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SimulatingPursuit with Machine
Experiments with Robots

and Artificial Vision
Jorge Dias, Carlos Paredes, In´acio Fonseca, Helder Ara´ujo, Jorge Batista, and Anibal T. Almeida

Abstract—This article is concerned with the simulation of
pursuit. The article describes one solution for the problem of
pursuit of objects moving on a plane by using a mobile robot and
an active vision system. The solution deals with the interaction of
different control systems using visual feedback and it is accom-
plished by the implementation of a visualgaze holdingprocess
interacting cooperatively with the control of the trajectory of a
mobile robot. These two systems are integrated to follow a moving
object at constant distance and orientation with respect to the
mobile robot. The orientation and the position of the active vision
system running agaze holdingprocess give the feedback signals
to the control used to pursuit the target in real-time. The paper
addresses the problems ofvisual fixation, visual smooth pursuit,
navigation using visual feedbackand compensationfor system’s
movements. The algorithms for visual processing and control are
described in the article. The mechanisms of cooperation between
the different control and visual algorithms are also described.
The final solution is a system able to operate at approximately
human walking rates as the experimental results show at the end
of the article.

Index Terms—Active vision, artificial vision, pursuit, naviga-
tion.

I. INTRODUCTION

T HE PURSUIT of moving objects with machines such as
a mobile robot equipped with an active vision system

deals with the problem of integration and cooperation between
different systems. This integration has two distinct aspects: the
interaction and cooperation between different control systems
and the use of a common feedback information provided by
the vision system. In this article a global solution is proposed
based on the visualgaze holdingprocess to establish a pursuit
mechanism fortargets moving in front of the mobile robot.
The system is controlled to keep constant the distance and the
orientation of the robot and the vision system. The solution
for this problem deals with the interaction of different control
systems using visual feedback. It also addresses the real-time
tracking of objects by using a vision system. This problem
has been addressed in different fields such as surveillance,
automated guidance systems, and robotics in general. Several
works addressed the problems of visual servoing but they
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are mainly concerned with object tracking by using vision
and manipulators [1], [8], [9], [11] and only some address
problems related with ours [13]–[15]. Coombs studied the real-
time implementation of agaze holdingprocess using binocular
vision [8]. The system used a binocular system mounted on a
manipulator and Coombs studied different control schemes for
visualgaze holdingusing the information of two images. These
studies included predictive control schemes to avoid delays,
[4], [8]. Papanikolopoulos also proposed a tracking process
by using a camera mounted on a manipulator for tracking
objects with a trajectory parallel to the image plane [11]. The
information supplied by the vision system is processed by
an optical flow based algorithm that is accurate enough for
tracking the objects in real-time. The efficient use of windows
in the image improves the performance of the method. A
control process is also reported by Allen for tracking moving
objects in three-dimensions (3-D) [1]. The system can be
used for grasping the objects by using a manipulator. The
vision system uses two cameras and the distance from the
manipulator’s tool to the object is computed in real-time by
using stereo images. Once the tracking scheme is stable, the
system controls the manipulator to intercept the moving object
and pick it up. These studies have connection with the solution
for pursuit proposed in this article, since they deal with the
tracking problem by using visual information. However in our
system we explore the concept of visual fixation to develop
the application. The computational solution for visual fixation
uses motion detection to initiate thefixation processand to
define a pattern that will be tracked. Duringpursuit the system
uses image correlation to continuously track the target in the
images. The solution is a refinement of the Burt technique
[6]. Burt reports a real-time feature detection algorithm using
hierarchical scaling images for surveillance and robotics.

More recently several laboratories have been engaged in
a large European project (theVision as Processproject) for
the development of systems, based on active vision principles.
During the project, studies have been made to integrate camera
control, ocular reflexes, real-time image processing, image
tracking, perceptual grouping, active 3-D modeling, and object
recognition.

Some of the systems described above have similarities with
ours but in our system we control the system to keep the
distance and orientation of the mobile robot with respect to
a target. The solution described in this article includes the
control of thegazeof the active vision system. Furthermore,
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our hierarchical control scheme establishes a pursuit process
using different degrees of freedom on the active vision system
and the movement of the mobile robot. To simplify the solution
several assumptions were made. These assumptions are based
on the type of movements and targets that we designed the
system to cope with, and system’s physical constraints such
as: maximum robot velocity, possibility of adjustment of
the optical parameters for focusing, maximum computational
power for image processing and, the nonholonomic structure
of the mobile robot. We assume that:

1) target and the robot move on a plane (horizontal plane);
2) the difference between the velocities of the target and of

the robot does not exceed 1.2 m/s;
3) the distance between the target and the mobile robot will

be in the interval of [2.5 m, 5 m] and the focal length
of both lenses is set to 12.5 mm;

4) the target is detected only when it appears inside the
cameras’ field of view.

5) the system is initialized by setting the vision system
aligned with the vehicle (the cameras are oriented to see
the vehicle’s front).

These assumptions bound the problem and only two vari-
ables are used to control the system. One is the angle in the
horizontal plane defined by the target position relative to the
mobile robot referential. The other is the distance between the
robot and the target.

In the next Section, an outline of the pursuit process and
its solution is given. In Section III, the system architecture
and all geometric relations used in the solution are described.
Section IV describes the image processing methods used to
obtain information about the target. Section V describes the
control of the system and explains the integration of different
control modules. Section VI describes and illustrates some
system’s parameters when the system is performing pursuit
and the last Section summarizes and comments the solution
proposed.

II. PURSUIT OF MOVING OBJECTS

The problem of pursuing a moving object is essentially
a motion matching problem. The machine, the robot in our
case, must be controlled to reach the same motion as the
target. In practice this is equivalent to keep constant the
distance and orientation from the robot to thetarget. However,
the solution for this problem has some particular aspects
that must be emphasized. If the target is a person walking,
its trajectory can be suddenly modified and consequently
its velocity. Any solution proposed must cope with these
situations and perform the control of the system inreal-
time. Since the machines have physical limitations in their
velocity and maneuvering capabilities, it is essential to classify
the different sub-systems used according to their velocity
characteristics. In our experiments we use a mobile robot and
an active vision system, and these two systems have different
movement characteristics. The active vision system presents
greater velocity than the mobile robot and also has less mass.
However, it is the mobile robot (the body of the system) that
must follow thetarget—see Fig. 1.

Fig. 1. The information provided by theactive vision systemis used to
control the mobile robot topursuit a person inreal-time.

To perform the pursuit of a movingtarget we use two
basic control schemes: a visualfixation control of the active
vision system and the trajectory control of the robot. The
visualfixationcontrol guarantees that thetargetis continuously
tracked by the vision system, and gives information about
its position to the robot control. The robot control uses
that information as a feedback to maintain the distance and
orientation to thetarget.

The visualfixation control must be one visual process that
runs in the active vision system and has capabilities to define
a target, to concentrate the vision system on thetarget and
follow it. A process with these characteristics has similarities
with the visual gaze-shifting mechanism in the humans [7].
The gaze-shifting mechanism generates movements in the
vision system to put a new object of interest in the center
of the image and hold it there. The movement used to put
the object in the center is calledsaccade, it is fast and it
is performed by the two eyes simultaneously. If thetarget of
interest is moving relative to the world, the vision system must
perform movements to hold thetarget in the image center.
These movements are composed by two types of motions
called smooth pursuitand vergence. These motions are the
consequence of the control performed by the process that we
designate asfixation.

Thefixationprocess centers and holds the orientation of the
vision system on a point in the environment. The principle is
described graphically in Fig. 1 where the mobile robot with
an active vision system is concentrated on a person.Fixation
gives a useful mechanism to maintain the relative orientation
and translation between the referential in the vehicle and the
target that is followed. This results from the advantages of
thefixationprocess, where the selectedtarget is always in the
image center (foveal region in the mammals). This avoids the
segmentation of all the image to select thetargetand allows the
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Fig. 2. State diagram of thepursuit process.

use of relative coordinate systems which simplifies the spatial
description of thetarget (relationship between the observer
reference system and the object reference system).

The pursuit process can be described graphically by the
state diagram in Fig. 2. The process has three states:Rest,
Vergence Stabilization, andPursuit. The pursuit process must
be initialized before starting. During this initialization, atarget
is chosen and several movements are performed by the active
vision system: the gaze is shifted by asaccademovement
and the vergence stabilized. In our system thetarget is chosen
based on the visual motion stimulus. The selection corresponds
to a region in the images that generates a large visual motion
in the two images.

If a target is selected, asaccademovement is performed to
put thetarget in the image center, and the system changes from
the stateRest to Vergence Stabilization. During thesaccade
movement no visual information is used to feedback the move-
ment. In theVergence Stabilizationstate the system adjusts
its fixation in the target. This is equivalent to establishing the
correct correspondence between the centers of the two images,
and defining afixation point in thetarget. When the vergence
is stabilized, the system is maintained in thePursuit state.

III. B UILDING A SYSTEM TO SIMULATE PURSUIT

A. System Architecture

The main hardware components of the system are the mobile
robot and the active vision system. These two basic units are
interconnected by a computer designatedMaster Processing
Unit. This unit controls the movements of the active vision sys-
tem, communicates with the robot’s on-board computer and is
connected to two other computers designatedSlave Processing
Units. These units are responsible for processing the images
provided by the active vision system. The connections between
different processing units are represented in the diagram shown
in Fig. 3 and a photograph of the system is presented in Fig. 4.

TheRightand theLeft Slave Processing Unitsare computers
with i486DX2 CPU’s running at 66 MHz. Each contains a
DT-IRIS (50 Hz) frame grabber connected to each one of
the cameras. TheSlave Processing Unitsprocess the images
and communicate their results to theMaster Processing Unit
(another computer with a i486DX2 CPU running at 66MHz).
These communications use a 10 MBits connection provided
by Ethernet boards (one board on each computer). The active

Fig. 3. System architecture.

Fig. 4. The active vision system and the mobile robot.

vision system has two CDD monochromatic video cameras
with motorized lenses (allowing for the control of the iris,
focus and zoom) and five step motors that confer an equal
number of degrees of freedom to the system (vergence of
each camera, baseline shifting, head tilt and neck pan). The
Master Processing Unitis responsible for the control of the
degrees of freedom of the active vision system (using step
motor controllers) and for the communication with the mobile
platform (using a serial link).

The actual control of the mobile platform is done by a
multiprocessor system based on a 68 020 CPU, installed on the
platform. The management and the interface with the system
is done by a computer, connected to theMaster Processing
Unit using the serial link and a wireless modem.
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(a) (b)

(c) (d)

Fig. 5. Location of all the system’s referentials: (a)CYCLOP and EYES
referentials; (b) and (c)NECK referentials; (d)BODY referential.

B. System Geometry

There are six referentials associated with the system’s
mechanical structure, as illustrated in Fig. 5. The mechanical
structure is divided into four groups:BODY, NECK, CYCLOP
and EYES. The last three groups contain the referentials
associated with the part of the structure referred to as head.

The upper part of the head structure is formed by theEYES
and theCYCLOPgroups [represented in Fig. 5(a)]. TheEYES
group contains two referentials designated and
They are associated with the mechanical support for the two
cameras, and each referential can be rotated around its-axis,
allowing for the cameras’ vergence control. The cameras are
supported by theCYCLOPmechanical part and between them
is located the referential This referential is located over
the same vertical line as the referentials in theNECK group
[described in Fig. 5(b) and (c)]. The distance between the
referentials and ] is known as the and
can be changed. For calibration purposes, both cameras can
be adjusted along the-axis. The appendix-A describes the
parameters of the mobile robot and the vision system in detail
[16], [18].

Located in the lower part of the head structure are the two
referentials of theNECKgroup: and (represented
in Fig. 5(b) and (c), respectively). Each can be rotated around
a different axis (the index of each name indicates the rotation
axis), allowing the upper part of the structure to be moved
with two degrees of freedom (head tilt and neck pan).

The referential his located directly above the
referential and they have coincident-axis.

Finally theBODYgroup, that contains the referential
and is located in the mobile platform at the middle of the
driving axle (i.e. the rear axle) and is represented in Fig. 5(d).
The platform’s driving wheels are independent, allowing the
platform to rotate around the-axis of the referential
and to move its origin.

Fig. 6. Geometric model of each camera.

The head structure is placed on the mobile robot in such
a way that the -planes of the referentials in theCYCLOP,
NECK, andBODY groups are coincident.

C. Camera Model

To find the relation between a two-dimensional (2-D) point
in one image obtained by either camera with its corresponding
3-D point in that camera’s referential we use the
perspective model.

The projection of the 3-D point in plane is a point
that results from the intersection of the projective

line of with the plane The perpendicular projection of the
point in the plane is defined as the center of the image,
with coordinates ( ). The distance between the point
and its projection is called the focal length.

If ( ) are the 3-D coordinates of the point in the
referential, the 2-D coordinates of the projection

( ) of it on a continuous image plane is given by the
perspective relationships

(1)

Since the image for processing is a sampled version of the
continuous image, the relation between the units (millimeters)
used in the referential and the image points ( )
are related with by

(2)

That relation is obtained with a calibration process that gives
the scale factors for both the and the -axis ( and ,
respectively) [17]. The image center ( ), the focal length

and the scale factors and are called the intrinsic
parameters of the camera.

Three-dimensional point given in the referential
transforms into the 2-D image coordinates of that point’s
projection. To obtain this transformation in the and
referentials we must take into consideration the orientation
and location of in those referentials. As can be seen
in Fig. 6, the referential is rotated with respect to
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and and their origins are probably not coincident.
However the camera’s position can be adjusted, therefore
permitting the vector to become approximately equal to
the null vector, making the origins almost coincident. This
adjustment is realized during the cameras calibration phase.
If the translation is null, the transformation of the
referential into the or referentials can be done
with a simple transformation.

D. System Models and Geometric Relations

The information of thetarget’sposition in the images is used
to control the position and orientation of the vision system
and of the mobile robot in order to maintain the relative
distance and orientation to thetarget. Essentially the system
must control the position of each actuator to maintain this goal.
This implies to control the actuators of the vision system and
also of the mobile robot. In our system these actuators have
their ownunits that control their position with accuracy. These
units are designated low-levelcontrol units.

In the case of the vision system the actuators used are
step motors. These motors are controlled by dedicated units
supervised by theMaster Processing Unit. These motors rotate
a specific number of degrees for each pulse sent to their power
driver unit. The pulses are generated by the dedicated control
units. These units generate different profiles for the pulse rate
curve which must be adjusted for each motor. This adjustment
is equivalent to a step motoridentification procedure. This
procedure was performed for each motor used in the active
vision system. With this procedure the correct curve profile
was adapted for a precise position control.

The mobile robot has also its own on-board computer that
controls the motors used to move it. The onboard computer is
responsible for the correct execution of the movements, and
it accepts commands for movements that can be modified
during their execution. This possibility is explored in our
system to correct the path during the movement execution. The
commands sent to the mobile robot reflect the position that the
robot must reach to maintain the distance to thetarget. If the
commands sent do not exceed the possibilities of the system,
the command will be sent to the robot to be executed with
accuracy. This detail is verified before sending a command
to the mobile robot. Appendix A gives some details about
these mobile robot parameters. These low-level control units
facilitate the global control of the system and its adjustment.

Since thetargetchanges its position in space, in most of the
time its image position will also change. The goal is to control
the system in such a way that the object’s image projects
into the center of both images, maintaining at the same time
the distance to the object. The control can be performed by
controlling the robot position, the neck orientation and the
vergence of both cameras. The control implies the use of these
degrees of freedom to reach the goal ofpursuinga target. It
is possible to obtain expressions between the several degrees
of freedom, useful for their control, based on the geometric
relationships.

The goal is to change the cameras’ anglesand by
the amount necessary to keep the projection of thetarget in

(a)

(b)

Fig. 7. Cameras’ vergence angle control.

the center of the image (see Fig. 7). Since we assume that the
target moves on the same plane as the mobile robot we will
consider only the horizontal disparity

Let be the coordinate in pixels of the reference point along
the -axis of either frame. The angle that each camera must
turn is given by

(3)

This relation is easily derived from the (2) and from the
representation in Fig. 7. To provide the system with the ability
to react to the movements of the object’s and with the ability
to keep the distance and attitude between the two bodies, it is
necessary to evaluate the distance of the object with respect
to the robot. The position of the object to track is defined in
terms of its distance and the angle with respect to the

referential, and using thefixationpoint as reference (both
parameters are represented in Fig. 8).

To obtain the equations that give the values ofand
we start by defining the following relations, taken directly
from Fig. 9 (equivalent to Fig. 8, but with some auxiliary
parameters)

(4)

The distance and the angle of the fixation point with
respect to the referential can be obtained by the following
equations (recall that the angle is positive clockwise—see
Fig. 9):

(5)
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(a)

(b)

Fig. 8. Distance and angle to the object defined in the plane parallel to the
xy-plane of thefCCCg referential.

Fig. 9. Auxiliary parameters.

Note that, when equals the above relations are not
valid. In that case, the angle is zero, and the distance
is equal to

As described above, the motion and feature detection al-
gorithms generate the position in both images of the object
to follow. From that position, only the value along the-
axis will be used, since we assume that the objectmoves in
the horizontal plane, and thereforewithout significant vertical
shifts.

The trajectories of the moving platform are planned by the
Master Processing Unitbased on the values of and given
by (5). The values and define a 2-D point in the
referential. These values can be related to the referential
since all the relationships between referentials are known. The
result is a point with coordinates and as shown in
Fig. 10.

Fig. 10. Robot trajectory planning.

This figure is useful to establish the conditions for a mobile
robot’s trajectory when we want that the mobile robot reaches
a point To clarify the situation we suppose that the
object appeared in vehicle’s front with an initial orientation

(the solution is be similar for an angle We
know that several trajectories are possible to reach a specific
point but, the trajectories’ parameters are chosen according to
the following.

1) The point is assumed to be in front of the vehicle and
the angle is always greater than zero as show Fig. 10.
This is a condition derived from the system initialization
and the correct execution of thepursuit process (see
Section I). Additionally, that condition helps to deal with
the nonholonomic structure of the mobile robot.

2) The platform must stop at a given distance from the
object. This condition is represented in Fig. 10 by the
circle around the point (the center of the platform’s
driving axle, point must stop somewhere over this
circle).

3) The platform must be facing the object at the end of
the trajectory. In other words, the object must be on the

-axis at a distance from the origin of when the
platform stops.

The trajectory that results from the application of those
conditions is a combination of translational and rotational
movements that achieve the desired position. Notice that this
type of mobile platform is subject to nonholonomic constraints
and those constraints restricts the mobile platform motion.
However since the position of the point that we want
to control is not on the motor wheels, is possible to establish
feedback control laws with exponential convergence around a
given configuration [19], [20]. That is our case since the point

in the end of the trajectory, must be at a distancefrom the
center of the platform’s driving axle, the point Note if the
distance the system is no more controllable, since the
mobile platform can not move in the direction of wheels axis.

Two parameters are needed to define the trajectory, as shown
in Fig. 10: the radius and the angle The analysis of Fig. 10
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allows the derivation of the following relations:

(6)

After simplification we get

(7)

The equations (7) are not defined when thecoordinate
is equal to zero. In that case, the trajectory is linear, and the
distance that the mobile platform must cover is given by

(8)

E. Compensating for System’s Movements

Two aspects must be pointed out during the trajectory
generation.

1) The robot’s velocity is limited to a maximum value,
and therefore it will probably only cover partially the
planned trajectory. This problem is due to the system
being controlled discretely, and given only a slice of
time (sampling period) to perform the trajectory. During
this period the active vision system must not only locate
the object, but also keep track of it, until the robot is
able to reach the goal condition.

2) The movements executed by the robot and/or by the
neck will of course have influence in the position of the
object’s projection originating a reaction of the system
to a movement that the object wasn’t responsible for.

Supposing that the robot will have an uniform movement,
it’s possible to infer the amount of the trajectory arc that
will be completed in one sampling period, based on the
linear and angular velocities of the robot. This assumption
gives the solution for the problem described on the items
introduced in the beginning of the section and is equivalent
to a compensationfor the robot’s movement, and results on
the control of the neck based on the estimated position of the
object at the end of the sampling period. The same process
can be used to control the camera’s vergence,compensating
for movement of the neck.

Fig. 11 illustrates the problem if only a part of the robot’s
movement is performed. In that case only a part of the
planned arc movement is considered. The letters and

define the object as seen by the active vision system,
respectively, before and after a sampling time and the

Fig. 11. Compensation for the robot’s movement. The lettersD; �n and
D0; �0

n
define the object before and after the movement.

Fig. 12. Compensation for theneckmovement.

minus signs in the angles are due to the counter clockwise
representation). From direct analysis of the figure, we obtain
the following relations:

(9)

The point represents the new position of the active
vision system at the end of the sampling period and due to
robot’s movement. The values of and for this situation
are given by

(10)

This new position is equivalent to the new position
of the object at the end of the sampling period assuming
that the object stands still.

If this is not the case and the object is moving, we must
remember that its position is obtained using images acquired
in the beginning of the sampling period To obtain the real
object position we will need to take into account the robot’s
movement and that is equivalent to using to infer the
new object’s position. In that sense, this is equivalent to a
robot’s movement compensation.
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Fig. 13. Illustration of the image processing used for saccade. Thesaccadeis preceded by searching for a large movement in the images. The searching phase is
concerned with the detection of image movements, within certain limits (the pixel displacement detection can be adjusted by switching between pyramid levels).

Note that the above relations are not valid when the trajec-
tory is linear. In that case, the neck angle is zero, and the new
distance will be with the value of given by (8).

The compensation for the vision system movements is
performed by neck movements. Since this degree of freedom
induces a new object’s position when it moves, the com-
pensation is similar to the robot’s compensation. The angle

calculated by (5) represents the absolute angle that the
neck should reach at the end of the sampling period. Since
the system has physical limitations, very often the angle is
executed only partially. In that case, as illustrated in Fig. 12,
the angle of the neck at the end of the sampling period will
be In that case the angles and can be controlled to
compensate for this limitation. The values ofand can be
computed with the help of the relations 4. Since the values of

and are known, the values of and can be obtained by
using the relations 4 and from them the values forand
The values for the angles and are given by the relations

(11)

Note that the above relations are not defined when either
or are zero. Those cases are solved assuming the value
for the angle.

This section described the relations used to compensate for
the physical limitations of the system. The approach suggests a
hierarchical mechanism for movement generation, starting by
the mobile robot and finishing in the vergence of the cameras.
That approach will be described in the Section V.

IV. V ISION PROCESSING ANDSTATE ESTIMATION

A. Image Processing

The Slave Processing Unitsanalyze, independently, the
images captured by the frame grabbers connected to the cam-
eras. Therefore, the motion and feature detection algorithms
described here are intended to work with the sequence of
images obtained by each camera.

TheSlave Unitsare responsible by processing the sequence
of images during all states illustrated in Fig. 2. When the
system is initialized, theRest phase starts and theMaster

Processing Unitcommands theSlave Unitsto begin a search-
ing phase. This phase implies the detection of any movement
that satisfies a set of constraints described below. At a certain
point during this phase, and based on the evolution of the
process in bothSlave Units, the Master Unit decides if there
is a target to follow. After this decision theMaster Unitsends
a saccadecommand to theSlave Unitsto begin the vergence
stabilization phase. During this phase, the system will only
follow a specific pattern corresponding to thetargetpreviously
defined and ignoring any other movements that may appear.
This phase proceeds until thevergenceis considered stable and
after that it changes to thepursuit state. The system remains
in this state until the pattern can no longer be found in the
images.

B. Gaussian Pyramid

In order to speedup the computing process, the algorithms
are based on the construction of a Gaussian pyramid [3], [5].
The images are captured with pixels but are reduced
by using this technique. Generally speaking, using a pyramid
allows us to work with smaller scale images without loosing
significant information. Climbing one level on the pyramid
results in an image with half the dimensions and one quarter
of the size. Level 0 corresponds to pixels and level
2 to Each pixel in one level is obtained by applying
a mask to the group of pixels of the image directly bellow it.
The applied mask is basically a low pass filter, that helps in
reducing the noise and smoothing the images [10].

C. Image Processing for Saccade

Thesaccadeis preceded by searching for a large movement
in the images. As described above, the searching phase is
concerned with the detection of any type of movements, within
certain limits. For that purpose, two consecutive images
and separated by a few milliseconds are captured.
These images are analyzed at the pyramid level 2.

The analysis consists in two steps described graphically by
the blocks diagram shown in Fig. 13.

1) Computation of the area of motion using the images
acquired at time and This calculation
measures the amount of shift that occurred from one
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Fig. 14. Illustration of the image processing used forFixation. To maintain thefixation dynamically, the process uses two phases: pattern’s tracking and
correspondence phase. The pattern is defined as an area around the center of the image acquired after the execution of thesaccademovement. The tracking
phase locates thetarget and measures the variables necessary to control the system and keep the object centered in the image. The correspondence phase
confirms the results of the searching phase and estimates the images’ disparity. This disparity allows the evaluation of object’s distance.

frame to the other, and is used to decide when to climb
or to descend levels on the pyramid.

2) Absolute value subtraction of both images, pixel by
pixel, generating an image of differences, followed by
the computation of the projections of the image in the

and -axis. Since we assume that the target will have
a negligible vertical motion component, only the image
projection on the horizontal axis is considered for the
saccademovement. Two thresholds are then imposed:
one defining the lowest value of the projection that can
be considered to be a movement, and the other limiting
the minimum size of the image shift that will be assumed
as a valid movingtarget. If both thresholds are validated,
the object is assumed to be in the center of the moving
area. If the movement is sensed by both cameras and it
satisfies these two thresholds, asaccademovement will
be generated.

D. Image Processing for Fixation

The goal offixation is to keep the visualtarget’s image
steady and centered. This presumes that thetarget is the
same for the two cameras. Vergence is dependent on this
assumption and, in this work, it is assumed that the vergence
is driven by the position of the 3-Dfixation point. This point
corresponds to the 3-D position of thetarget that must be
followed. This is equivalent to the problem of finding the
correspondence betweentarget’s zones in the two images.
In this work this process is called correspondence. Since the
system is continuously controlled to keep the images centered
on the fixatedtarget, the correspondence zone is defined
around the image center and the search process becomes easy.
The correspondence used forfixation starts by receiving the
pattern from the otherSlave Unit. The pattern that is needed
to follow in one image (left/right) is passed to the other
(right/left) to find the position of the correspondent pattern.
The search starts around the image center and tries to find
an image that matches the pattern received. The test uses the

Fig. 15. Graphic scheme of the principle used for the control of the system.
Since the mobile robot has more inertial mass than the active vision system, it
will receive commands to cover the error. Very often the robot does not have
possibility to eliminate all the errors. In that case it is the other fastest degree
of freedom that tries to do it. If in the inmost level the object’s movement
can not be compensated for then it will be assumed that thetarget was lost
and the pursuit process will re-start again.

operator described by (12) and the image area with lowest
difference will be considered if the value of is less
than a maximum threshold. The similarity operator applied to
the position is defined as follows:

(12)

where is the pattern to search andis the image. In the
definition, and represent the width and height
of the pattern in pixels.

The process to keep thefixation dynamically is equivalent
to a process ofgaze holding. The gaze holdinguses similar
image processing as used forfixation. The gaze holdingis
implemented throughsmooth pursuitandvergencemovements
of the active vision system. These movements are based on
the tracking of a pattern in each image. The pattern is defined
as an area around the center of the image acquired after the
execution of thesaccademovement. Thegaze holdinguses
two image processing phases: the tracking of the patterns
in the left and right images, and the correspondence of the
left and right patterns. The tracking phase uses the pattern
defined at the end of thesaccademovement. That pattern
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(a)

(b)

Fig. 16. Global control scheme for vergence control and object’s position calculation(top) and mobile and neck control(bottom).

will be searched in each image captured, at a certain pyramid
level, as described by the blocks diagram shown in Fig. 14. In
our system, for a significant percentage of the time the level
selected is level 2, corresponding to images of 128128
pixels. The search consists in the computation of a similarity
measure between the pattern and the areas with equivalent size
taken from the image—see (12). The image area that resulted
in the lowest difference is considered to be a match, but only if
the value of the difference is less than a maximum threshold,
above which no matches are accepted. This process is finished
with the verification of correspondence betweenleft andright
patterns in similar manner as thefixation phase.

Since the images used duringfixation andgaze holdingare
sub-sampled, the target’s position is defined with more preci-

sion with the interpolation process described in the appendix
B. The final position is combined with the position obtained by
thefixationandgaze holdingphases. Actually the final position
corresponds to the middle point between these two positions.

E. System State

The system state used for control is described by two
variables: the distance from the system to thetarget and
the angle of the neck pan, defined when the vision system
is fixated on thetarget. Both variables have values that can
be obtained by the geometry of the system and are described
by (5).

These two quantities are continuously estimated by using a
fixed coefficient Kalman filter—see Appendix C. The fixed co-
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Fig. 17. Timing diagram for the different states in the system.

efficients filters have the advantage of simple implementation
and the most extensively applied of these filters is the- -
tracker. The values estimated by this filter are described by

(13)

This filter is specifically useful for estimating the state vari-
ables assuming that thetarget has uniform accelerations. It
tends to be able to predict smoothly varying velocities but also
filtering abrupt changes on thetarget’sposition. This technique
can also be used to predict futuretargetkinematics quantities.
This enables the compensation for delays in the system as
will be described below.

The values described by (13) are computed by theMaster
Processing Unitand are used to control the degrees of freedom
of the active vision system and the mobile robot, as will be
described in the next section.

V. SYSTEM CONTROL

A. Introduction

A complete implementation of the methods described in this
paper requires fast processing capabilities for vision processing
and control. The implementation proposed in this work is
based on control loops working in parallel and based on the
visual pursuit process. Since the inertia of the neck and the
mobile robot are greater than the vergence mechanism inertia,
this type of control simulates a control system with different
levels—see Fig. 15. The inmost level comprises cameras and
the vergence motors of the active vision system, responsible
for tracking thetarget in real-time. This sub-system controls
the cameras’ position to maintain the visual system fixed in the
target. At the intermediate level there is the neck sub-system,
that provides the control of the orientation of the vision system
and compensates for the cameras’ vergence movements. At the
outmost level is the mobile robot sub-system that provides the
compensation for the orientation of the active vision system
and also controls the orientation and distance to thetarget.

Fig. 18. Movements of the mobile robot:! represents the angular velocity,
� the linear velocity,r is the radius and� is the orientation angle.

Conceptually, the error between the actual distance and
orientation of thetargetand the system is propagated from the
outmost level to the inmost level. This concept is graphically
described in Fig. 15. In each level the error is compensated
for by the sub-system associated to each level. This error must
be such that the maximum characteristic values of each sub-
system are not exceeded. In the cases where the error exceeds
these maximum values, the difference of error that can not be
compensated for in that level is passed to the next inmost level.
This scheme establishes a mechanism to propagate the error
through the different control systems, giving more priority
to the mobile robot, followed by the neck and eyes at the
end. This gives the effect of compensation for thetarget’s
movements, simulating itspursuit. The control scheme used is
illustrated by the global block diagram in Fig. 16. If in the in-
most level the object’s movement can not be compensated for
then it will be assumed that thetargetwas lost and the pursuit
process will re-start again. That is equivalent to the transition
between thePursuit andReststate described in Fig. 2.

B. Timing Considerations

The pursuit control loop consists basically of three stages:
image acquisition, error estimation (the orientation and dis-
tance) and error correction. These steps are realized by the
SlaveandMaster Processing Unitsat cycles synchronized by
a general clock in the system. In the experimental site used
to develop the system the clock has a 200 msec cycle and the
system’s parameters are adjusted for that cycle. During this
cycle the system performs different computations, depending
on the state of the system. The different states of the system are
illustrated by Fig. 2 and the timing for the cycles is illustrated
in Fig. 17.

The images generated by each camera are acquired and
analyzed by theSlave Processing Units. These units analyze
the images and give the position of thetarget in each image.
That position gives the necessary information to compute the
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Fig. 19. Evolution of the searching algorithm when a target is moving.
This image searching algorithm is responsible by the trigger of the saccade
movement.

system state and This state is passed to the - -
tracker. The information provided by theSlave Unitsis delayed
by one cycle of 200 msec. To avoid the lateral effects of this
delay we use the prediction capabilities of the- - filter
to estimate a value for the system state (see Appendix C) (25).

TheMaster Processing Unitrepeatedly performs the control
algorithm by using the error between the predicted system state
and the desired system state. This error is passed to the differ-
ent sub-systems according to the illustration in Fig. 16. This
error is passed to the different PID discrete time algorithms
implemented in each subsystem. The results will be changes
in the positions of the step motors associated with the vision
system and the commands for the mobile robot to maintain
the desired system state and

The movements executed by the mobile platform are based
on two motors associated with each of the driving wheels (rear
axle) and are essential to make the compensation for the error
in the distance The movements permitted with this type
of configuration are represented in Fig. 18. Pure rotations are
around the center of the driving axle represented in Fig. 18
by

The values of the velocities are dependent on the type of
movement and the duration time. In our experiments the period

Fig. 20. Evolution of the tracking algorithm. This image tracking algorithm
is used for keep the visual systemfixatedon the person that is moving.

of time is a multiple integer of the system cycle (200 msec).
For movements composed by linear and angular velocities,
the radius of the trajectory and the trajectory arc can be
obtained by the relations (14) and (15) presented in Section B
of Appendix A.

VI. EXPERIMENTAL RESULTS

This section gives examples of the system performances.
The first example is related with the evolution of the searching
algorithm used for saccade movement. Fig. 19 represents ten
cycles of the process with the entire system stopped. From
top to bottom we can see the image taken at time the
image taken at time the differences image and its
projection on the -axis. The analysis of the sequence allows
us to conclude that we can detect the motion by efficiently
thresholding the differences obtained due to the noise. It also
shows that the values above the threshold, although unstable,
appear in the area where the movement occurred. Notice
that the images are pre-filtered and smoothed as explained
in Section V.

The second example concerns the evolution of the algorithm
used during pursuit. Fig. 20 shows a sequence of pairs of
images (right image on top of the left image) obtained with
the system running and thetarget moving. As it can be se
en, apart from some minor deviations, the selected area of
the target is matched correctly. Also important is the obvious
tendency to keep thetarget in the middle of the images, as
should be expected from the type of control implemented.

It is interesting to know the system response to a input signal
like the the step signal. The step-response reveals the general
form of the system model. The response of the neck’s angle
to a simulation of the step signal is shown in Fig. 21. The
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Fig. 21. The response of the neck’s angle to a simulation of the step signal
when the filter prediction is used. The vertical axis represents�n (degrees)
for diferent time clocks(k) represented on the horizontal axis.

signal used is equivalent to the signal resulting from a person
standing in front of the system, and then quickly taking a step
aside. The distance is constant and equal to 2 meters. The use
of the filter prediction, described in appendix C by (25), results
in the signal shown in Fig. 21.

The next three graphics (Fig. 22) show the angle shifts of
the neck motor, right camera motor and left camera motor
respectively, when filtering and prediction are used. The curves
shows traces for the proportional, integrative and differential
gains (PID) of 0.6 and 0.1.

The same experiment was repeated with a proportional gain
of 0.1 for the neck motor and the results are depicted in
Fig. 23. Note that, since the system is now slower, the use
of compensation and prediction methods assumes a greater
importance.

The final examples (Figs. 24 and 25) show the importance of
filtering the distance and the angle The - - filtering
is used mostly to predict the position of thetarget one cycle
in advance. This will compensate for the delay between the
acquisition of the images and the reaction of the system (due
to the computational burden).

VII. CONCLUSION

This article reports the integration of an active vision system
in a mobile platform. It describes a control scheme used for
real-time pursuit of objects moving in front of the vehicle.
Thepursuit process controls the system to maintain the initial
orientation and distance to the object. The control is based on
multiple independent processes, controlling different degrees
of freedom of the vision system and the mobile robot’s position
and orientation. The system is able to operate at approximately
human walking rates, and experimental results were presented
with the robot following a person. The system has limitations
and some of them were already discussed and established as
assumptions in Section I.

Future developments will address the problem of different
objects moving in front of the mobile robot. These extensions
also include the use of more elaborated control schemes

TABLE I
PARAMETERS OF THESTEP MOTORS USED IN THEACTIVE VISION SYSTEM

and the improvement of the image processing hardware and
routines.

APPENDIX A

VISION SYSTEM AND ROBOT PARAMETERS

A. Active Vision System

The vision system can be divided into three major areas:
the platform that supports the cameras, the mechanical system
that permits the orientation of that platform and the motorized
lenses. The platform allows for the cameras to execute the
movementA shown in Fig. 26 (the vergence) and also the con-
trol of the distance between them (the baseline shifting). The
mechanical system that supports the platform is responsible
for the execution of the movementsB andC shown in Fig. 26
(the head tilt and the neck pan respectively). The cameras’
lenses are motorized, using direct current motors to control
the degrees of freedom corresponding to the iris, focus and
zoom. The lenses used can have a focal length between 12.5
and 75 mm, focusing between 1.3 m and thedepending on
the focal length.

The offsets permitted to the various degrees of freedom
associated with the active vision system are listed in Table I,
resulting from the limits imposed to the system by the electri-
cal and mechanical limits, and due to the mechanical structure
of the system itself.

The velocities reached by the step motors depend on the
values of the parameters measured experimentally. The values
obtained do not permit movements from one end-position
to the other in acceptable periods of time (once a moving
command is issued to the controllers, the motors cannot
be interrupted until they stop). Therefore, any movement
requested must be divided into smaller movements that can
be completed by the motors during one control period.

Typically, the control period for the vergence motors is 0.2 s
with a maximum of 40 steps, and for the neck pan motor is 0.2
s with a maximum of 100 steps. The choice for these periods
resulted from a compromise between the reaction speed of the
system and the amplitude of the movements executed.

B. Mobile Robot System

The movements executed by the mobile robot are based on
two direct current motors associated with each of the driving
wheels (rear axle). The control of the motors is done by a
multi-processing system based on the 68 020 CPU, installed



14 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 1, FEBRUARY 1998

(a) (b)

(c)

Fig. 22. Tracing of some of the system’s variables with movements with compensation and prediction. (a) Angle of the neck motor. The response is
slower when the gain is 0.1. (b) Angle of the right camera motor. The prediction results in a stronger signal. (c) Angle of the left camera motor. The
prediction results in a stronger signal. The type of filtering for each curve is:continuous line—filtering with prediction and a proportional gain of 0.1;
dashed line—filtering without prediction and a proportional gain of 0.1;star line—filtering with prediction and a proportional gain of 0.6;Dash-dot
line—filtering without prediction and a proportional gain of 0.6.

on the mobile platform. Therefore, the only responsibility of
the Master Processing Unitis to send to the platform the
parameters of the required movement.

The robot’s movements can be divided into three groups:
translational (no angular velocity), rotation around the center
of the driving axle and compositions of both movements. To
define each one of these three movements, it is necessary to
supply not only the values for the linear and angular velocities

but also the duration time of the movement
The valid values for the velocities and the duration time

depend on the type of movement, and are represented in
Table II. If the movement is of the composed type, the radius
of the trajectory and the trajectory arc can be obtained with the
following relations (T designates the time available to execute
the movement)

mm
mm/s
mrad/s

(14)

TABLE II
PARAMETERS FOR THECONTROL OF MOBILE PLATFORM’S VELOCITY

mrad
mm/s

s
(15)

The movements described are based on the control of the
velocity of the platform, and can be stopped or replaced at
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(a) (b)

(c)

Fig. 23. Movements with compensation and prediction with smaller proportional gains (0.1). (a) Angle of the neck motor. The vertical axis represents�n

(degrees) for diferent time clocks(k) represented on the horizontal axis. (b) Angle of the right camera motor. The vertical axis represents�r (degrees) for
diferent time clocks(k) represented on the horizontal axis. (c) Angle of the left camera motor. The vertical axis represents�

l
(degrees) for diferent time

clocks (k) represented on the horizontal axis.Continuous line—filtering without prediction or compensation;dashed line—filtering without prediction and with
compensation;star line—filtering with prediction and compensation;dash-dot line—filtering with prediction and without compensation.

any time by another movement with other parameters. The
transition between movements is controlled by the multi-
processing system, assuring the smoothness of the global
movement of the robot.

The following lines are examples of commands that can be
issued to the platform to launch velocity controlled movements
issuing a:

1) composed movement: “MOTV LA V 100 W 100
T 50”;

2) pure rotation movement: “MOTV LA V 0 W 100
T 50”;

3) a linear movement: “MOTV LA V 100 T 50”.

APPENDIX B

QUADRATIC SUB PIXEL INTERPOLATION

The objective of this appendix is to explain the mechanism
used to find the maximum of a function of which only discrete
samples are known. Since we are using images, the samples are

discrete values of the function and we use interpolation to find
the function’s maximum with sub pixel precision (Fig. 27).

Suppose that the function is parameterized by the polyno-
mial

(16)

with the extreme point at If the discrete
points are at and with the distance
between samples, their values for the function are given
by

(17)

Combining these equations we obtain the position is
given by

(18)
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Fig. 24. Trace of the state variableD during a execution ofpursuit. The
distance is measured in meters, for a continuous set of time samples(k)
represented on the horizontal axis. The curves have the following meaning:
continuous line—The distance measured by the system;dash-dot line—the
low-pass filtering of the distance;dashed line-(�-�-
) filtering after the
low-pass filter as been applied.

Fig. 25. Trace of the state variable�n during a execution ofpursuit.
The angle is measured in degrees, for a continuous set of time samples
(k) represented on the horizontal axis. The angle�: The curves have the
following meaning: continuous line—the angle measured by the system;
dashed line-(�-�-
) filtering of the angle.

APPENDIX C

FILTERING AND PREDICTION

Filtering and prediction methods can be used to estimate the
present and the future of thetarget kinematics quantities such
as position, velocity, and acceleration. This is specially useful
for tracking and also for estimating the state variables of a
system from measurements made on it. In the current work
we use the prediction capabilities of the filters to compensate
for the delays in the system.

There are two common approaches to filtering and predic-
tion. The first is to use fixed coefficients - and - -
filters), and the second, Kalman filtering, which generates
time-variable coefficients that are determined by an a priori
model for the statistics of the measured noise andtarget
dynamics. The first approach has computational advantages,
but Kalman filtering performs a high-accuracy tracking. The

Fig. 26. Mechanical degrees of freedom of the active vision system.

Fig. 27. Polynomial representation.

filter used in this system is of the first type, and can be used in
linear dynamic systems with time-invariant coefficients in their
state transition matrix and measurement equations. For these
systems the filter gain achieves steady-state values that can
often be computed in advance. This advantage is important to
save some computational time and in practice both approaches
are valid in our system, since we do not expect sudden changes
in our model’s parameters.

Both of these filters can be implemented recursively and the
data received in the past is included in the present estimates.
Therefore, all data is used but forgotten at an exponential rate.
The estimate of the variable value at timeis and will
be denoted by the smoothed estimateWith these filters we
can predict the values for the next step. The one-step prediction
is denoted by and signifies the estimate at
time given data through time

Fixed coefficients filters have the advantage of simple
implementation using fixed parameters for the filter’s gains.
The most extensively applied of these filters is the-
tracker. This filter is used with constant velocity models when
only position measurements are available. The- tracker is
defined by the following equations:

(19)

(20)
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(21)

The variable is the sampling interval, is the
measurement at time and the and are the fixed filter
gain coefficients. The quantity is normally defined as one,
but in the case where missing observations occur its value may
be taken as the number of scan steps (interactions) since the
last measurement. The initialization process can be defined by

The (19) is used directly when an observation is received
at time The optimal values for and are derived in [2]
and depend only on the ratio of the process noise standard
deviation and the measurement noise standard deviation.

The logical extension of the - filter is the - - filter,
which includes an estimate for the acceleration and can be used
with the assumption of uniform acceleration. This filter makes
a quadratic prediction instead of a linear one, and tends to
be more sensitive to noise but better able to predict smoothly
varying velocities. The equations for this filter are defined as

(22)

(23)

(24)

(25)

The usual initialization is

The optimal values for and are defined as [2] and the
optimal value for is given by

(26)
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