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Abstract

The Free Body Diagram method, based on the dy-
namic equations of isolated rigid bodies, is used to
overcome the di�culties in dynamic modeling of legged
robots. This article presents a simulator for a six
leg machine. Both kinematic and dynamic models
are developed. Kinematic equations are derived with
Denavit-Hartenberg method. The Free Body Diagram
method is used to obtain the dynamic model. Some
results of simulation are presented.

1 Introduction

Most of the vehicles that we are familiar with use
wheels for their locomotion. Wheeled vehicles can
achieve high speed motion with a relative low con-
trol complexity. Unfortunately they present several
limitations in rough and irregular surfaces. Even with
complex suspension systems they are only able to over-
come relatively small irregularities on the terrain. The
US army estimates that the wheel can only reach 50%
of the places on earth. Whenever environment is a
concern, the destruction made in building suitable
tracks is another problem ([6][7][4]). The legged lo-
comotion is one alternative that overcomes these di�-
culties. It introduces more exibility and soil adapta-
tion at the cost of lower speed and increased control
complexity. Legged vehicles can walk on rough and ir-
regular surfaces with a minimum of destruction and a
high degree of softness. This explains the importance
of legged robots on mobile robotics research.

The legged locomotion on natural terrain presents
a set of complex problems (foot placement, obstacle
avoidance, load distribution by the supports, general
vehicle stability, etc) that must be taken into account
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Figure 1: The hexapodal 3D structure. Simpli�ed 2D
structure

both in mechanical construction of vehicles and in de-
velopment of control strategies. One way to handle
these issues is using models that mathematically de-
scribe the di�erent situations. Therefore modelization
becomes a useful tool in understanding systems com-
plexity and in testing and simulating di�erent control
approaches.

Modelization techniques for mechanical structures
are developed in this paper. The Denavit-Hartenberg
method is used in deriving a 3D kinematic model of
a six leg robot. Dynamic modelization is performed
using the Free Body Diagram method (FBD). The
FBD method is introduced as an alternative to La-
grangian Formalism and is based in the dynamics of
isolated rigid bodies. A simulator is built to validate
the achieved models. Some simulation results are pre-
sented in section 6.

2 The mechanical structures

The considered 3D structure is formed by a cen-
tral body, with an hexagonal shape and six legs. The
legs are similar and simetrically distributed around the
body (Fig.1). Each leg is composed by two links and
three rotary joints. Two of these joints are located at
the junction of the leg with central body (horizontal
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Figure 2: The coordinate systems de�ned for each leg.
Legs' locations around the central body.

(�1i) and vertical (�2i) rotation). The third joint is
located at the knee, connecting the upper and lower
link (vertical rotation (�3i)). Therefore each leg has 3
DOF (degree of freedom).Considering six legs and the
additional 6 DOF for central body translation and ro-
tation, the system has a total of 24 DOF.

The dynamic modeling of the 3D structure with
six legs is a huge problem that would lead to a great
amount of equations. Thus, to explain dynamic mod-
eling using FBD approach, a simpli�ed planar struc-
ture is considered. However, the formalism of FBD
method can be extended to 3D structures. The sim-
pli�ed 2D structure has two legs and a central body.
Each leg is composed by two links and two rotary
joints (�1i disappears). Considering central body with
3 DOF (translation in X and Y and rotation around
Z), the system has a total of 7 DOF.

3 The kinematic equations

3.1 Direct kinematics of 3D structure

0
A1 =

2
664

cos(�1) 0 sin(�1) 0
sin(�1) 0 � cos(�1) 0

0 1 0 0
0 0 0 1

3
775 (1)
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cos(�3) � sin(�3) 0 c: cos(�3)
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3
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~r0 = F (�1; �2; �3) =
0
A1(�1):

1
A2(�2):

2
A3(�3):[0; 0; 0; 1]

t

(4)
The Denavit-Hartenberg (D-H) method is one of the
most popular technics used in kinematic modeling of
manipulators [1][3][5]. The described robot legs are
similar to simple manipulators with 3 DOF. Therefore
D-H method can be used to compute the transforma-
tion matrices between referential frames (Fig.2). De-
rived transformation matrices are presented in equa-
tions 1, 2, 3, where a and c are the length of links.
Leg direct kinematic problem can be solved by these
matrices. Function (4) shows it by computing tip co-
ordinates on the base system given an arbitrary triad
of joint angles (�1; �2; �3).

c
A0i =

2
664
� cos(i) sin(i) 0 d: cos(i)

0 0 1 0
sin(i) cos(i) 0 �d: sin(i)

0 0 0 1

3
775 (5)

The six legs and the central body must be integrated
to solve the global kinematic problem. Consider the
referential located at the center of the body (Fig.2).
Legi coordinates in body referential are obtained using
the transformation matrix of equation 5. Note that
d = L:cos(�

6
) and each leg has a di�erent i associated

with it.
For simulationpurposes it is important to be able to

compute robot coordinates in an inertial frame located
somewhere in space. The transformation matrix i

Ac

between body referential and the inertial frame de-
pends of the 6 DOF of the robot central body. Three
DOF are the angular positions (�x; �y; �z) of the body
around the inertial axes. The other three are the co-
ordinates of the mass center (Rx; Ry; Rz) in inertial
frame. The considered rotation sequence is (Y,Z,X)
(see [1] for more details).

3.2 Direct kinematics of 2D structure

Consider the planar structure composed by a cen-
tral body and a pair of legs (Fig.3). The legs used
in this example are the 3 and 4 of the equivalent 3D
structure (Fig.2). It is necessary to reach a kinematic



Frame

��
��
��

��
��
��(Rx, Ry)

Y

X

z+ - -

+

-++-

+

- -

33 34

23 24

3 = 180 4 = 0

+
θ

θ

θ

θ

γ γ

φ

Inertial 

Figure 3: Independent variables of 2D kinematic
model.

model of the system and to select the independent or
generalized kinematic variables.

Planar transformation matrices 2
A3, 1

A2, c
A1,

i
Ac are derived from matrices 3D transformation ma-
trices. Note that if values of - Rx, Ry, �z, �23, �24, �33,
�34 - are known at a given instant of time, structure
position can be determined in an unambiguous way.
These variables are the seven independent kinematic
variables (or the independent generalized variables of
Lagrange Formalism [11]).

4 The dynamic equations

Dynamic modeling of mechanical structures can be
a complex problem. In robotics there are two main
classical methodologies used for dynamic modeling:
Lagrange and Newton-Euler.

The Lagrange approach is based on the energy prin-
ciples. It works with scalar quantities, instead of vec-
tors, handling the internal forces between the elements
of the system in an implicit way. This method, al-
though computationally expensive, can be particularly
useful when a state space model is intended.[1] [10]
[11].

The Newton-Euler method applies the vectorial dy-
namic equations to each element of the structure.
The �nal system is achieved by joining all the ele-
ments equations. The internal forces are handled in
an explicit way, as well as inertial and Coriolis forces.
Most of the times Newton-Euler technique is di�cult
to use in modeling interacting structures like legged
robots.[1] [3]

In this work an alternative method, called Free
Body Diagram (FBD), is used to model legged robots.
It is based in dynamic equations of isolated rigid bod-
ies (a standard in mechanics) and integrates some
concepts of the last two methods. Considering the
3D six leg structure, dynamic model derivation would
inevitably lead to a great number of equations and
variables. Thus, and without loss of generality, FBD
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Figure 4: Free Body Diagram

approach is explained considering a planar structure
with two legs. All the enunciated formalism can be
extended to a 3D structure.

5 Introduction to the FBD method

X
F ext
x =M:ax (6)

X
F ext
y = M:ay (7)

~Mz =
X
i

~ri �
~F ext
i (8)

Mz = ICM : (9)

The FBD method is based in rigid body dynamics.
Given a 2D body, its position in an inertial frame is
determined in an unique way by the XY coordinates of
the center of mass (CM) and a rotation angle. Equa-
tions 6, 7, 8 and 9 describe the dynamic behavior of
the body when a set of external forces F ext

i is applied.
Equations 6 and 7 calculate the translational motion
of the CM due to the applied resultant force (in X and
Y directions). Equation 8 computes the force moment
Mz and equation 9 determines the angular accelera-
tion. Notice thatM is the mass and ICM is the inertial
moment for rotation around an axis parallel to inertial
frame Z axis and passing through CM. If an inertial
moment IP is considered the rotation axis will pass
through a given point P instead of CM.

This formulation can be extended to a 3D body.
Its position is determined by XYZ coordinates of CM,
thus it has three dynamic equations for translation.
If the body motion is completely free and can ro-
tate around inertial X, Y and Z directions, three ro-
tation equations are needed. For the general case
the dynamic behavior is described by six equations.
Considering the example, 2D structure is formed by
�ve rigid bodies: the central body (cp), the superior
links (a3, a4) of both legs and the inferior links (c3,
c4). Each element must be isolated to build the FBD
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Figure 5: Auxiliary points

diagram with all the applied forces (Fig.4). The exter-
nal forces to the structure are the gravitic forces and
the friction forces on the tips (friction on the joints
is not considered). The contact forces between the
di�erent elements are internal to the system.

5.1 Auxiliary points coordinates

To avoid dealing with inertial forces and complex
transformations, dynamic equations are derived in
an inertial referential located outside the structure.
Therefore the inertial coordinates of the points where
forces are applied must be calculated . These points
are: the mass centers (gravitical forces), the contact
points of the links(tension forces) and the supports
(friction forces)(Fig. 5). They are essential to com-
pute the rotation force moments . The arm vectors
coordinates (ri in equation 8) can be determined by
subtracting pairs of points coordinates in the inertial
frame referential.

With 2D transformation matrices the derivation of
inertial points coordinates as a function of the seven
independent kinematic variables is straight forward.
These functions describe the restrictions in motion im-
posed by structure con�guration. In the example of
2D structure the �ve rigid bodies are connected and,
consequently, the motion of each one is dependent of
the others.

5.2 Rotation versors of isolated rigid bod-
ies

~Mr = ~M : ~vers (10)

For each isolated body, the resultant force moment
( ~M(Mx;My;Mz)) is calculated in an inertial frame
placed outside the structure. To determine the angu-
lar acceleration it is necessary to compute the com-
ponent of force moment ( ~Mr(Mr

x;M
r
y;M

r
z)) with the

direction of body rotation axis (equation 9). In D-H
method the Z axis of the referential frames attached
to the each joint is coincident with the joint rotation

axis (Fig 2). Thus, rotation axis versor ~vers is deter-
mined by computing Z versor coordinates in the iner-
tial referential frame. These are easily derived using
the kinematic transformation matrices. ~Mr is calcu-
lated in equation 10 using scalar product.

Considering the 2D structure, the rotation axis of
the central body ( ~verscp) and both links of leg 3
( ~versa3; ~versc3) have the same direction and orien-
tation of the Z axis in the inertial frame. For leg 4
( ~versa4; ~versc4) the direction is the same of Z, but
the orientation is symmetric.

5.3 The system of dynamic equations

From the FBD diagram (Fig.4) the dynamic equa-
tions of each element of 2D structure can be derived.
For the central body (C):

8>>><
>>>:

mcp
d2Rx

dt2
= Tx3 + Tx4

mcp
d2Ry

dt2
= Ty3 + Ty4 �mcpg

~Mcp =
P

4

i=3[(
~Rbi � ~R)� ~Tyi]

Icp
d2�z
dt2

= ~verscp: ~Mcp

(11)

For the upper link of a generic legi (B) (Fig.4):

8>>>>>><
>>>>>>:

ma
d2Raxi

dt2
= Tjxi � Txi

ma
d2Rayi

dt2
= Tjyi � Tyi �mag

~Mai = [( ~Rbi � ~Rai)�(� ~Tyi)]+

+[( ~Rji � ~Rai)� ~Tji]

d2�2i
dt2

= ~versi:
~Mai

Ia
�

~versai:
~Mcp

Icp

(12)

For the lower link of a generic legi (A) (Fig.4):

8>>>>>><
>>>>>>:

mc
d2Rcxi

dt2
= Fai � Tjxi

mc
d2Rcyi

dt2
= Ni � Tjyi �mcg

~Mci = [( ~Rji � ~Rci)�(� ~Tji)]+

+[( ~Rpi � ~Rci)�( ~Ffi)]

d2�3i
dt2

= ~versci:
~Mci

Ic
�

~versci:
~Mai

Ia

(13)

The eight last equations are generic for legi
(i=3,4).The inertial mass of the central body, the
superior link and the inferior link are respectively
mcp;ma and mc. The inertial moments Icp; Ia; Ic are
computed for the CM of the constituents, g is the
gravitic acceleration and ~F�(Fai;Ni) (i=3,4) refers to
the friction force.

Notice that the last rotation equation of (12) and
(13). Beside the use of versors explained above, dif-
ferential angular acceleration between two consecutive
elements are computed, instead of absolute accelera-
tion referred to the semi-positive X axis. This is done



as a way to avoid more equations and variables. The
body rotation angle is the same in the kinematic and
dynamic modeling.

For 2D structure example 20 dynamic equations
are obtained. In previous sections more 25 kine-
matic equations were derived to compute the auxiliary
points ( ~Rai; ~Rci; ~Rbi; ~Rji; ~Rpi) and the rotation ver-
sors ( ~verscp, ~versai, ~versci) in function of the seven
independent kinematic variables. If applied external
forces are known the dynamic description of the sys-
tem is concluded.

5.4 Foot-soil interaction

There are a wide variety of foot soil interaction
modeling. The model that is used considers a rigid
surface whose shape is described in the inertial frame
by y = %(x). The friction forces ~Ff (Fa;N) are eval-
uated with the help of two coe�cients, �S and �D,
dependent of the soil features. If the tip doesn't slide
along the surface than Fa � �S�N , else Fa = �D�N .
Usually �S � �D. In each instant of time the leg must
be in one of three states: non contact(ST3), contact
without sliding(ST2), and contact with sliding(ST3).

ST1 ST2 ST3

Ni = 0 Rpxi = a Fai = �D:Ni

Fai = 0 Rpyi = b Rpyi = %(Rpxi)

If the leg is in state ST1 then Rpyi > %(Rpxi) and
(Rpxi; Rpyi) are the tip coordinates. The leg is raised
and no forces are exerted on the tip. The �rst column
equations are added to the global system of equations.
When the leg is in contact with the soil at point (a,b)
two cases can be considered. If it doesn't slip along
the surface (state ST2) than friction force can't be
directly computed. However tip remains in the same
position whose coordinates are known. Second column
equations are added to the global system and determi-
nation of (Ni; Fai) becomes possible. If the computed
value of Fai is higher than �S :Ni it means that the
static friction force is not enough to keep the tip in
(a,b). In this case the leg is in state ST3. Third col-
umn equations, instead of second column, are added
to the global system whose solutions are recalculated.

5.5 Mathematical resolution

Derived a system with the same number of vari-
ables and independent equations (non singular), so-
lutions must be determined. Consider a period of
time �t and make the discrete sampling of the vari-
ables. A system of non-linear discrete equations is

Figure 6: The hexapodal simulator. Positions of the
structure during simulation

obtained by replacing the second order derivatives by
a discrete approximation. In each moment t = k:�t

system solution gives the applied forces ( ~Ti; ~Tji; etc)
and predicts the position of the structure in the next
moment(Rx[k + 1]; Ry[k + 1]; �z[k + 1]; etc). Newton
method is used to solve the dynamic system of equa-
tions for each instant of time.

6 Simulation and results

A kinematic and dynamic simulator was pro-
grammed using the derived models (Fig.6). In this
section the results of one of the many realized experi-
ments is presented.

Rx Ry �z �23 �33 �24 �34
0 0.6 0 0 245 0 255

Consider that structure falls from a starting position
(Fig 6). The initial values of independent kinematic
variables are in the table. The considered period of
time is 0.01s and the friction coe�cients are �S = 0:4
and �D = 0:3. Note that for t=0 the structure is not
in contact with the ground.

To illustrate the studies that can be realized using
the simulator, Fig.7 depicts the evolution of tips po-
sition(XY) and applied friction forces. Note that leg
4 touches the ground 0.02s before leg 3. The �rst one
reaches the soil 0.20s after the start of motion. Around
moment 0.24s both legs start slipping.
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Figure 7: Graph1: Evolution of tips position of both
legs in inertial frame (Position(m) versus Time(s)).
Graph2: Applied forces on the tips of both legs
(Force(N) versus Time(s)).

7 Discussion and conclusions

Dynamic modeling applying Lagrange Formalism
is useful when a state space model is intended. How-
ever, for the example of the 2D structure, due to the
complexity of the derived expressions, the symbolic
inversion of matrix D ([1][2]), when possible, needs
a huge amount of computation time. This computa-
tion is unpracticable. The option is to make the dis-
crete sampling of the variables, as a way to obtain a
set of non-linear discrete equations that can be solved
with Newton method (as done in FBD). Thus, neither
using FBD nor Lagrange Formalism, the state space
equations are obtained. The mathematical resolution
of Lagrange equations is similar to the FBD method.
The Lagrange dynamic description is more condensed

than FBD description. On the other hand the FBD
equations are intuitive, easy to derive and allow the
computation of internal forces and moments.
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