically learn the user’s
characteristics.

Systems endowed with Dynamic User-Models have the
ability to change their view of the user through a feedback
mechanism, adapting to new circumstances, as illustrated in
Fig. 4. In this case, the user’s feedback is used to trigger
updates to the existing user model, thus allowing the system
to evolve with the user. Systems with these characteristics
have been suggested as the best (yet most complex) solution
for user adaptiveness [54,61].

2.1 Inclusion Criteria and Analysis Methodology

To focus the effort of studying and analysing the surveyed
works, this article has two key inclusion criteria:

– Autonomous systems This paper analyses systems that
adapt to the user in an autonomous manner, as opposed
to solutions which are designed with the user’s needs in

mind [40,55,56,65] or that have to be manually config-
ured [18] in order to act in an adapted manner.

– Human–robot interaction (HRI) The focus of this sur-
vey are works that deal with Social Robots (embodied
artificial agents) as opposed to other frameworks and pure
computational solutions, even if possibly applicable to
Robotics.

We have gathered a sample of recent works that propose
Social Robots of many kinds which exhibit user-adaptive
characteristics, which was narrowed down from an initial
sample of over 400 works. The surveyed works are analysed
considering the following aspects:

– Taxonomy does the work use an explicit model? What
sort of data and representation does it use?

– Adaptive parameters and decision making what
parameters of the system are adaptive? How do they
decide how to adapt?

– I/O interface What type of input and output does the
system take advantage of?

– MaturityWhat is the technique’s Technology Readiness
Level? How is it tested, by whom and where?

These four analysis dimensions allow establishing an over-
view over the current state of the art and to carve potential
future research lines.

3 Survey on User-Adaptive Systems

In this section, the surveyedworks are divided in subsections,
according to the categories defined in Sect. 2.

3.1 Adaptive Systems with no User Model

The authors of [78] present an system for aiding the user
in their mobility. The system, consisting of an intelligent
wheelchair or walker, is able to determine the user’s intended
goal on a map, and their satisfaction with the current path
that the system is taking, encoding these variables as hidden
states in a POMDP. None of this information is kept in a user
model per se, but is instead used to adapt the system’s actions
according to the user, thus achieving user-adaptiveness. The
users do not evaluate the system with respect to its adaptive-
ness, instead demonstrating only that the system does indeed
work.

In [52], the authors present a system based on a robotic
wheelchair, able to carry its user to their intended destina-
tion. The system employs Bayesian techniques to estimate
the user’s intended goal, which it then uses to guide its nav-
igational efforts. The user’s intention is not kept in a user
model, and is instead represented solely by its belief. The
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system was not tested in realistic conditions, but the authors
show that it is indeed able to infer a user’s goal from the
user’s input.

The authors of [13] present a system based on an intel-
ligent walker, able to adapt to a user’s walking speed. The
systemconstantlymonitors the user’swalking speed, through
odometry force sensors located in the system’s handlebars,
which it uses tomodulate its speed, thus adapting to the user’s
characteristics. The systemwas tested in demonstrative trials,
and shown to be able to accomplish its goal.

Similarly, the authors of [57,62,63] present a system, inte-
grated in the MOBOT project [19] and making use of its
robotic walker platform, aiming a aiding the user in walking.
The system infers the user’s intention using their inputs and
their movements, as measured by an LRF. The system is able
not only to infer the user’s intended goal when going through
crossroads and intersections, but is also able to be teleoper-
ated hands-free, from behind, with the user walking behind
the device. User tests were carried out with 35 participants,
demonstrating the system’s operation.

In [21], the authors present a system, integrated in the
SPENCER project [80], intended to adaptively guide a user
to a location. The systemmonitors the user’smovements, and
adjusts to their walking speed and engagement level, proac-
tively engaging the user if needed. The systemmakes use of a
hierarchy of Mixed Observability Markov Decision Process
(MOMDP) that subdivide the decision-making process into
smaller chunks, thus making it computationally tractable. In
a demonstrative trial, the authors show that the system was
able to improve the user’s engagement and reduce both the
mean and variance of the distance to the user, indicating suc-
cessful adaptation.

The authors of [39] present a robotic vacuumcleaner that is
able to adapt to its user’s preferences. The robot does not keep
an explicit model of the user, but identifies the user’s com-
mands and any obstacles it finds on its map, and determines
the times of the day where these areas are best accessible,
thus adapting to its users’ occupancy of the environment.
The authors do not present any experiments with users, but
validate their mathematical solution.

In [30], the authors present a system that aims at helping
a user gather the ingredients for a recipe. The user selects
the items by pointing at a board with drawings of the items,
and the robot adapts to the user by estimating their intention,
from their gaze and speech, speeding up the delivery of the
item. The authors employ Bayesian techniques, and show
that this proactive attitude on the part of the robot signifi-
cantly speeds up the process, in a set of tests involving 26
participants.

Theworkpresented in [48] exploits the entrainment effect,
wherein two or more people have a tendency to adjust their
prosodic characteristics are they become closer. The system
aims at teaching basic mathematics to users, and adjusts its

pitch as the interactions with the user progresses, progres-
sively matching that of the user. The system was evaluated
with 48 participants, who indicated that they experienced a
much higher social presence when interacting with the adap-
tive system.

Similarly, the authors or [73] present a robotic tutor for
aiding diabetic children in learning to judge insulin dosages
based on food intake. The system observes the user’s answer-
ing pattern and adapts its difficulty depending on the number
of correct answers. The authors show that the adaptive sys-
tem is able to surpass the novelty effect, and achieve higher
levels of intrinsic motivation in the user past the initial
interaction.

The authors of [11] present a study on the impact of
the inclusion of user intention and explicit time dependency
as hidden variables in a POMDP framework. The authors
argue, without explicitly discussing user-adaptiveness, that
the inclusion of the user’s intention can improve the qual-
ity of the interaction. Indeed, a study with 35 participants,
where participants were interacting with a simulated robot in
a driving experience, shows that the users do indeed prefer
the adaptive system, and it is able to achieve significantly
higher rewards over time.

Similarly, the authors of [45] present an assistive driving
systemwhich is able to determine when the user is distracted
and to compensate by taking control of the vehicle for a
short amount of time. The system learns models of non-
distracted drivers in an off-line step, which it then applies
to each user to determine their state at each moment. The
system uses Bayesian techniques to maintain a set of beliefs
over the state of the driver, which it uses to estimate when
the driver needs help. The system was tested with an undis-
closed number of participants, and the authors show that the
systemwas able to prevent a number of accidents in a driving
simulator.

The authors of [77] present a study on the adaptation of
the CADENCE turn-taking system to a user-adaptive ver-
sion. The system monitors the interaction with the user’s
state and adapts to the user’s cadence of active/inactive sta-
tus. A study with 15 participants shows that the system was
able to elicit the same social response as the non-adaptive
version could, with the crucial difference that the adaptive
version was able to automatically achieve results within a
single interaction, whereas the original system have to be
manually tuned between interactions.

In [76], a study the impact of user-adaptiveness on users,
namely on the impression of rapport, is presented. The
authors implemented a humanoid robot thatmimics the user’s
gestures while speaking, via an estimation of synchronism
between the user and robot. A study with 23 participants
shows that most users preferred interacting with the adaptive
version of the system,
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3.2 Systems Based on Static User Models

In [17], a system that makes use of Personas for adaptation is
presented. Personas, also used in [49] in the context of HCI,
consist of a set ofmanually-built user profiles that, combined,
aim to represent a large portion of the potential user base.
Each persona represents a number of users, and new users
can be quickly matched to a known persona, with adaptation
taking place in accordance to the matched persona. In this
work, the authors have defined the Personas with basis on
tests with 28 users. This technique eschews the usage of large
learning dataset, and favours the usage of experts in building
the Personas. In this work, Personas are gathered through
questionnaires, and the authors show that the system is able
to adapt to new users.

The authors of [4] explore the adaptation of a robot’s syn-
thesized personality to the personality of its user. The user
profile is constituted by the user’s personality, which is esti-
mated at the beginning of the interaction and remains static
throughout the interaction. The robot communicates through
gestures and speech, and the authors have found that users
interacting with the adaptive robot have found it to be more
expressive.

The work presented in [41] aims at assisting a user in
dressing themselves. The system maintains a list of poses
that the user cannot reach, thus adapting to their limitations.
This model does not evolve during normal execution, but is
learned by the robot in a specific interaction, during which
the user is asked to position themselves in a variety of poses.
The system adapts by compensating for the positions the user
cannot reach, and the authors have found that the system, in
its adaptive operation, is faster at accomplishing its goal.

In [24], a system which aims at assisting a user in dress-
ing themselves is presented. The system maintains a model
of the user’s mobility, namely the positions achievable by
their joints, which is learned in dedicated tests. The system
adapts to the user’s limitations by compensating for the lack
of mobility of the user. The authors do not provide a com-
parison with a non-adaptive system, but have demonstrated
that the system is able to achieve its function.

The authors of [68] present a study on the usage of an
adaptive robot for teaching dance lessons for children. The
system interacts with children one-on-one, and maintains a
static model of their personal information, as well as of the
history on interactions they have shared before, which it uses
to adapt its speech and gestures to the child it is interacting
with. The authors perform a thorough study of the effects
of this system on the children, and note that the system was
able to teach the lessons, and be perceived by the children as
a peer or a sibling, instead of a tutor or teacher.

The HOBBIT system, presented in [22], is able to provide
several services to elderly users. Its adaptivity relies on an
initialization phase, during which the user provides the robot

with their preferences, such as speech volume and voice,
to which the robot then adheres in future interactions. The
authors do not compare their system with a non-adaptive
version, but demonstrate its functionality in a number of trials
involving elderly users.

The work presented in [1] exploits crowd-sourced infor-
mation to determine its user model. The system focuses on
organizing shelves according to user preferences, and these
preferences are learned, via collaborative filtering, from data
gathered froma number of participants. The robot is then able
to organize the shelves by representing the user’s preferences
as constraints, and using an optimization process to violate as
little constraints as possible when placing objects on contain-
ers. The system is not compared with a non-adaptive version,
but is able to organize the shelves.

3.3 Systems Based on Dynamic User Models

A proactive system is presented in [29], integrated in the
ACCOMPANY project [5]. The system maintains a state of
the user, and a set of rules that cause that state to evolve.
The goal of the robot is to keep the user in a “good” state.
By observing the environment and the user’s choices, the
robot identifies opportunities for action that can divert the
user from reaching an undesirable state. For instance, in the
example presented in the work, the system detects that the
user has not taken their medication, despite the robot’s warn-
ing and, knowing that this can lead to an undesirable state,
the robot takes action and fetches the user’s medication, thus
compensating for their attitude. In this demonstrative trial,
the authors show that the system can indeed identify oppor-
tunities and act proactively.

The authors of [26,27] present a robotic Intelligent Tutor-
ing System (ITS), first presented in [6,28], that aims at
aiding a child in learning how to read. The system maintains
knowledge on the user’s reading level, which it periodically
evaluates and updates using an Active Learning technique.
This information is then used to adapt the serious game that
the child and system are playing, with the goal of enhancing
their learning performance. The authors show that the sys-
tem is able to interact with children of varying ages, and that
children interacting with the adaptive system were able to
learn more effectively.

Similarly, the authors of [7] present an empathic robot
aiming at aiding a user learn Geography. The system keeps
track of the user’s skill levels, such as compass reading and
map symbol knowledge, and adapts its actions to these levels.
The authors gauged the user’s perceived enjoyment, mutual
understanding and trust, and found significant improvements
in all measurements.

Joint tasks, tasks performed cooperatively between user
and robot, are explored in [60]. The system, applied to the
problem of moving a table out of the room, monitors the
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user’s level of adaptability to the robot’s optimal plan, and
adjust its actions accordingly. As the user complies, or not,
with the robot’s suggested change of plans, the robot adjusts
its model of the user and, thus, its actions. The system
employs a Multi-Agent Markov Decision Process for deci-
sion making, and the authors have found that user preferred
interactingwith the adaptive version of the system, and found
it more trustworthy.

Similarly, the authors of [16] present a system that aims
at performing a joint task with the user. The system main-
tains a Theory of Mind representation of the user, namely of
their task and beliefs. This representation is updated as the
interaction takes place, with the robot also aiming at min-
imizing explicit instructions between it and the user. The
authors evaluate the system in a table cleaning scenario, in
tests with an undisclosed number of users, and conclude that
the adaptive system can perform the task much faster than
the non-adaptive alternative.

The authors of [8] present a system that aims at alleviating
the workload of an operator behind a Wizard of Oz. The
system maintains a model of the Wizard’s action policy, i.e.
when and how the user acts, which is updated as the user uses
the system. Gradually, the system refines its representation
of the user, to the point where it is able to replace them. The
authors have used a two-robot setup, simulating an assisted
learning scenario, for validating their technique, and have
shown that the system does indeed alleviate the workload
on the user while maintaining the same results in terms of
child-robot performance.

In [9,10], the authors present a system that aims at adapt-
ing the coloured lights in a robot to the tastes of the user.
The system relies on three basic preference profiles, which
are adapted to each user via a technique akin to Reinforce-
ment Learning. The authors did not test their approach with
users, but have demonstrated its functionality in simulated
scenarios.

User-adaptivity is explored, as a primary task, in the work
presented in [34], which was also presented in [35–38]. The
system learns the user’s preferences, which are updated using
interaction traces obtained as the robot repeatedly interacts
with the user. The system makes use of an MDP formulation
to recalculate its policy according to the user’s preferences.
Tests with 17 participants have shown that the users believe
that the system can indeed adapt to its user, and that it pro-
gressively adapts to their needs.

The authors of [72] present a system that aims a coopera-
tively performing music with the user. The systemmakes use
of Context-Free Stochastic Grammars, and is taught a base-
line user profile in a dedicated interaction. During interaction
with the user, the user can inform the system that they dis-
like the robot’s musical decisions, which triggers a change in
their preferences profile, and thus the system’s actions. The
authors performed tests with users, who reported that they

found decreasing difficulty in producing music with the sys-
tem, indicating the successful adaptation of the system to the
users.

The Dialogue Manager of the SERROGA system is pre-
sented in [58,59]. This manager implements turn-based
dialogue, which is made adaptive by the incorporation of
the user’s feedback on the Bayesian-like Dynamic Factor
Graph of the system, adapting it to the user’s preferences.
The system was tested with real users in a 10-day test, and
the users noted that the system was indeed able to change in
accordance with their preferences.

A robotic recommender system [43] is presented in [47],
aiming at aiding users in learning English. The system oper-
ates on the principles of classic recommender systems: it
builds and maintains a preferences profile of the user, main-
tained in an ontology, regarding the serious games used for
learning. This profile is updated during interaction via n-
gram analysis of the events. The system relates this data with
both data from the same and from other users to provide
better suggestions to the user. A study with 12 participants
has shown that the usage of this system improves the users’
performance when learning.

An evaluation of various interactions is presented in [74],
relying on a system that aims at learning from the user, even-
tually being able to carry out commands without explicit
orders. The system maintains a model of the user’s pref-
erences, which evolves at every interaction. The system was
testedwith 25 non-expert users, and the authors conclude that
the users prefer the adaptive system over the non-adaptive
one.

4 Analysis and Research Gaps

In this section, we discuss the works presented in Sect. 3,
uncovering research gaps to support futurework.We perform
our analysis according to the key system characteristics iden-
tified in 2.1, and present research gaps in each of the relevant
dimensions.

4.1 TaxonomyTrends in User-Adaptive Systems

Figure 5 and Table 1 present an overview of the taxonomy in
User-Adaptive HRI systems, complemented by an overview
of the usage of psychological information on the user. It is
visible that most works apply user models for adapting to the
user. Furthermore, systems tend to gain their own information
on the user, with the portion of works that are given the user
model beforehand being relatively small. As seen in Fig. 5c,
most of the systems update their usermodel during execution.
Thus,most of theworks surveyedfit the architecture of Fig. 4.

We have observed, in Sect. 3.1, that techniques that do
not require a user model to operate tend to focus on a sin-
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Fig. 5 Pictorial illustration of the usage of user models in the works under survey. a Usage of user models, b source of user data and c user data
persistence

Table 1 User model types,
source, persistence and usage of
emotions and personality in user
models

References Data source Persistence Emotions Personality

(a) Techniques with no user model

[21] Inference Dynamic No No

[11] Inference Dynamic No No

[13] Observations Dynamic No No

[30] Inference Dynamic No No

[39] Inference Dynamic No No

[45] Inference Dynamic No No

[48] Observations Dynamic No No

[52] Inference Dynamic No No

[57] Inference Dynamic No No

[76] Observations Dynamic No No

[77] Observations Dynamic No No

[78] Inference Dynamic No No

[73] Observations Dynamic No No

References Source Persistence Emotions Personality

(b) Techniques with static user models

[4] Learning Static No Yes

[41] Learning Static No No

[17] Predetermined Static No Yes

[22] Predetermined Static No No

[24] Learning Static No No

[68] Predetermined Static No No

[1] Learning Static No No

(c) Techniques with dynamic user models

[8] Learning Dynamic No No

[10] Learning Dynamic No No

[16]l Inference Dynamic No No

[27] Learning Dynamic No No

[29] Inference Dynamic No No

[34] Learning Dynamic No No

[47] Learning Dynamic Yes No

[60] Inference Dynamic No No

[72] Observations Dynamic No No

[59] Learning Dynamic No No

[74] Learning Dynamic No No

[7] Inference Dynamic Yes No
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gle attribute for adaptation. Furthermore, these techniques
tend to adapt to the user in a reactive manner, continu-
ously measuring the characteristic of relevance and updating
their decision-making routines to compensate. Thus, these
techniques tend to make use of decision-making techniques
into which the user’s attributes can be seamlessly integrated,
examples of which include the POMDP, where the status of
the user can be encoded as a hidden variable of the model.

These techniques lack the ability to distinguish users from
one another, operating with complete ignorance as to the
identity of the user. This results in, effectively, a generaliza-
tion of user characteristics, according to the reactions they
display to the stimuli generated by the system. In otherwords,
if different users display the same reactions to the stimuli
offered by the system, the system will operate in the same
manner, regardless of user identity.

Systems based on user models, seen in Sect. 3.2, over-
come this shortcoming by employing a model of the user
which is given or inferred during the interaction, or in dedi-
cated experiments. This model can be built in a personalized
manner for each individual user. Thus, these systems gain the
ability to adapt to different users and, if necessary, to adapt
to different users according to their identity.

We can observe, in Fig. 5, that many of the systems sur-
veyed are given part or the whole of the information used for
adaptivity, and that this information remains static through-
out execution. These techniques based on static models are
unable to adapt to the changes of their users, or to evolve as
they do. Information on the user is gained only once during
the experiment, and cannot be changed to accommodate for
the changes that the user may undertake. Therefore, these
techniques appear to be better capable of dealing with larger
numbers of differentiated users but are, at the same time,
unable to deal with long-term interactions with single users.

This fact does not necessarily represent a drawback: some
information on users changes very slowly or unnoticeably
throughout the duration of the interaction, even if it lasts for
long periods of time. For instance, systems based on person-
ality, such as [79], can argue that this particular aspect of
the user is subject to little change with age [81]. However,
systems based on more transient aspects of the user, such as
their preferences and habits, need to be able to readjust these
characteristics to ensure long-term viability.

Lastly, systems based on dynamic user models, presented
in Sect. 3.3, gradually learn and adjust the relevant char-
acteristics of their users. These techniques represent the
combination of the best qualities of both the other categories
of systems: they are both able to adapt to several users, and
to keep adapting as their users change. These systems have
the additional advantage of not requiring a setup phase for
profile determination or definition, nor manual gathering and
introduction of user information.

Furthermore, systems based on dynamic user models are
able to continuously improve their perspective of the user
as time changes. This represents increased autonomy and
robustness for the system: even if the user does not change,
the system’s initial perception of themmay be partially incor-
rect, and these systems have the possibility of improving
upon those errors. Thus, these systems are, in our view, the
most appropriate for long-term interaction: as users grow and
age, these systems have the potential to grow and age with
them.

4.1.1 Research Gap: Psychological Trait Modelling

As seen in Table 1, there is very little attention dedicated to
adapting systems to a user beyond the general usage of per-
sonal and behavioural data. However, characterizing users on
a deeper, psychological level, can yield unprecedented sat-
isfaction and acceptance levels[3]. Psychological measures
on the user can include, for instance, their personality [83]
or their emotional state [66].

The usage of Personality inAffectiveComputing, and thus
HCI, is becoming a popular trend [82], but its presence in
user-adaptive Social Robots seems to be relatively restricted.
Very few of the works surveyed take into account the user’s
personality or emotional state, but those that do achieve pos-
itive results. This exposes research gap in the refinement of
personality and emotional information to achieve higher lev-
els of adaptation.

No technique that we have found combines the knowl-
edge of the user’s personality with the knowledge of other
aspects, such as routines and preferences. Thus, psycholog-
ical and behavioural analysis of the user seem disjointed in
the literature, constituting another research gap. The com-
bination of behavioural and psychological information can
result a holistic profile of the user, which could be the bases
for unprecedented adaptivity levels.

4.1.2 Research Gap: Learning New Users

As the user-adaptive system interacts with multiple users, it
continuously learns their models. This process can poten-
tially take large amounts of time and data. If the robot
interacts with an unknown user, it will have no information
on this user, and will have to adjust their model from the
beginning. A solution for this problem is the matching of a
new user to an existing model that exhibits the same initial
characteristics as the new user. In practice, the system would
use an existing model as a starting point, enabling the system
to quickly adapt to an approximate view of the new user.

At first, this will result in a user model that suffers from
an approximation error. However, as the system interacts
with the user, it should be able to continuously adapt and,
thus, correct the initial error. Furthermore, optimized learning
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strategies canbeused for efficiently learningnewusers. Tech-
niques such as Active Learning [12] and techniques based on
Information Theory could be useful to optimize the informa-
tion gathering procedure.

4.1.3 Research Gap: Big Data

Crowd-sourcing approaches are used by some techniques to
improve their user-adaptive abilities. These works can be
seen as a step forward, with respect to systems that learn
solely from a reduced number of users, as they are able to
leverage larger amounts of data for adapting to the user. A
possible research line would be to explore the influence of
Big Data and data mining techniques in the improvement
of the adaptive abilities of embodied systems. Shedding the
purpose-builtmodel paradigm, amore generalized and exten-
sible user model [42] could benefit from big data and data
mining techniques by incorporating larger and more varied
amounts of information on the user, potentially adapting to
increasingly finer points of the user’s characteristics. The
Internet of Things may also be an instrumental addition to
this paradigm, by providing continuous streams of additional
multimodal data into the systems, which can then analyse it
and extract patterns that inform the system on the user.

This can lead to the problem of over-modelling the user,
in which too much data on the user is kept and never used in
any of the system’s functions. A possibly interesting line of
future work is the study of this trade-off: the determination
of how much data on different aspects on the user is relevant
for adaptation, and if a saturation effect is achieved after a
certain number of aspects or volume of data.

An important aspect of user-adaptive systems inHCI, such
as recommender systems, is the manner in which these sys-
tems make use of inter-user information. In recommender
systems, users are, for instance, clustered in representative
groups[44] which can then be used for extrapolating the
characteristics of users on which there is relatively little
information. Other systems, such as [85], even explore the
latent social connections between users to increase the level
of adaptivity of the system. An interesting line of research
could consist of the application of these techniques on user-
adaptive Social Robots.

4.2 Adaptive Parameters and DecisionMaking

As seen in Table 2, the majority of the works under review
uses as single adaptive parameter the decisions made by
the system. In other words, these works adapt to the user
in what they do. This allows systems to achieve a manner
of functional adaptation, wherein their choice of actions is
influenced by their information on the user. This leads to
systems that are able to, for instance, navigate autonomously
to where they believe they can best interact with the user.

In the case of these systems, the adaptive process is inter-
twined with the system’s own function, and its goal can only
be achieved through adaptation.

On the other hand, a number of works adapts in how
they interact with the user. This manner of non-functional
adaptation allows systems to adapt the parameters of their
actions, which translates into changes in their current speed
or prosody, for example. These systems can achieve higher
levels of adaptation without affecting their main function,
decoupling the adaptive process from their main goal, which
can be achieved with or without adaptation.

A smaller number of works adapts in both of these per-
spectives, changing bothwhat actions they take and how they
are taken. In these cases, the robot is, for instance, able to
adapt both theway it conveys information, andwhat informa-
tion better suits the user at that particular time. These systems
take the adaptive process to a higher level, truly adapting both
to the problem and user at hand.

4.2.1 Research Gap: Continuous Adaptation

An important requirement for a companion Social Robot is
long-term viability. In order to ensure viability, a long-term
companion should be able to live and cooperate with its users
for extended periods of time with no intervention from tech-
nical personnel. As such, it must be able to learn from its
users and continuously adapt to the changes it observes on
its users.

An important number of surveyed works do indeed con-
tinuously adapt to their users, iteratively re-evaluating their
users characteristics. However, these systems are the least
developed, often relying on single measurements of their
users, or not storing this information in a re-usable user
model. This line of research is, thus, ripewith opportunity for
future work, and may be the key for enabling Social Robots
to live with their users in the long term.

Additionally, long-term viability enables the system to
build true relationships with its user, as seen, for instance, in
the Paro [84] and in [32,33] experiments. The further explo-
ration of these long-term adaptive interactions, with more
complex and complete adaptivemechanisms, could also con-
stitute an interesting line of research.

4.2.2 Research Gap: User Adaptivity as a Layer

The techniques surveyed in this work cover a wide num-
ber of application areas, showing the usefulness of user-
adaptiveness in many applications. In these applications,
being user-adaptive, as mentioned before, is seldom them
main task of the system. In our view, user-adaptiveness can
thus be seen as transversal to all areas in which HRI is
involved.
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Fig. 6 User-adaptiveness as a layer in a generic system

As a future line of research, it could be interesting to
explore the modelling of user-adaptive characteristics as a
layer that can be applied to several HRI or HCI systems.
This layer would be responsible for modulating the sig-
nals received from the user, and the actions decided by the
decision-making modules, in a manner that was best adapted
to the user. This comes as a natural consequence of the mod-
els presented in Sect. 2: user-adaptiveness can be seen as a
layer between the user interface and decision-making blocks,
as illustrated in Fig. 6. This paradigm would allow a larger
number of systems and applications from benefiting from the
advantages of user-adaptiveness.

4.2.3 Research Gap: Interaction with Multiple Users

Interactions with groups of users is becoming a trend in
research. This type of interaction is an important factor in
the integration of Social Robots as members of society, since
group interactions among humans are very frequent. How-
ever, none of the surveyed work is able to interact with
multiple users, which constitutes an important research gap.

4.2.4 Research Gap: User-Adaptive Robotic Perception

As noted in [61], user-adaptive behaviour can stretch beyond
the synthesis of behaviour proper. Knowing the user more
deeply can enable a system to better understand their actions
and states, resulting in the application of user-adaptiveness
not only to behaviour synthesis but also to perception.

Artificial perception is already a very active field of
research [20], and it requires intricate systems to achieve
interesting results. The addition of a user-adaptive layer to
perceptive systems would likely increase their complexity,
but would also likely significantly increase their perfor-
mance, as seen in [86].

Some works on user-adaptive perception exist, such
as [71] for colour description systems, but this line of research
is, to the best of our knowledge, unexplored in interactive
social robotic systems. Thus, endowing an adaptive robot
with the ability to adapt its perceptive abilities as well con-
stitutes a research gap.
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4.3 I/O Interface

Regarding the user interface used by these systems, Table 2
presents the interaction modes used by the surveyed works.
We can observe that, unlike systems dedicated to HCI, Social
Robots employ a myriad of different interaction modali-
ties. Social Robots can make use of natural communication
channels to express themselves, resulting in the increased
expressiveness noted, for instance, in [4]. Furthermore, we
observe that a significant number of systems make use of
more than one interaction modality, combining of speech
and other channels.

We can observe that speech is, by far, the most popular
choice of interaction modality. This trend is to be expected,
since speech is one of the most natural communication chan-
nels for humans, and speech analysis and synthesis have been
the focus of significant attention in recent years.

Humans also communicate through two additional chan-
nels, aside from verbal: non-verbal, usually consisting of
gestures, and paraverbal, namely via prosodic changes. The
paraverbal channel, as far as we know, has been seldom
explored in user-adaptive robots, with only a few works
making use of it. However, the non-verbal channel, namely
gestures and physical interactions such as moving robots and
objects on a table, seems to be gaining popularity among
researchers, with a number of techniques adopting these
modalities.

4.3.1 Research Gap: Physical and Haptic Systems

Physical interaction is an important aspect of human rela-
tionships, and is a hallmark of intimate interpersonal rela-
tionships. However, with the exception of the robotic walker
systems of Sect. 3.1, we could not find any systems able
to interact physically with the user in an adaptive manner,
i.e. in which the physical interaction itself was adapted to
the user’s behaviour or characteristics, despite there being an
important body of physical HRI work, such as [46]. While
some systems do employ physical controls, as seen in 2, none
of them employ touch as an adaptive parameter or adaptive
output modality.

With the advent of haptic systems, it could be interesting
to explore the impact of user-adaptive, touch-based physi-
cal interaction on the objective and subjective measurements
employed in the evaluation of these systems.

5 Maturity of User-Adaptive Systems

In this section we perform an analysis of the maturity of
current state of user-adaptive robots. We aim at determining
the overall readiness of user-adaptive technologies, and in
identifying the main obstacles impeding further progress.

5.1 Experimental Maturity the SurveyedWorks

User skill levelOne important aspect ofmature systems is the
ability to deal with their end-users, as opposed to technical
personnel. We can observe that solutions with no explicit
model of the user tend to be tested with more end-users.
This indicates a higher maturity of no-model systems when
compared to the remaining classes of systems, which can be
attributed to the fact that these tackle simpler problems, and
constitute simpler solutions.

As seen in Table 3, the most popular test subject of these
works is the non-expert user (e.g. students), i.e. users that,
while not proper end-users, are also not part of the system’s
development. This points at a lack of readiness in the field:
the prevalent use of students as test subjects indicates that
the systems are not mature enough to be presented to the
end-users. This constitutes a technological challenge.

This is not a problem of research per se, as the scientific
principles in question can still be demonstrated on non-end-
users. However, in order to progress technologically, it is
important that the end-users be involved in the final stages of
development, thus providing important insight into whether
the systems under development actually fit their needs.

Long-term scenarios Long-term test scenarios are an
unavoidable obstacle in the development of these systems.
Passing a long-term test indicates maturity in the system,
and is necessary, in our view, to classify a system as over
TRL4. However, the very definition of “long-term” is of an
ambiguous nature. For our purposes, we define “long-term”
as a trial that takes place for over 5 or more consecutive days.
Only one of the adaptive systems under review [59] has suc-
cessfully performed long-term tests, albeit of only 10days. In
fact, the trend points to very short test sessions with the users,
of only a fewminutes, which last only long enough to provide
insight into the principles at work. These short sessions tend
to be sufficient to demonstrate the intended research, and are
thus the most popular method.

However, in technological terms, long-term interaction is
key for the maturity of HRI systems, namely domestic Social
Robots. In this case, robots should be able to interact contin-
uously or intermittently with their users for months or years
of use, as is the case with current consumer electronics. This
indicates another technological challenge in the field: long-
term tests are demanding, from a technological standpoint,
to orchestrate, leading to a tendency to produce proof-of-
concept systems with little impact on society.

Relevant environments Another important aspect of a tech-
nology’s overall maturity is its ability to be tested outside of
the highly-controlled environment of a laboratory. However,
we can observe that the vast majority of works has not yet
left the laboratory. This fact reveals another technological
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Table 3 Readiness metrics of the surveyed Social Robots

References Environment Participants Participant
expertise

(a) Social Robots with no user model

[21] Lab 1 Undisclosed

[11] Lab 35 Non-expert

[13] Lab Undisclosed n/a

[30] Lab 26 Non-expert

[39] n/a n/a n/a

[45] Simulation Undisclosed Undisclosed

[48] Lab 48 Non-expert

[52] Simulation n/a n/a

[57] Lab 35 End-users

[76] Lab 23 Non-expert

[77] Lab 15 Non-expert

[78] Lab 1 Undisclosed

[7] Target-like
Environment

51 End-users

[73] Target-like
Environment

22 End-users

(b) Social Robots based on static user models.

[4] Lab 21 Non-expert

[41] Lab 2 Undisclosed

[17] n/a n/a n/a

[22] Relevant
Environment

49 End-users

[24] Lab 3 Undisclosed

[68] Relevant
Environment

12 End-users

[1] Lab 15 Non-expert

(c) Social Robots based on dynamic user models.

[8] Lab 10 End-users

[10] Simulation n/a n/a

[16] Lab Undisclosed Undisclosed

[27] Lab 49 End-users

[29] Lab 1 Undisclosed

[34] Lab 17 Undisclosed

[47] Lab 12 End-users

[60] Simulation 69 Non-expert

[72] Lab 8 End-users

[59] Lab 16 Expert Users

[74] Lab 25 Non-experts

challenge: these systems could benefit from technological
transference into mature, commercial systems.

5.2 Metrics and Standardization

Adaptivity is seldom the main task of the described systems.
Indeed, this is to be expected: user-adaptiveness in and of

itself offers little utility to the user. However, this results
in a well-observable disparity in the measurements used for
evaluating the performance of the adaptive effort. The perfor-
mance measurements used by the surveyed works (Table 2)
can be split into three basic types:

– Introspective measurements, such as POMDP rewards or
classification accuracy;

– Interaction measurements, such as speech time, auto-
matic measurements that relate to the user’s experience
with the system;

– Subjective measurements, such as ease of use, assessing
the user’s experience with the system through question-
naires.

This results in a lack of standardization, and thus maturity,
in the field.

Introspective measurements provide little to no informa-
tion on the user’s experience with the system. Mostly, these
measurements show that the system was able to achieve
some self-motivated goal, such as achieving a high POMDP
reward, or a high confidence as to the user’s characteristics.
They typically demonstrate that the system’s mathemati-
cal intricacies work as designed, and approximate reality
as closely as the authors intended. However, these cannot
be trivially related to the user’s experience with the system,
providing little insight as to the actual impact of the adaptive
process on the user.

On the other hand, subjective measurements, such as user
acceptance [15,74] and user satisfaction [50], are able to
provide deep insight into the user’s experience in the sys-
tem, and provide objective and empirical information on
the user impact of the adaptive system. Many of the works
under survey employ questionnaires in some way or another,
demonstrating that their adaptive processes do indeed pro-
duce the intended impact on the users, be it ease of use,
perceived bond, among others. However, if a system’s goal
is to be as autonomous as possible while having measure-
ments as to its own performance on user adaptiveness, these
measurements suffer from a major flaw: they are not auto-
matic, and require extensive human intervention, not only in
their administration, but also in their interpretation.

On the middle ground, interaction measurements such
as user intervention time provide limited insight into the
system’s impact on the user, and allow for further personal-
ization based on those metrics. These measurements are able
to close the interaction loop, providing the system with on-
line information on how its action are influencing the user.
Automatic performance metrics are a desirable trait of an
autonomous system, since they enable the robot to evaluate
its own performance, and apply, for instance, techniques for
self-rewarding [75] and self-motivated reinforcement learn-
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ing. However, they tend to be extremely domain-specific, and
not generalizable to other types of interaction.

However, there is a lack of a unified metric, or standard
set of metrics, that can objectively measure the performance
of user-adaptive systems. Interaction measurements, mea-
sured automatically, can possibly constitute a viable first
step towards a solution to this problem. Autonomy in this
measurement is, thus, an indispensable requirement for the
robot’s overall autonomy. Thus, an interesting avenue of
future work would be to automatize subjective metrics or,
from the other perspective, devise interaction measurements
that can be empirically validated.

For these reasons, we have opted for not including the
results obtained by each individual technique in Table 3, as
their comparison would be meaningless.

5.3 Open Databases

An important characteristic of mature research areas is the
ability for differentworks to compare their results against one
another. The standardization ofmetrics, discussed inSect. 5.2
is an important factor in this comparison. Common datasets
are also an important factor, as they provide the common
basis upon which each system will work.

The surveyed works seem to each operate on their own
data. This constitutes a problem when it comes to comparing
different techniques, as it removes the important common
ground for comparison. Thus, it may become important in
the future to build a database of domestic usage of robots,
such as those found commonly for Computer Vision [23] and
Action Recognition [70].

5.4 Usability and Acceptance

The technologically-mature systems we can observe on the
market today tend to exhibit the following characteristics:

– Ease of use;
– Low versatility: focus on a single function;
– Robustness and fault tolerance.

These characteristics stem from a simple design pattern that
can be found across these systems: their interface is maxi-
mally simplified, allowing a large majority of users to use
them successfully. By simplifying the interface design to a
point where any person, regardless of expertise, is immedi-
ately able to understand how they can reap the benefits of
the use of the robot. For instance, the user interface of the
Roomba robot is reduced to a large button in the centre of the
device labelled “CLEAN”. This enables any user, from any
demographic, to make use of the robot: they simply press the
largest button on the device, and it works.

Similarly, the Paro robot, one of the most successful
among our examples, also features a reduced interface. It
communicates only via the non-verbal channel, and emu-
lates, as closely as possible, the behaviour of an immobile
pet. Since users are accustomed to interacting with animals,
interaction with Paro becomes natural, despite the simplistic
adaptive facilities of Paro. However, this simplicity comes at
a price: Paro is not a versatile solution, although it is very
successful at its single intended function.

This form of interface reduction can be seen as one of the
ways to design a system for the majority of users, and it is
currently one of the most successful strategies for ensuring
wide acceptance and usage of user interfaces. However, it
is impossible, except in very concrete cases, to lower the
difficulty of the interface of a complex system to such a level
where everyone can use it flawlessly. Furthermore, it is a
relatively straightforward process to simplify the interface
of a single-function device, but becomes increasingly harder
as devices become more complex and versatile, as is the case
for many robots.

Wepropose user adaptiveness as an alternative solution for
designing systems for every user. By detecting (or learning)
that a user is experienced in the usage of a device, a user-
adaptive system can stimulate the user into learning more
about the device itself and making use of more advanced
functions. Thus the systembecomes almost a “tutor of itself”,
potentially lowering the knowledge entry barrier of these sys-
tems to even lower levels than those that can be achieved by
extremely simplified interfaces by exploiting the natural pro-
cesses already in place in the human mind.

5.5 Ethical Considerations

A clear technological hurdle is the necessity of these sys-
tems to make use of personal data for adaptation. Indeed,
some of the most intricate user-adaptive robots make use of
extremely sensitive information, such as the user’s personal-
ity and emotional patterns.

Users are naturally reluctant to supply this information to
systems they do not know, and with no knowledge of how
this information can be used in the future. This issue is tack-
led, in lab tests, by making data anonymous and employing
transparent procedures in data collection and manipulation.
However, as noted before, commercial systems are naturally
opaque. This leads to opaqueness in the treatment of personal
user data, akin to the phenomenon observed in services such
as Google accounts.

The Paro robot has effectively side-stepped this issue. It
has become a successful system while not employing identi-
fying or personal information on its user. However, complex
systems cannot take the same route, and will inevitably need
to manipulate the personal data of their users.
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Table 4 A summary of the research gaps uncovered in this analysis

Gap Temporal Scope Description

Psychological Trait Modelling Short-Term There is little work based on psychological constructs.

Learning New Users Short-Term There is a need for improved learning mechanisms for efficiently learning users.

Big Data Short-Term There is a gap in the application of Big Data techniques in this context.

Continuous Adaptation Long-Term No works have explored the long-term viability of user-adaptive robots.

User Adaptiveness as a Layer Long-Term Can user-adaptiveness be applied generically to all robotic tasks with users?

Interaction with Multiple Users Short-Term None of the works surveyed are able to interact with multiple users simultaneously.

User-Adaptive Perception Long-Term Little work is devoted to adaptive perception on robots.

Physical and Haptic Systems Short-Term Little work is devoted to user-adaptive physical interaction with the user.

On the other hand, the GrowMeUp Project [51] has opted
for embracing its use of personal data, instead defining a pro-
tocol that adheres to the regulations of the countries involved
in the studies conducted. This solution is suitable when there
are regulations in place that account for the novelty of inter-
active robots. However, obsolete and restrictive regulation
can hinder the performance of studies that could be of vital
importance to the development of these technologies. This
issue stretches beyond the domain of user-adaptive systems,
and the solution to this problem will have to be found for
personal and social robotics as a whole. This, the problem
of privacy and data regulation pose yet another technolog-
ical and societal hurdle that user-adaptive systems need to
overcome.

5.6 Key Elements Towards Mature Systems

One of the main indicators of technological maturity is
the demonstration of its functionality in the operational
environment—the user’s home, in the case of domestic sys-
tems Some of the systems under review already make use of
target-like environments, such as purpose-built rooms. How-
ever, in order for technological progress to be achieved, these
solutions need to operate autonomously with no supervision
at the users’ homeswhich, to the best of our knowledge, none
of the surveyed systems has.

Furthermore, the system should be tested in operating con-
ditions, which involve long-term presence in the home of the
end-user. This poses a number of scientific and technological
problems, namely the study of the long-term impact of Social
Robots in human environments and the development of solu-
tions able to operate for extended periods of time.None of the
systems under review have been tested for extended periods
of time in the homes of the end-users, thus exposing another
technological gap.

Similarly, it is important to transition from non-expert
users to end-users. Instead of employing non-expert users
and corridor sampling techniques in their development, user-
adaptive systems need to be testedwith end-users. These tests

allow for the gathering of crucial feedback that can be used to
improve the technology towards the end-user, not necessarily
towards scientific developments.

This technology is, thus, on the verge of achieving success.
It needs only to overcome three main transitions: to the target
environment, to operational conditions and to end-users.

6 Conclusion

6.1 Research Gaps in User-Adaptive Systems

Table 4presents a summaryof the researchgaps uncoveredon
this survey. These gaps constitute one of the main outcomes
of this analysis: the potential lines of future research that
were uncovered by this work.

We can observe that a number of research gaps still remain
to be explored. In general terms, user-adaptive robots need
to evolve to match the developments that were observed in
the field of HCI over the last few decades. Concretely, there
needs to be an agreement among researchers as to the proper
evaluation techniques of user-adaptive techniques, which
consequentlywould lead to the creation of open databases for
benchmarking. Furthermore, user-adaptiveness can be taken
to the next level by the employment of user-specific psycho-
logical information, such as personality traits, mood or even
psychological disorders, which would potentially extend the
application range of these systems from the domestic to the
clinical environment. Lastly, all of the surveyed works focus
on user-adaptive actuation in some form. This leaves open
the field of user-adaptive perception, which would allow a
system to adapt its analysis of incoming data to the user it is
currently interacting with, potentially improving the perfor-
mance of state-of-the-art behaviour analysis systems.

6.2 Overall Readiness of User-Adaptive Systems

In order to determine the overall status of the field, in techno-
logical terms, we have performed a general TRL analysis of
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Fig. 7 Illustration of the general TRLs of the surveyed techniques

the systems described above. The categorization of mature
systems is hindered by the opaqueness of the commercial
systems under study. Since none of the mature systems have
published, to the best of our knowledge, any details on how
they handle their data on the user, it is impossible to cat-
egorize them unequivocally. For instance, the Buddy robot
seems able to know its users’ name and age, but how that
information is gained, which constituted the tipping point of
our analysis, is not disclosed. A notable exception is Pep-
per which, according to the information available, can be
assumed to have a no-model adaptive interface based on emo-
tions. As such we will not categorize the remaining systems
in this discussion.

Systems that make use of no explicit user model for
adaptivity, such as Pepper, are very close tomass public avail-
ability. Adaptive systems of this nature have been tested in
relevant scenarios both in scientific and non-scientific sce-
narios, and have shown their ability to operate in a variety of
scenarios. Systems of this nature are well-established in the
realm of HCI, and are becoming so also in HRI. Taking into
account the success of the Pepper robot, and the underlying
scientific research on this category of systems, they can be
classified, overall, as TRL 8.

Systems that make use of staticmodels have been, as illus-
trated in Table 3, tested in target-like environments, such
as model homes or controlled home-like environments. The
absence of these techniques in technologically mature robots
dictates the insertion of these techniques in TRL 5. Simi-
larly, techniques relying on dynamic user models seem to

never have left the laboratory and, as such, can be classified
as TRL 3. This analysis is illustrated in Fig. 7.

6.3 Closing Remarks

In this work we have provided an overview of the state of the
art on user-adaptive Social Robots.

We have performed a twofold exploration of the state of
the art. Firstly, we have explored the scientific aspects of
the field, and have enumerated and analysed a number of
currently-published systems. Secondly, we have explored the
technological status of the field, determining a number of
technological hurdles that must, in our view, be surmounted
in order to achieve technological maturity.

Indeed, by observing Table 3 and Fig. 7, we can conclude
that all of the academic systems analysed in the previ-
ous sections inhabit TRL levels ranging from 1 through 5.
Conversely, user-adaptive systems in HCI can be easily cate-
gorized as TRL 9, as there are already user-adaptive solutions
in broad use, e.g. recommender systems. Thus, there is a clear
technological gap betweenHRI andHCI in thismatter, which
can provide an interesting platform for future developments.

In general terms, we can conclude that user-adaptive
systems are harnessing the attention of researchers from sev-
eral fields, in an apparent renaissance of the field since its
inception in HCI. We believe that user-adaptiveness in itself
constitutes an interesting and rich field of research, and will
aim to further scientific knowledge in this area in the future.
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