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Abstract- This article addresses the problem of recover- 
ing a tridimensional scene from only one uncalibrated static 
camera and images from planar mirrors. We present a lin- 
ear solution for 3D Euclidean reconstruction based on multi- 
ocular geometry, epipolar geometry and projective geomet- 
ric properties. From the recovered points of the scene we 
can obtain information related with distances, areas, curva- 
tures, dimensions and even volumes of its objects. A system 
based on this technique could be applied on the industry, 
in tasks of great importance, such as the quality tests and 
metrology inspection. The system is simple, low cost and 
could achieve good performance. 

I. INTRODUCTION 

It is clear that in the absence of more information, one 
point in the image could correspond to an infinity of points 
in the tridimensional scene. So it is necessary more than 
one image, taken from different viewpoints, to recover the 
3D structure of the scene. The most important issue in 
reconstruction tasks, is the geometric related information 
between images. In this context, we could classify into 
three different groups of reconstruction: the projective, the 
affine and the Euclidean. 

In the first group, the reconstruction is defined up to a 
projective transformation. The obtained information has 
no knowledge of distances, angles or parallelism. Mohr 
et a1 [6] was one of the first to use the projective geom- 
etry properties to avoid the cameras calibration. Their 
approach is based on the re-projection of the image points 
in two planes of the scene, using the invariant pro$erty of 
the projective co-ordinates. Six known points of the scene 
are the reference points, and all the recovered points are 
referred to this set. Faugeras [7] developed a linear method 
for projective reconst ruction based only in correspondent 
points of the two images. He chooses five arbitrary points 
in the scene as points of a projective base. With this choice 
only two parameters of the 22 that composed the two pro- 
jection matrices are need to be determinate (1 1 parameters 
for each projection matrix with at least one scale factor, 
2 cameras). The two unknown variables are obtained if 
the epipoles are known, and thus the reconstruction of all 
points is made. This reconstruction has no metric or affine 
information. At the same time, Hartley [SI obtain a similar 
result. 
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In the affine reconstruction, defined up to an affine trans- 
formation, the obtained information has knowledge of dis- 
tances and parallelism. One of the marks in the 3D affine 
reconstruction, done by Koenderink and Doorn [l], shows 
that under the parallel projection (affine transformation) 
the 3D structure of the scene could be recovered based only 
in two images. Under the orthographic projection, Tomasi 
and Kanade [2], obtain a similar result a nd also the rota- 
tion between the cameras. This method needs the knowl- 
edge of the intrinsic parameters of the cameras. Poelman 
and Kanade [3] proposed a variation of this method, in 
which they use the paraperspective projection to obtain a 
better reconstruction. In spite of its simplicity, this recon- 
struction is not the best model of a real camera. Thus, to 
treat in a better way the reconstruction problem, a lot of re- 
searchers started to use the projective geometry. Sparr [5], 
that developed a descriptor to the 3D affine structure of a 
set of points. This descriptor is independent of the affine 
base and its intrinsic properties, and it is link to the per- 
spective projection of the points. 

Finally, the Euclidean reconstruction, the richest one and 
the same as the one the humans manipulate. One method, 
studied by D. Weinshall [4], use in the first phase the Koen- 
derink and Doo rn process and, from there, recover the 3D 
Euclidean structure using four no coplanar points. This 
process has the advantage of none of the knowledge of the 
intrinsic parameters of the Cameras be necessary. 

In this paper we present a 3D-reconstruction methodol- 
ogy, based on one uncalibrated static camera that acquires 
bidimensional images projected on mirrors with no related 
geometric information. The images from the mirrors are 
equivalent to images captured by cameras with different 
viewpoints. Our study, situated in the Euclidean 3D recon- 
struction, creates a linear process based on epipolar geom- 
etry and projective geometric properties. In our process 
we do not need the intrinsic camera parameters. All the 
mentioned studies, including ours, have a common point, 
the utilisation of a relative reference in the scene. 
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11. THE IMAGE ACQIJISITION 

To achieve results of a 3D reconstruction it is known that 
it is necessary at least two images. Having in mind the 
problem of the cost of a system that uses several cameras, 
we exploit the potent,ial of mirrors to reduce its number (a 
mirrored image of a scene is equivalent to a virtual camera 
behind it). As it can be seen in the figure l(a), we used two 



Fig. 1. (a) A perspective of the aystem. (b) The image obtained with 
o nls, one shot. 

mirrors behind the scene, that we want to recover, and one 
camera. We acquire, in only one shot, three parts concern- 
ing to the projection of the 3D scene and the projection' of 
the reflection of the previous in the left and right mirror, as 
it can be seen in figure l(b). Each part could be consider 
a different image, simulating, thus, a trinocular geometry 
of three cameras (two virtual and one real) observing the 
same scene from different viewpoints. 

111. MATCHING 
Since the reconstruction of 3D points is similar to a tri- 

angulation method, we need to have, at least, two points 
in the image, equivalents to the projection of the same 3D 
point. The process of point matching is known as corre- 
spondence and to obtain a fast solution for the correspon- 
dence problem, we compute the image geometry using two 
phases. 

The first one is the computation of the epipoles by "con- 
struction". Having two camer as looking to the same scene, 
the epipole of one image is the projection of the optical cen- 
tre of the other image in the previous one. The epipole is 
a unique point of the image that belongs to all epipolar 
lines. Those lines are the projections, onto images, of the 
epipolar planes, formed by, at least, two optical centres of 
both cameras and the 3D point of the scene. Every 3D 
point on the epipolar plane has the same epipolar line on 
the image. In this phase we use two correspondent points 
of each image. 

In the second phase, is the goal of the reconstruction 
process that established the type of the correspondence. If 

the goal is to recover simple planes in the scene, the CO rre- 
spondence is established based on estimated collineations 
between three parts of the uncalibrated image. To recon- 
struct a general scene, we determine the epipolar geome- 
try. The epipolar geometry captures all the 3D information 
available from the scene in one matrix, which is the funda- 
mental matrix [7]. 

For the estimation of the fundamental matrices, instead 
of computing the 3 x 3 matrices by a numerical process, 
we use the epipole positions, obtained in the first phase. 
Geometric construction, and, at least , a set of two matched 
points in each part obtain those epipoles. The simple equa- 
tion which allows to estimate those matrices, deduced in 
subsection III-A, uses the geometric relation between the 
homography and the fundamental matrix [9]. This way, an 
accurate fundamental matrix, of rank 2, with a stable lin- 
ear computation, is obtained with only two matched points 
in the image. 

A. Background 

correspondent homogeneous points, 
Along to this explanation we will consider three generic 

The points p1 and p2 are the reflections of a points P in 
left and right mirror and p3 its projection in the real image 
, with s, k and r scale factors. 

A transformation between two image planes is a 
collineation called homography, represented by a 3 x 3 ma- 
trix. To estimate this matrix is needed at least 4 correspon- 
dent points (since the matrix depends from a scale factor, 
it has only 8 unknowns). In our case, since we need to 
relate the three 2D image parts, we must have a set of four 
correspondent points in each part. For each pair of points 
we establish the following equation system 

.[ ;Ir=[ k; 2 hh:] [ 4 j 
with Q an arbitrary factor, and i and j the index of the 
images with i # j. To obtain all the homographies between 
images (real and reflected), we only need to estimate two, 
of the three homographies. Since all homographies are a 
3 x 3 invertible matrices, from equation (1) we have 

hi h2 h3 
(1) 

p1 = H13P3 e P3 = HLiP1 and P2 = H23P3 (2) 

The fundamental matrix, F, could be decomposed by 

F = [e&H = -[e2IhH 

The same analysis could be done for the reflected left im- 
age, from where we obtain 

F = -H-'[el]: = H-T[el]A 
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with el the epipole of the reflected left image. 
It is possible, creating a projective base in each image 

with a set of correspondent points, reduce the number of 
the parameters that compose the homography [9]. Thus, 
supposing, for each image, four points such 

pa'=[ 0 0 71' P b = [  0 0 1' 
p , = [ o  p a ] '  P d = [ '  .I' 

If the points are images from points in a plane, those images 
are related by the collineation 

Pi(1stimage) = XiHpi(2ndimage) 

with i = a, b, c, d ,  H the homography and X i  arbitrary fac- 
tors. Each set in the image form a projective basis, i.e. no 
three of them are collinear. Using the previous equation 
with the first three matched pairs, we obtain the general 
equation for H, given by ( 

H= O P O  (3) [: : :] 
Since the collineation is defined up to a scale factor, the 
above matrix has only two independent parameters. Fur- 
thermore, this three parameters are non zero for a non- 
singular homography. Since our homography maps a plane 
onto a plane, H is not singular and we can fix y = 1. From 
this result, if we know the epipoles, we could estimate the 
fundamental matrix with only two points. 

B. First phase - Epipoles by construction 

To obtain the epipole we could use the intersection of two 
epipolar lines or compute it by the null space of the fun- 
damental matrix. Since we are using mirrors, the epipoles 
can be obtained directly from the intersection of epipolar 
lines (without computing the fundamental matrix). Thus, 
a generic 3D point and its mirror reflection belong to the 
same projection plane. 

Observing our uncalibrated images, we realise that we 
have projections of 3D points and its reflections, from 
where we could form two epipolar lines. The epipoles are 
obtained by the intersection of the epipolar lines (at least 
two), geometrically constructed, from the refereed matched 
points. 

Analytically, let be ps the real projection, in the image, 
of the 3D point P and p1 the reflection of projected point 
of P in the same image. The line formed by those points 
is given by 

(PI A PdTQ = 0 
with q a generic point of the line and s, w and r scale 
factors. Having a set of n correspondent points (n _> 2), 
we form a linear system Ax = b, with n equations and 
two variables. Comparing the equations we easily conclude 
that the only solution for the created system must be the 
epipole. This calculus has to be done twice to obtain the 

Fig. 2. Lines formed to obtain the epipoles by its intersection: (a) 
Two points case; (b) Four points case; (c) Eight points case; (d) 
Epipolar lines obtain by the fundamental matriz computed with 
an eight points algorithm[l2]. 

two epipoles on each reflected image part. This linear sys- 
tem is solved by the least square method using singular 
value decomposition [lo]. 

The figure 2 shows graphicaly the lines which were inter- 
sect to obtain the results presented in table 1. In table I ,  
we could see the epipoles, of the reflected parts of the uncal- 
ibrated image, of four different situations. Thc first three 
cases of that table use our graphical method, whilt +he last 
one, estimate the fundamental matrix and then calculate 
the null space, which give the epipoles co-ordinates. In a 
comparison of both methods, we high light the fact that 
our method could obtain the epipoles with only a pair of 
correspondent points in each image part (first case) while. 
the other needs more points to compute the fundamental 
matrix and achieved the same result (last case). The num- 
ber of points in this calculus is very important because 
affects noise sensitivity. As our method is a pure graphic 
calculation, the sensitive to the noise became softer, but 
does not disappear. Analysing the three first cases of table 
I, we notice that with the increment of the points used the 
noise it is reduced, became the epipoles values more stable. 
Comparing the two last cases, it could be seen the great 
difference between the epipoles co-ordinates. This happen 
because the fundamental matrix was estimated with the 
minimum number of the points, having a high level of pen- 
sibility to noise. It is important to focus that the signal of 
the epipoles ceordinates is the same for all cases. 

33 1 



TABLE I 

fundamental matrix estimation, followed by the null space calculation[l2]. I t  is consider the top-left point of the image as  origin. 
Results of the epipoles calculation. The first three cases use our graphical method. The fourth case uses the eight-point algorithm f o r  the 

Fig. 3. Representation of the points obtained by the use of the es- 
timated homographies: ( a )  Four points case; (b)  Eight no nor- 
malised points case; ( e )  Eight normalised points case. 

C. Second phase - Homogmphies and Fundamental matri- 
ces 

To achieve the final goal of the reconstruction process, 
t,hc correspondence between points must be established. To 
recover simple planes in the scene, we estimate collineations 
between the three parts of the uncalibrated image. To re- 
construct some complex structures, we determine the fun- 
damental matrix. 

The computation of homographies between planes, for 
a planar reconstruction, begins by choosing a set of four 
points in two different parts of the image. Then the en- 
tire set is submitted to a normalisation process to have 
better balanced data and increase the estimation perfor- 
mance [12]. The two linear systems, each one based on 
one equation of (2), are solved by the least square method 
using the eigenvalues decomposition [lo]. 

Table 2 presents the results of three cases, of all in- 
volved hornographies estimation for the image. In figure 3 
are shown, graphically, all used points in the estimations 
(marked by a cross) and all points resulting by the homo- 
graphies (marked by a circle and a plus). Analysing the 
results of the table 2, we could notice that with the entry 
data normalisation the results became better (the second 
case of table 2 has worst median and standard deviation 
of the sum of distances between all points and its repro- 

jections than the third). Another fact, which return by 
comparing the first and last situation of table 2, is that the 
use of more exact matched points increase the performance 
of this correspondence (the standard deviation of the last 
case is the better). As explained above, in those estima- 
tions, the increment of exact correspondent points decrease 
the noise sensibility. 

The estimation of the fundamental matrix, F, must sat- 
isfy the epipolar and rank 2 constraint. This estimation 
is based on the estimation of the epipoles by “construc- 
tion” from the first phase. Using epipole co-ordinates and 
equation (3) (with y = 1) we obtain 

with two variables, (Y and p. Having n correspondent points 
( n  2 2), we create an equation system formed by n linear 
equations. The solution of this system give ua the values a 
and p, that defines F. The system was solved by the least 
square method using the eigenvalues decomposition [lo]. 

The table 3 presents some results of the estimation of 
all involved fundamental matrices for the uncalibrated im- 
age and normalisation. From the mean distance it could 
be seen that with the increment of the number of matched 
points, we achieved better results. Comparing table 1 with 
table 3, it could be noted that the epipoles co-ordinates are 
identic but not exact. This happen because our estimation 
process, in spite of more robust than the usual, still.sensi- 
tive with noise. The solution to reduce this problem pass 
by the noise filtering of the entry se ts with the RANSAC 
technique in the estimation of a and /3 [ll]. 

Figure 4 presents the application of the estimated funda- 
mental matrices, which are the epipolar lines. Comparing 
this figure with figure 2 it is high light the fact that it is 
evident that epipolar geometry was estimated based on the 
epipoles. 

IV. 3D RECONSTRUCTION 
In this step, we recover the 3D information of a scene 

point using geometric intersection of a pair of rays, both 
passing by the 3D point and by the respective camera’s o p  
tical centres. The intersection of those rays is the solution 
P = (X, Y, 2). The equation for these rays is 

i E { 1 , 2 , 3 }  and X # O  (4) 
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Number of 
points 

4 
8 
8 

4 
8 
8 

No. points 

2 

H I 3  =29 =I 2 H I  2a 

M e a n  distance between all points and i t s  reprojections 

Points 
normalised 

Yes 1.9302 pixels 1.2765 pixels 1.2963 pixels 1.2963 pixels 
No 4.8961 pixels 1 .a563 pixels 3.3249 pixels 1.3504 pixels 
Yes 2.0119 pixels 1.4386 pixels 1.1932 pixels 1.2385 pixels 

Yes 2.4350 pixels 1.6361 pixels 1.4294 pixels 1.4294 pixels 
No 2.6860 pixels 0.7665 pixels 1.7170 pixels 0.7532 pixels 
Yes 0.6505 pixels 0.6907 pixels 0.4949 pixels 0.5728 pixels 

Standard deviation of the distance between al l  points and its reprojections 

4 F13 = 

F23 = 

F13 = 

F23 = 

8 

- 
0 -1.1 -486.5 

1.0 0 4273.0 
459.7 -4228.4 0 

0 -1.0 -708.8 
1.0 0 -1760.1 

721.0 1723.7 0 

0 -1.0 -231.0 
1.0 0 2974.6 

224.6 -2959.7 0 
0 -1.0 -616.2 

1.0 0 -1629.7 
620.6 1614.2 0 - - 

Fundamental matraces 

871.3 -6974.3 
-1.0 -942.3 

942.3 2107.2 0 

013 = LO281 
pi3 = 1.005 el = (-2959.7, -224.6) 

Qf13 = 1.4482 

a 2 3  = 1.0072 
p23 = 0.9909 

Qf23 = 1.1366 

Qf13 = 0.7201 

4 = (1617.3,-621.8) Qf23 = 1.1567 

TABLE I11 

el = (-6974.3,-871.3) 
p13 = 1.0 

4 = (2107.2,-942.3) a23  = 1.0 
02.3 = 1.0 

el = (-4228.4, -459.7) 0 1 3  = 1.0584 
pi3 = 1.0106 I 

4 = (1730.3,-723.7) I a23 = 1.0172 
p23 = 0.9793 

Results of the estimation of the fundamental matrices. The mean distances and epipole co-ordinates a m  in pixels. The fifth column i s  
achieved after the estimation of the matrices, b y  calculate the null space of those matrices. 

(c) 
Fig. 4 .  Epipolar lines of the estimated fundamental matrices: (a )  

Two points case; ( b )  Four points case; (c )  Eight points case. 

Has we could see from equation (4), we must have four 
3D points to accomplish the reconstruction. Two of them 
are the optical centres of camera i ,  Cj, while each point Pi 
belongs to a ray i. To obtain the points Pi and Ci, we will 
use the matrix that relates projected points into Euclidean 
points in a plane (the planar mirrors) on world co-ordinate 
system. 

Since we are using planar mirrors, we assume without 
losing generality, that one of the mirrors represents the X Z  
plane and the other the YZ plane. This fact brings to us an 
easy way to compute the mentioned transformation matrix, 
T, for that specific mirror and its related image part. The 
3D mirror point Pi, corresponding to the intersection of 
the projective ray with planar mirror, is related with its 
image by 

Pi = "-'pi i E {1,2} (5) 

in homogeneous co-ordinates. This ray also passes through 
the camera's optical centre, Ci. 

Obtained C1 and Cz, with the intersection of the lines 
that pass by the optical centre and the 3D points in each 
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Fig. 5. (a) First 2D uncalibrated image from where we recover; (b) 
Second 2 0  uncalibrated image with the points that w e recover; 
(c) The results of the JD planar reconstruction based on image 
(a); (d) The results of the 3D planar reconstruction based on 
image (b). 

mirror plane and equivalent to the intersection of image 
rays with the planar mirrors, we could recover the 3D point. 
The reconstructed point P = (X, Y, Z),  using the camera’s 
optical centres Ci = (Cxj, Cyj, Czj) and the mirror’s in- 
tersection points P, = (Xi, y i ,  &), is the solution of the 
equation 

with i E { 1,2}. Experiments with real images validate our 
simple reconstruction method, from where U‘,? present some 
results. 

Each figure 5(a) and figure 5(b), represent uncalibrated 
images of 3D planes that we want to recover by the method 
reported before. The obtained points from the image are 
the points that we recover to interpolate the surfaces. The 
results of that interpolation are shown in figure 5(c) and 
figure 5(d). To give a better view of the accuracy of the 
reconstruction, we present some numerical results of the 
case represented by figure 5(a) and figure 5(c), like the 
distances between the real and recovered point and the 
distances between the neighbourhood reconstructed points. 

For this particular example, the mean errors between the 
3D real and recovered co-ordinates are AX = 12.31006667, 
AY = 4.0906875 and A 2  = 3.9457625 millimetres. With 
(192,103,353) and (207,228,152), two known 3D points of 
the scene, the estimation of the 3D centres in millimetres, 
are 

V. CONCLUSION 

Our method treats the planar reconstruction with exce 
lent results. We are now dealing with dense reconstruction 
of the scene, where we are developing a technique to aut- 
matically increase the number of correspondent points in 
the three images. This technique could use more mirrors in 
adequate positions, to maintain the goal of build a low cost 
and robust reconstruction system. Our effort is to develop 
a simple and robust automatic process that with no doubt 
could extract the match points on each image. With those, 
we can create, at a low cost, a robust system to recovery 
the entire 3D structure of the scene where are including the 
occult parts. 
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CI(Lef t  Virtual Centre) = (1210.6, -739.0,718.7) 
Cz(Right Virtual Centre) = (-1490.1,1094.9,857.8) 
Cs(Real Centre) = (1082.4,852.4,831.4) 
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