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Abstract

Advanced sensor systems, exploring high integrity
and multiple sensor modalities, have been signif-
icantly increasing the capabilities of autonomous
vehicles and enlarging the application potential of
vision systems. The article describes the coopera-
tion between two relevant sensors - vision systems
and inertial sensors. Vision and inertial sensing
are two sensory modalities that can be explored
to give robust solutions on segmentation of im-
ages and three-dimensional vision. This coopera-
tion between these two sensory modalities may be
useful for the elaboration of high-level representa-
tions such as multi-modality 3D maps, segmenta-
tion of leveled ground or vertical structures.

In this paper we propose a real-time system that
extracts information from dense relative depth
maps. This method enables the integration of
depth cues on higher level processes including seg-
mentation of structures, object recognition, robot
navigation or any other task that requires a three-
dimensional representation of the physical envi-
ronment.

1 Introduction

Inertial sensors are a class of sensors useful for
internal sensing since they are not dependent on
external references. In human and other animals
the ear vestibular system gives inertial informa-
tion essential for navigation, orientation or equi-

librium of the body. This is a sensorial modal-
ity, which co-operates with other sensorial sys-
tems and gives essential information for everyday
tasks. One example of co-operation is between
the vestibular sensorial system and the visual sys-
tem. It is well known that, in humans, the infor-
mation provided by the vestibular system is used
during the execution of navigational and visual
movements, as described by Carpenter [1]. How-
ever the inertial information is also important for
head-stabilisation behaviors, including the con-
trol of posture and equilibrium of the body.

This kind of sensorial information is also crucial
for the development of tasks with artificial au-
tonomous systems where the notion of horizontal
or vertical is important, see [2] for one example.

A vision system with embedded inertial sensors
obtains a partial estimation of self-motion or ab-
solute orientation. The gravity and the rigid
body acceleration can be measured from these
sensors as well as its angular instantaneous ve-
locity. From these quantities, the instantaneous
velocity, the angular position, and linear transla-
tion of the vision system can be obtained. The
cooperation between these quantities with visual
information can be useful to estimate the instan-
taneous visual motion, to segment images (for ex-
ample between moving objects and background),
estimation of vision system orientation with re-
spect to the horizontal plane or to segment depth
maps based on the estimation of vertical or self-
motion.

This article presents our most recent results on
the use and integration of those two modalities.

Proceedings of the 10th Mediterranean Conference
on Control and Automation - MED2002
Lisbon, Portugal, July 9-12, 2002.



In this article we explore the integration of iner-
tial sensor data in vision systems to segment 3D
maps. The depth maps are obtained by a stereo-
vision system and the the three-dimensional data
is processed to identify specific structures in these
3D maps. The inertial sensor data enable to re-
cover camera pose, and rectify the 3D maps to
a common reference ground plane, enabling the
segmentation of vertical and horizontal geometric
features. The aim of this work is a fast real-time
system, so that it can be applied to autonomous
robotic systems or to automated car driving sys-
tems, for modeling the road, identifying obstacles
and roadside features in real-time.

2 Segmentation of Dense Depth
Maps using Inertial Data

One of the very important tasks in computer vi-
sion is to extract depth information of the world.
Stereoscopy is a technique to extract depth in-
formation from two images of a scene taken from
different view points. This information can be
integrated on a single entity called dense depth
map.

In this paper we propose a real-time system that
extracts information from dense relative depth
maps. This method enables the integration of
depth cues on higher level processes including seg-
mentation of structures, object recognition, robot
navigation or any other task that requires a three-
dimensional representation of the physical envi-
ronment.

Inertial sensors coupled to a vision system can
provide important inertial cues for the ego-
motion and system pose. The sensed gravity pro-
vides a vertical reference. Depth maps obtained
from a stereo camera system can be segmented us-
ing this vertical reference, identifying structures
such as vertical features and leveled planes.

In humans and in animals the vestibular system
in the inner ear gives inertial information essential
for navigation, orientation, body posture control
and equilibrium. In humans this sensorial sys-
tem is crucial for several visual tasks and head

stabilisation. It is well known that the informa-
tion provided by the vestibular system is used
during the execution of visual movements such as
gaze holding and tracking, as described by Car-
penter [1]. Neural interactions of human vision
and vestibular system occur at a very early pro-
cessing stage [3].

In this work we use the vertical reference provided
by the inertial sensors to perform a fast segmen-
tation of depth maps obtained from a stereo real
time algorithm.

Nowadays micro-machined low cost inertial sen-
sors can be easily incorporated in computer vision
systems. These sensors can perform as an arti-
ficial vestibular system, providing valuable data
to the vision system. The motivation might be
stronger in applications such as walking or flying
robots, but in automobiles, due to suspension and
system compliance, it is also beneficial to have in-
ertial sensors coupled to the vision system cam-
eras.

2.1 Related Work

The aim of stereo systems is to achieve an ade-
quate throughput and precision to enable video-
rate dense depth mapping. The throughput of a
stereo machine can be measured by the product
of the number of depth measurements per second
(pixel/sec) and the range of disparity search (pix-
els); the former determines the density and speed
of depth measurement and the later the dynamic
range distance measurement [8], [9], [10], [11].

The CMU Robotics group succeeded in producing
a video-rate stereo machine based on the multi-
baseline stereo algorithm to generate a dense
range map[12]. They use multiple images ob-
tained by multiple cameras to produce different
baselines in length and direction. Based on this
studies an efficient implementation of area cor-
relation stereo is available: the SRI Stereo En-
gine [13]. The Stereo Engine algorithms have
been continuously developed by SRI and it runs
efficiently on many computational platforms, in-
cluding standard personal computers and embed-
ded processors.The standard development envi-



ronment, the Small Vision System (SVS), runs
on personal computers under Linux or MS Win-
dows. This implementation gives an efficient so-
lution to support camera calibration, 3D recon-
struction, and effective filtering. The develop-
ment of our real-time system for 3D map seg-
mentation is based on some of the routines of this
system.

The cooperation of the inertial and visual sys-
tems in mobile robot navigation was studied by
Viéville and Faugeras. They proposed the use
of an inertial system based on low cost sensors
for mobile robots [2] and using the vertical cue
taken from the inertial sensors [14] [15] [16]. An
inertial sensor integrated optical flow technique
was proposed by Bhanu et al. [17]. Panerai and
Sandini used a low cost gyroscope for gaze stabi-
lization of a rotating camera, and compared the
camera rotation estimate given by image optical
flow with the gyro output [18] [19]. Mukai and
Ohnishi studied the recovery of 3D shape from
an image sequence using a video camera and a
gyro sensor [20].

In our previous work on inertial sensor data in-
tegration in vision systems, the inertial data was
directly used with the image data. Using just one
vanishing point we recovered the camera’s focal
distance [4]. In a typical indoor corridor scene the
vanishing point can also provide an external bear-
ing for the robots navigation frame. Knowing the
geometry of a stereo rig, and its pose from the
inertial sensors, the homography of level planes
can be recovered, providing enough restrictions
to segment and reconstruct vertical features [6]
and levelled planar patches [5]. In this work we
use the inertial data to perform a fast segmenta-
tion pre-computed depth maps obtained from the
vision system.

3 Depth Maps

In order to describe the tasks involved in depth
map construction, let us consider the geometric
model in figure 1. This model describes graphi-
cally our stereo vision system - see figure 2. The
diagram shows the top view of a stereo system

composed of two pinhole cameras. The left and
right image planes are coplanar and represented
by the segments Il and Ir respectively. Cl and Cr

are the centers of projection. The optical axes are
parallel: for this reason, the fixation point defined
as the point of intersection of the optical axes, lies
infinitely far from the cameras.
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Figure 1: Geometry of front-parallel stereo setup.

The way in which stereo determines the position
in space of P(x,y,z) is triangulation, that is by in-
tersecting the rays defined by the centers of pro-
jection and the images of P and pl, pr.

Consider a point P(x,y,z), in three-dimensional
world coordinate, on a object and its projections
pl and pr.

The distance, b, between the centers of projec-
tions Cl and Cr, is called baseline. Let this point
have image coordinates (x′

l, y
′
l) and (x′

r, y
′
r) in the

left and right images plane of the respective cam-
eras. Since the cameras are front-parallel and
aligned, we have that y′

l = y′
l Let f be the fo-

cal length of both cameras, the perpendicular
distance between the lens center and the image
plane, the depth z, will be the distance between
P and the baseline. Using the left camera as ref-
erence and by similar triangles:

x′
l/f = x/z

x′
r/f = (x − b)/z (1)

y′
l/f = y′

r/f = y/z



Solving for (x, y, z) gives:

x = x′
l ∗ b/(x′

l − x′
r)

y = y′
l ∗ b/(x′

l − x′
r) (2)

z = f ∗ b/(x′
l − x′

r)

The quantity d = x′
l − x′

r which appears of the
above equations is called disparity. From equa-
tion (2) we see that depth is inversely propor-
tional to disparity and disparity can only be mea-
sured in pixel differences.

The classical approach to estimate disparities
uses two techniques: feature matching and cor-
relation. In a feature-based algorithm, a number
of complex tokens are extracted from each left
and right images, and then combined according
to some constraints. The second technique uses
a measure of similarity, correlation for example,
to find matching points in two images composing
the stereo pair. For each point of the reference
image, the corresponding point is selected in the
other image by searching for a maximum in sim-
ilarity measure.

From equation (2) we also see that depth is pro-
portional to the baseline b. If we have a fixed
error in determining the disparity then the accu-
racy of depth determination will be amplified by
b. However, as the camera separation becomes
larger, difficulties will arise in correlation of the
two camera images.

Many stereo camera configurations have vergence
and do not comply with the front-parallel geo-
metric model. A stereo configuration with ver-
gence angle can be considerably simplified when
the images of interest have been rectified, i.e.,
replaced by two projectively equivalent pictures
with a common image plane parallel to the base-
line joining the two optical centers, and equiva-
lent to a front-parallel system as in our system.
The rectification process can be implemented by
projecting the original pictures onto the new im-
age plane [21]. With an appropriate choice of co-
ordinate system, the rectified images have scan-
lines parallel to the baseline and all the front-
parallel geometry of figure 1 can be applied.

3.1 The Stereo Vision System

In order to compute range from stereo images we
are using the SRI Stereo Engine [13]. It imple-
ments an area correlation algorithm for comput-
ing range from stereo images and it supports cam-
era calibration, 3D reconstruction, and effective
filtering. We are running an implementation of
Stereo Engine for Linux and named Small Vi-
sion System (SVS). SVS consists of a set of li-
brary functions for stereo algorithms optimized
for Pentium architectures, using MMX instruc-
tions. It can receive input stereo images from
standard cameras and video capture devices. On
this particular work we are using a small and
compact stereo head developed by Videre De-
sign [13] (see figure 2), the STH-V3. This analog
vision head can also send a single video signal
with the interlaced stereo image pair. STH-V3
consists of two synchronized cameras modules,
mounted on a baseboard, with 320x240 pixels
(NTSC ). The software is running on a Linux Red-
Hat 7.1 box (PII 350Mhz) with a Pinnacle Stu-
dio PCTV (Bt878-chip) card as frame-grabber.
With a frame size of 160x120, searching 16 dis-
parities and a search window size of 5 x 5 we
achieved a frame rate close to 30 Hz.

4 Inertial Data

An Inertial Measurement Unit (IMU) coupled to
a camera can provide valuable data about cam-
era pose and movement. Figure 2 shows an in-
ertial system prototype built at our lab [7] that
was coupled to a stereo camera rig to perform the
tests.

Camera calibration was performed using a fixed
target and moving the system, recovering the
cameras’ intrinsic parameters, as well as the tar-
get positions relative to the cameras.

By moving the cameras instead of the target, the
cameras’ position is determined relative to the
fixed target. Since the IMU is rigidly connected
to the camera, R and t shown in figure 3 can be
determined from the set of camera positions ob-
tained from the calibration and the correspond-



Figure 2: Cameras with Inertial Measurement
Unit based on low cost sensors.
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Figure 3: Camera and IMU referentials.

ing data from the inertial sensors. By perform-
ing a trajectory with the target always in view,
the camera calibration can reconstruct the cam-
era pose and position.

If both IMU and cameras are perfectly aligned,
we have a simple translation change of axis, and

CTCAM =




0 0 1 0
−1 0 0 b/2
0 −1 0 0
0 0 0 1


 (3)

where b is the baseline, {CAM} the camera ref-
erential and {C} the camera system referential,
with origin at the center of the baseline.

Having determined the rigid transformation be-
tween the camera and the IMU, the sensed accel-
eration and rotation are mapped to the camera
system referential.

4.1 Gravity Vector

The measurements a taken by the inertial unit’s
accelerometers include the sensed gravity vector
g summed with the body’s acceleration ab:

a = g + ab (4)

Assuming the system is motionless, then ab = 0
and the measured acceleration a = g gives the
gravity vector in the system’s referential. So, with
ax,ay and az being the accelerometer filtered mea-
surements along each axis, the vertical unit vector
will be given by

n̂ = − g
‖g‖ =

1√
a2

x+a2
y+a2

z




ax

ay

az


 =




nx

ny

nz


 (5)

This vertical reference, given in the systems frame
of reference, will be used in segmenting the depth
maps obtained from the stereo algorithm.

Consider a point given in the camera system refer-
ential CP that belongs to the ground plane. The
plane equation is given by

Cn̂.CP + d = 0 (6)

where d is the distance from the origin to the
ground plane, i.e., the system height. In some
applications it can be known or imposed by the
physical mount.

5 Depth Maps in Inertial Refer-
ence Frame

In our experimental setup, the stereo algorithm
provides depth maps in the left camera frame of
reference. Using the vertical reference provided
by the inertial sensors, n̂, the depth maps can
be rotated and aligned with the horizontal plane.
The points obtained in the camera referential,
{C}, can be converted to a world frame of refer-
ence {W}. The vertical unit vector n̂ and system
heigh d can be used to define {W}, by choosing
Wx̂ to be coplanar with Cx̂ and Cn̂ in order to
keep the same heading, we have

WP = WTC.CP (7)



where

WTC =




√
1− n2

x
−nxny√

1−n2
x

−nxnz√
1−n2

x

0

0 nz√
1−n2

x

−ny√
1−n2

x

0

nx ny nz d
0 0 0 1




(8)

System height d can be known apriori or inferred
from the subsequent segmentation process, using
an initial null value.

If a heading reference is available, then {W}
should not be restricted to having Wx̂ coplanar
with Cx̂ and Cn̂, but use the known heading ref-
erence. Using a heading reference given by the
unit vector m̂ = (mx,my,mz) we get

CTW =




mx nymz − nzmy nx −nxd
my nzmx − nxmz ny −nyd
mz nxmy − nymx nz −nzd
0 0 0 1


 (9)

We are therefor able to have {W} coherent with
the inertial vertical and the available scene head-
ing. The gyros included in the inertial measure-
ment unit can be used to keep a heading with-
out external references, but they accumulate drift
over time. Visual land marks or a magnetic com-
pass provide an external heading reference to re-
set the drift. In scenes of man made environments
image vanishing points from detected edge lines
can also provide a heading reference. The seg-
mented depth maps can also be used, by identify-
ing features such as walls in the points mapped to
the inertial reference frame and above the ground
plane.

6 Segmented Depth Maps

Using the vertical reference, the depth maps can
be segmented to identify horizontal and vertical
features. The aim in on having a simple algorithm
suitable for a real-time implementation. Since we
are able to map the points to an inertial reference
frame, planar levelled patches will have the same
depth z, and vertical features the same xy, allow-
ing simple feature segmentation using histogram
local peak detection.

Using the stereo depth algorithm we obtain a set
of points CAMPi in the left camera referential. Us-
ing the previous equations we can map them to
the world referential as

WPi =
W TC.CTCAM.CAMPi (10)

In order to detect the ground plane point, an his-
togram is performed for each point depth.

histz(n) =
∑

(Pi | floor(zPi
) = n) (11)

The histogram’s lower local peak zgnd is used as
the reference depth for the ground plane. The de-
tected points can than be parsed and segmented
as being a ground plane point, or some feature
above ground. Points bellow the ground plane
can be ignored or not, depending on the applica-
tion.

Pgnd = Pi | zgnd−δ ≤ floor(zPi
) ≤ zgnd+δ (12)

Pabove = Pi | floor(zPi
) ≥ zgnd + δ (13)

were δ is the allowed tolerance.

The points above ground can be projected in the
XY plane, and further segmentation performed
to identify vertical features.

7 Results

A simple indoor scene was used to test our
method. The stereo pair seen in figure 5 was
obtained with the experimental setup shown in
figure 4. Figure 6 shows the disparity image and
reconstructed 3D points obtained with the 3D re-
construction based SVS package routines [13].

Using the vertical reference provided
by the inertial sensors, in this case
n ≈ (−0.456,−0.022, 0.890), the 3D points
were transformed to a world aligned frame of
reference as previously described. Figure 7 shows
a 3D view of the points in the world frame of
reference.

In order to detect the ground plane, an histogram
was done for all depths, and the peak used as a
reference value, as seen in figure 8



Figure 4: Experimental setup with inertial sen-
sors and vision system, and scene used for the
test.

Figure 5: Stereo rectified image pair obtained
with SVS [13] system.

Figure 6: Disparity image obtained with
SVS [13], and reconstructed 3D points
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Figure 7: 3D view of the points.
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Figure 8: Depth histogram with detected peak.
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Figure 9: Ground plane points segmented from
global map seen in figure 7.
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Figure 10: Points above the floor, walls or obsta-
cles, segmented from global map seen in figure 7.



The points were than parsed and segmented as
ground plane points, figure 9, and points above
ground, figure 10.

A linear line fit was done using the points above
ground, ignoring their depth, to reconstruct the
wall orientation in the test scene. Figure 11 shows
the result. More complex scenes require a previ-
ous point clustering stage, so that a simplified
world model can be built, but this only has to be
done in 2D.
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Figure 11: Top view of all points above the floor,
and line fit for wall orientation.

Figures 12, 14 and 14 present some more re-
sults. Since low resolution images are being used
to achieve real-time performance, the depth maps
obtained are not very precise, and a large toler-
ance threshold has to be used to segment ground
plane points.

8 Conclusions

Depth maps obtained from a stereo camera sys-
tem were segmented using a vertical reference
provided by inertial sensors, identifying struc-
tures such as vertical features and level planes.
Rectifying the maps to a reference ground plane
enables the segmentation of vertical and horizon-
tal geometric features. Preliminary results were
presented that show the validity of the method.

The aim of this work is a fast real-time system,
avoiding 3D point clustering methods that are not
suitable for real-time implementations. It can be
applied to an automated car driving system, mod-
eling the road, identifying obstacles and roadside
features.
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Figure 12: Stereo rectified image pair; Ground
plane points; Points above the floor, walls or ob-
stacles.
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Figure 13: Stereo rectified image pair; Ground
plane points; Points above the floor, walls or ob-
stacles.
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Figure 14: Stereo rectified image pair; Ground
plane points; Points above the floor, walls or ob-
stacles.
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