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Abstract
This paper explores the integration of inertial sen-

sor data with vision. A method is proposed for the
estimation of camera focal distance based on vanish-
ing points and inertial sensors.

Visual and inertial sensing are two sensory modali-
ties that can be explored to give robust solutions on im-
age segmentation and recovering of 3D structure from
images, increasing the capabilities of autonomous ve-
hicles and enlarging the application potential of vision
systems.

In this paper we show that using just one vanish-
ing point, obtained from two parallel lines belonging
to some levelled plane, and using the cameras attitude
taken from the inertial sensors, the unknown scaling
factor f in the camera’s perspective projection can be
estimated. The quality of the estimation of f depends
on the quality of the vanishing point used and the noise
level in the accelerometer data. Nevertheless it pro-
vides a reasonable estimate for a completely uncali-
brated camera. The advantage over using two vanish-
ing points is that the best (i.e. more stable) vanishing
point can be chosen, and that in indoors environment
the vanishing point point can sometimes be obtained
from the scene without placing any specific calibration
target.

1 Introduction
In the paper we show how fusing information from

inertial sensors with image data can be used for cam-
era calibration.
Inertial sensors explore intrinsic properties of body

motion. From the principle of generalised relativity of
Einstein we known that only the specific force on one
point and the angular instantaneous velocity, but no
other quantity concerning motion and orientation with
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respect to the rest of the universe, can be measured
from physical experiments inside an isolated closed
system. Therefore from inertial measurements one can
only determine an estimate for linear acceleration and
angular velocity. Linear velocity and position, and an-
gular position, can be obtained by integration. Iner-
tial navigation systems implement this process of ob-
taining velocity and position information from inertial
sensor measurements. Internal sensing using inertial
sensors is very useful in autonomous robotic systems
since it is not dependent on any external references,
except for the gravity field which does provide an ex-
ternal reference.
In human and other mammals the vestibular sys-

tem in the inner ear gives inertial information essential
for navigation, orientation, body posture control and
equilibrium. In humans this sensorial system is cru-
cial for several visual tasks and head stabilisation. It is
well known that, in humans, the information provided
by the vestibular system is used during the execution
of visual movements such as gaze holding and track-
ing, as described by Carpenter [1].
Camera calibration using vanishing points has been

widely explored, [2] [3] [4] [5] [6] amongst others. The
novelty in this work is using just one vanishing point,
and using the inertial sensors to extract camera pose
information. Calibration based on vanishing points is
limited since a compromise has to be reached on the
quality of each point, but since we require just one
vanishing point, the best one can be chosen.
The rest of this paper is arranged as follows. Sec-

tion 2 describes the system’s geometric framework.
The geometric features extracted from the inertial sen-
sor data, the vertical and the horizon are discussed in
section 3. The estimation of camera focal distance
based and vanishing point detection is presented in
section 4. The experimental setup used and some re-
sults are presented in Section 6 and concluding re-
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Figure 1: System geometry, and the camera referen-
tial.

marks drawn in section 7.

2 Geometric Framework
2.1 System Geometry
While some initial tests were made using a single

camera with inertial sensors, we are now using a stereo
system to explore other possibilities for the integration
of inertial sensor data with vision. The system used
has an inertial unit at the middle of the stereo cam-
era baseline, as seen in figure 4. The cameras’ pan is
controlled so as to have a symmetric verge angle. The
system’s coordinate frame referential, {C}, is defined
as having the origin at the centre of the baseline of the
stereo cameras, as seen in figure 1. This referential is
named Cyclop, after the mythological one-eyed giant.
Each camera has its own referential, {R} and {L}.

Besides being translated from {C} along the baseline
(represented by the homogeneous coordinate matrixes
Tr and Tl), and rotated θR and θL along the {C}
Z-axis (Rr and Rl), their axis are also swapped to
comply with the typical referential convention used
for camera images (Sr and Sl) - see figure 1. No-
tice that in our case we have symmetric vergence, i.e.
θ = θR = −θL.
Using these conventions we can express a world

point P in the Cyclop referential {C}, given its co-
ordinates in the camera referential {R} or {L} by

CP = Tr.Rr.Sr.RP =C TR.RP (1)

and

CP = Tl.Rl.Sl.
LP =C TL.LP (2)

2.2 Camera Model
The pinhole camera model is used. Assuming that

image acquisition maintains square pixel ratio and no
skew we have for an image point pi = (u, v)

u = f
X

Z
v = f

Y

Z
(3)

where u and v are the pixel coordinates with origin at
the image centre as show in figure 1, f is the camera
effective focal distance (i.e. includes a scale factor)
and P = (X,Y,Z)T is in the camera referential.

2.3 Projection onto Unit Sphere
The previous model derives from the cameras’ ge-

ometry, but the projection needn’t be onto a plane.
Consider a unit sphere around the optical centre, with
the images being formed on its surface. The image
plane can be seen as a plane tangent to a sphere of
radius f concentric with the unit sphere. The im-
age plane touches the sphere at the equator, and this
point defines, on the image plane, the image centre.
Using the unit sphere gives a more general model for
central perspective. It also has numerical advantages
when considering points at infinity. Consider the unit
sphere where every world point P in the world is pro-
jected, forming an image on its surface. The image
points on this surface can be represented by unit vec-
torsm placed at the sphere’s centre, the optical centre
of the camera.

P → m =
P

||P || (4)

Note that m = (m1,m2,m3)
T is a unit vector and

the projection is not defined for P = (0, 0, 0)T [2].
Projection onto the unit sphere is related to projection
onto a plane by

(u, v)T =
(

f
m1

m3
, f

m2

m3

)T

(5)

Given f , the projection to a sphere can be computed
from the projection to a plane and conversely. To
avoid ambiguity m3 is forced to be positive, so that
only points on the image side hemisphere are consid-
ered.
For a given image point (u, v), its projection onto

the unit sphere is given by

m =
1√

u2 + v2 + f2


 u

v
f


 (6)

Image lines can also be represented in a similar way.
Any image line defines a plane with the centre of pro-
jection. A vector normal to this plane uniquely defines
the image line. A normalized vector, normal to the
plane defined by the image line and the optical centre,
can be used to represent the line.
For a given image line au+ bv+ c = 0, the normal-

ized vector is given by



n

Figure 2: Line projection onto Unit Sphere.

n =
1√

a2 + b2 + (c/f)2


 a

b
c/f


 (7)

A given set of image plane points are collinear if
their corresponding unit sphere vectors, mi, all lie
within the same plane, touching the unit sphere along
a great circle. Allmi are orthogonal to the unit vector
n that defines the line passing through them all, i.e.

n.mi = 0 (8)

From the duality of points and lines it follows that a
given set of image lines are concurrent if their vectors,
ni, all lie within the same plane, all ni are orthogonal
to the unit vector m that defines their common point,
i.e.

m.ni = 0 (9)

For both cases, the mentioned plane is defined by
the unit sphere centre (centre of projection) and the
normal.
Image points m and m′ are said to be conjugate to

each other if

m.m′ = 0 (10)

and image lines n and n′ are conjugate to each other
if

n.n′ = 0 (11)

In image coordinates we have that image points
(u, v)T and (u′, v′)T are conjugate to each other if

uu′ + vv′ + f2 = 0 (12)

and the projective lines passing through each point
and the center of projection are orthogonal.

n

Figure 3: Via Latina of Coimbra University with van-
ishing point, and vanishing line of planar surface.

2.4 Vanishing points and vanishing lines
Since the perspective projection maps a 3D world

onto a plane or planar surface, phenomena that only
occurs at infinity will project to very finite locations
in the image. Parallel lines only meet at infinity, but
as seen in figure 3, the point where they meet can be
quite visible and is called the vanishing point of that
set of parallel lines.
A space line with the orientation of an unit vector

m has, when projected, a vanishing point with unit
sphere vector ±m. Since the vanishing point is only
determined by the 3D orientation of the space line,
projections of parallel space lines intersect at a com-
mon vanishing point.
A planar surface with a unit normal vector n, not

parallel to the image plane has, when projected, a van-
ishing line with unit sphere vector ±n. Since the van-
ishing line is determined alone by the orientation of
the planar surface, then the projections of planar sur-
faces parallel in the scene define a common vanishing
line. A vanishing line is a set of all vanishing points
corresponding to the lines that belong to the set of
parallel planes defining the vanishing line.
In an image the horizon can be found by having two

distinct vanishing points as seen in figure 3. With a
suitable calibration target (e.g. a levelled square with
well defined edges) the horizon can be determined.
If the vanishing points, (u, v)T and (u′, v′)T , cor-

respond to orthogonal sets of parallel lines, they are
conjugate to each other and from (12) we have

f =
√−uu′ − vv′ (13)

3 Gravity vector gives image horizon,
vertical and ground plane

3.1 Gravity vector
The measurements a taken by the inertial unit’s

accelerometers include the sensed gravity vector g



summed with the body’s acceleration ab:

a = g + ab (14)

Assuming the system is motionless, then ab = 0
and the measured acceleration a = g gives the grav-
ity vector in the system’s referential. So, with ax,ay

and az being the accelerometer filtered measurements
along each axis, the vertical unit vector will be given
by

n̂ = − g
‖g‖ =

1√
a2

x+a2
y+a2

z


 ax

ay

az


 =


 nx

ny

nz


 (15)

and

Cn̂ =
[

nx ny nz 1
]T (16)

Notice that if our assumption of the system being
motionless or subject to constant speed is correct, than
in the above equation

√
a2

x + a2
y + a2

z
∼= 9.8ms−2 (17)

and this condition can be tested and monitored by the
system.
3.2 Vertical
In equation (16) the vertical unit vector is given in

the Cyclop referential. The vertical for each of the
cameras is given by

Rn̂ = S−1
r .R−1

r .Cn̂ and Ln̂ = S−1
l .R−1

l .C n̂ (18)

This vertical corresponds to the vanishing point of
all vertical lines.
3.3 Horizon
In the previous section we saw how the horizon

can be found by having two distinct vanishing points.
Knowing the vertical in the cameras referential and
the focal distance, an artificial horizon also can be
traced. A planar surface with a unit normal vector n̂,
not parallel to the image plane has, when projected, a
vanishing line given by

nxu+ nyv + nzf = 0 (19)

where f is the focal distance, u and v image coordi-
nates and n̂ = (nx, ny, nz)

T

Since the vanishing line is determined alone by the
orientation of the planar surface, then the projections
of planar surfaces parallel in the scene define a com-
mon vanishing line. The horizon is the vanishing line
of all levelled planes, parallel to the ground plane.

4 Calibration of f
With one vanishing point pv = (u, v)T, obtained

from two parallel lines belonging to some levelled
plane, and from equation (19) the unknown scaling
factor f in equation (3) can be estimated as

f = −nxu+ nyv

nz
(20)

where n̂ = (nx, ny, nz)
T is taken from (18)

4.1 Determining the Vanishing Points
Using an image with dominant ground plane par-

allel lines, the lines have to be detected so that the
vanishing points can be found.
The edges in the image are found with an optimized

Sobel filter. The filter estimates the gradient D as

D =
[ Dx

Dy

]
(21)

where Dx and Dx are pixel mask operators given by

Dx ≈ 1
32


 3 0 −3
10 0 −10
3 0 −3


 Dy ≈ 1

32


 3 10 3

0 0 0
−3 −10 −3


 (22)

The optimized Sobel filter has a lower angle error than
the standard Sobel filter [7]. By choosing an appropri-
ate threshold for the gradient magnitude, the potential
edge lines can be identified.

D =
√

D2
x +D2

y > threshold (23)

The Hough transform is used to group the edge
points into lines. Since the Sobel filter provides a local
edge orientation estimate, we can use an orientation-
based fast Hough transform that avoids the high com-
putational effort of the parameter space tranform [7].
The Hough transform maps image points pi =

(ui, vi)
Tto parameter space = (d, θ)T where

ui cos θ + vi sin θ = d (24)

The fast Hough transform uses the edge orientation
given by the Sobel filter. Since the local edge orienta-
tion is noisy, a small neighbourhood bell shaped mask
is used when voting in the transform space. The mag-
nitude of the gradient is also used so that stronger
edges have a higher weighting factor in the accumula-
tor parameter space.
The parameter space is than parsed to find the

highest peaks, corresponding to the image dominant
lines. Having identified the line, a neighbourhood of
this peak is zeroed so that the second line can be
found, and the process is iterated to find all four lines
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Figure 4: System on Mobile Robot, and System Ar-
chitecture.

that must be dominant in the image. The lines are
than sorted by angle, so that they can be paired and
the vanishing points found. We used two sets of lines
to compare our method with others, but only one
vanishing point is needed. Having multiple vanishing
points, the best one can be chosen.
Our emphasis is on fast methods, and methods such

as presented by Palmer [8], Lutton [9] and Tuytelaars
[10] where not tested since the added accuracy might
not improve the results due to the noise level in the
accelerometers.

5 Results
5.1 Experimental Setup
For this work we needed a pair of cameras with a

stereo rig capable of controlling camera vergence, and
inertial sensors to measure the systems attitude.
An inertial system prototype built at our lab was

used. The system is based on low-cost inertial sen-
sors and is intended for robotic applications. The sen-
sors used in the prototype system include a three-axial
accelerometer, three gyroscopes and a dual-axis incli-
nometer. For this work we are only extracting the
system’s attitude from the accelerometer data when it
is motionless, by keeping track of the gravity vector
g. See [11] for complete details of the experimental
setup.
To study the integration of inertial information and

vision in artificial autonomous mobile systems, the
system was mounted onto a mobile robot platform.
Figure 4 shows the complete system.
5.2 Calibration of f
With this setup, the method for the estimation of

f was tested. The calibration target shown in figure
5 was rotated so that , and 10 samples taken at each
position.
As seen in figure 6 and table 1 using just one van-

ishing point and n̂ provides the estimate with lower
error.
Figure 7 and table 2 show the estimate results for

100 samples of a single position, favourable for the

Figure 5: Target image and estimated values of f .
The vanishing lines are shown, as well as the nearer
vanishing point. The lower horizon is based on an
initial estimate of f and n, and the others are based
on the the left and right vanishing points and n.
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Figure 6: Estimation of f using vanishing points and
n̂, the target was rotated through 19 positions, with
10 samples taken at each position.

Table 1: Estimation of f using vanishing points and
n̂ with rotating target.

mean σ

2 vanishing points 558.94 32.11
ins & worst vanishing point 601.23 66.33
ins & best vanishing point 592.38 18.17
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Figure 7: Estimation of f using vanishing points and
n̂, with 100 samples taken with fixed target.

Table 2: Estimation of f using vanishing points and
n̂ with fixed target.

mean σ

2 vanishing points 538.30 15.68
ins & worst vanishing point 704.50 22.46
ins & best vanishing point 615.80 14.90

two vanishing points. Although the vanishing points
are both near the image, one is nearer and using this
vanishing point and n̂ still provides the estimate with
lower error.

6 Conclusions
This article presented our recent results on the in-

tegration of inertial sensor data with vision, namely
in the estimation of camera focal distance.
With just one vanishing point, obtained from two

parallel lines belonging to some levelled plane, and us-
ing the cameras attitude taken from the inertial sen-
sors, the unknown scaling factor f in the camera’s
perspective projection can be estimated. The qual-
ity of the estimation of f depends on the quality of
the vanishing point used and the noise level in the
accelerometer data. Nevertheless it provides a reason-
able estimate for a completely uncalibrated camera.
The advantage over using two vanishing points is that
the best (i.e. more stable) vanishing point can be cho-
sen, and that in indoors environment the vanishing
point point can sometimes be obtained from the scene
without placing any specific calibration target.
Future work involves improving the vanishing point

detection, exploring the methods used by Palmer [8],
Lutton [9] and Tuytelaars [10], so that our single van-
ishing point approach can benefit. Ongoing work is

being done in statistical error models and sensitivity
analysis, as well as tests with diverse indoor scenes.
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