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FEATURES AND EIGENFACES
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Abstract: This paper describes an algorithm for human tracking using vision
sensing, specially designed for a human machine interface of a mobile robotic
platforms or autonomous vehicles. The solution presents a clear improvement on a
tracking algorithm achieved by using a machine learning approach for visual object
detection and recognition for data association. The system is capable of processing
images rapidly and achieving high detection and recognition rates. This framework
is demonstrated on the task of human-robot interaction. There are three key parts
on this framework. The first is the person’s face detection used as input for the
second stage which is the recognition of the face of the person interacting with
the robot, and the third one is the tracking of this face along the time. The
detection technique is based on Haar-like features, whereas eigenimages and PCA
are used in the recognition stage of the system. The tracking algorithm uses a
Kalman filter to estimate position and scale of the person’s face in the image.
The data association is accelerated by using a subwindow whose dimensions are
automatically defined from the covariance matrix of the estimate. Used in real-
time human-robot interaction applications, the system is able to detect, recognise
and track faces at about 16 frames per second in a conventional 1GHz PentiumIII

laptop.
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1. INTRODUCTION

The development of new human-machine interface
for autonomous vehicles and mobile platforms is a
key feature to increase the number of applications
of these technologies. The actual use of these
devices is strongly dependent on new interfaces
specially based on off-the-shelf technologies, such
as video sensors. This paper describes a solution
for human tracking using video signals which was
specially designed for use in a human machine
interface and action interpretation.

Towards this end it was constructed a Real-time
face recognition system with a preprocessing stage
based on a rapid frontal face detection system
using Haar-like features introduced by Viola et al.
(Viola and Jones, 2001) and improved by Lienhart
et al. (Lienhart and Maydt, 2002; Rainer Lienhart
and Pisarevsky, 2002).

The detection technique is based on the idea of the
wavelet template (Oren et al., 1997) that defines
the shape of an object in terms of a subset of the
wavelet coefficients of the image. Like Viola et al.
(Viola and Jones, 2001) we use a set of features
which are reminiscent of Haar Basis functions.



Any of these Haar-like features can be computed
at any scale or location in constant time using the
integral image representation for images. In spite
of having face detection and false positive rates
equivalent to the best published results (Rowley et
al., 1998; Schneiderman and Kanade, 2000; Sung
and Poggio, 1998), this face detection system
distinguishes from previous approaches (Yang,
2002) in its ability to detect faces extremely fast.

The face recognition system is based on the eigen-
faces method introduced by Turk et al. (Turk and
Pentland, 1991). Eigenvector-based methods are
used to extract low-dimensional subspaces which
tend to simplify tasks such as classification. The
Karhunen-Loeve Transform (KLT) and Principal
Components Analysis (PCA) are the eigenvector-
based techniques we used for dimensionality re-
duction and feature extraction in automatic face
recognition.

The built system, that will be used in a human-
robot interaction application, is able to robustly
detect and recognise faces at approximately 16
frames per second in a 1GHz PentiumlIII laptop.

This article is structured as follows: Section I
presents to the face detection mechanism that uses
classifiers based on Haar-like features. Section II
refers to the eigenimage based recognition of faces.
Section IIT presents the tracker mechanism which
is based on a Kalman filtering approach. Section
IV presents the architecture of the on-line face
recognition system whose results are presented on
section V. In this latter section some real data
results are presented where it can be seen that
multiple faces are detected in images but only one
is recognised as the interacting one. Section VI
concludes this article.

2. USING FEATURES

Isolated pixel values do not give any information
other than the luminance and/or the colour of
the radiation received by the camera at a given
point. So, a recognition process can be much more
efficient it is based the detection of features that
encode some information about the class to be de-
tected. This is the case of Haar-like features that
encode the existence of oriented contrasts between
regions in the image. A set of these features can be
used to encode the contrasts exhibited by a human
face and their spacial relationships. One of the
problems that these kind of approaches present is
the computation effort that is required to compute
each of the features as a window sweeps the whole
image at various scales. Fortunately, each of the
used features can be computed by peeking 8 values
in a table (the integral image) independently of
the position or scale.

Our feature pool was inspired by the over-
complete Haar-like features used by Papageorgiou
et al. in (Oren et al., 1997; Mohan et al., 2001) and
their very fast computation scheme proposed by
Viola et al. in (Viola and Jones, 2001) improved
by Lienhart et al. in (Lienhart and Maydt, 2002).
More specifically, we use 14 feature prototypes
(Lienhart and Maydt, 2002) shown in Fig. 1 which
include 4 edge features, 8 line features and 2
centre-surround features. These prototypes are
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Fig. 1. Examples of the used Feature prototypes

scaled independently in vertical and horizontal
direction in order to generate a rich, over-complete
set of features. These features can be computed
in a constant and short time irrespectively of the
their position as shown in (Barreto et al., 2004).

2.1 Learning Classification Functions

Given a feature set and a training set of positive
and negative sample images, any number of ma-
chine learning approaches could be used to learn
a classification function. A variant of AdaBoost is
used both to select a small set of features and train
the classifier. In its original form, the AdaBoost
learning algorithm is used to boost the classifica-
tion performance of a simple (also called weak)
learning algorithm. Recall that there are over
117,000 rectangle features associated with each
image 24 x 24 sub-window, a number far larger
than the number of pixels. Even though each fea-
ture can be computed very efficiently, computing
the complete set is prohibitively expensive. The
main challenge is to find a very small number of
these features that can be combined to form an ef-
fective classifier. In support of this goal, the weak
learning algorithm is designed to select the single
rectangle feature which best separates the positive
and negative examples. For each feature, the weak
learner determines the optimal threshold classifi-
cation function, such that the minimum number of
examples are misclassified. A weak classifier h;(x)
thus consists of a feature f;, a threshold 6; and a
parity p; indicating the direction of the inequality
sign:

0 otherwise

hy(x) = { 1 p;fi(z) < p;0; (1)



here z is a 24 x 24 pixel sub-window of an image.
See (Freund and E.Schapire, 1996) for a summary
of the boosting process.

2.2 Cascade of Classifiers

This section describes an algorithm for construct-
ing a cascade of classifiers (Viola and Jones, 2001)
which achieves increased detection performance
while radically reducing computation time. The
key insight is that smaller, and therefore more effi-
cient, boosted classifiers can be constructed which
reject many of the negative sub-windows while
detecting almost all positive instances. Simpler
classifiers are used to reject the majority of sub-
windows before more complex classifiers are called
upon to achieve low false positive rates.

A cascade of classifiers is degenerated decision tree
where at each stage a classifier is trained to detect
almost all objects of interest while rejecting a
certain fraction of the non-object patterns (Viola
and Jones, 2001) (see Fig. 2).

Each stage was trained using the Adaboost al-
gorithm. At each round of boosting is added
the feature-based classifier that best classifies the
weighted training samples. With increasing stage
number, the number of weak classifiers, which are
needed to achieve the desired false alarm rate at
the given hit rate, increases (for more detail see
(Viola and Jones, 2001)).
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Fig. 2. Cascade of Classifiers with N stages.

3. FACE RECOGNITION USING
EIGENFACES

The face recognition system is based on eigenspace
decompositions for face representation and mod-
elling. The learning method estimates the com-
plete probability distribution of the face’s appear-
ance using an eigenvector decomposition of the
image space. The face density is decomposed into
two components: the density in the principal sub-
space (containing the traditionally-defined princi-
pal components) and its orthogonal complement
(which is usually discarded in standard PCA)
(Moghaddam and Pentland, 1995).

3.1 Principal Component Analysis (PCA)

Given a training set of W x H images, it is possible
to form a training set of vectors x’, where x €
RN=W+H The basis functions for the Karhunen
Loeve Transform (KLT) are obtained by solving
the eigenvalue problem:

A=3Tyo (2)

where 3 is the covariance matrix, ® is the eigen-
vector matrix of 3 and A is the corresponding di-
agonal matrix of eigenvalues \;. In PCA, a partial
KLT is performed to identify the largest eigenval-
ues eigenvectors and obtain a principal component
feature vector y = ®% %, where x = x — X is
the mean normalised image vector and ®); is a
sub-matrix of ® containing the principal eigenvec-
tors. PCA can be seen as a linear transformation
y = T(x): RY — RM which extracts a lower-
dimensional subspace of the KL basis correspond-
ing to the maximal eigenvalues. These principal
components preserve the major linear correlations
in the data and discard the minor ones.

Using the PCA it is possible to form an orthog-
onal decomposition of the vector space RN into
two mutually exclusive and complementary sub-
spaces: the feature space F' = {¢;}M, containing
the principal components and its orthogonal com-
plement F = {¢i}i1\;M+1' The x component in
the orthogonal subspace F' is the distance-from-
feature-space (DFFS) while the component which
lies in the feature space F' is referred to as the
” distance-in-feature-space” (DIFS) (Moghaddam
and Pentland, 1995). Fig. 3 presents a prototypi-
cal example of a distribution embedded entirely in
F. In practice there is always a signal component
in F due to the minor statistical variabilities in
the data or simply due to the observation noise
which affects every element of .
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Fig. 3. Decomposition into the principal subspace
F and its orthogonal complement F' for a
Gaussian density

The reconstruction error (or residual) of the
eigenspace decomposition (referred to as DFFS
in the context of the work with eigenfaces (Turk
and Pentland, 1991)) is an effective indicator of
similarity. This detection strategy is equivalent to
matching with a linear combination of eigentem-
plates and allows for a greater range of distortions
in the input signal (including lighting, and mod-
erate rotation and scale).



The DFFS can be thought as an estimate of a
marginal component of the probability density
and a complete estimate must also incorporate
a second marginal density based on a comple-
mentary DIFS. Using these estimates the problem
of face recognition can be formulated as a max-
imum likelihood estimation problem. The likeli-
hood estimate can be written as the product of
two marginal and independent Gaussian densities
corresponding to the principal subspace F' and its
orthogonal complement F:

P(x) = Pr(x) - Pp(x) (3)

where Pp(x) is the true marginal density in F' —
space and Pp(x) is the estimated marginal den-
sity in the orthogonal complement F — space
(Moghaddam and Pentland, 1995).

4. TRACKING ALGORITHM

The inclusion of a Kalman filter serves two pur-
poses: increase the quality of the tracking and
increase the processing speed. The first purpose
will help in producing estimates of the position
of the tracked face when the face detector failed.
Although the cascade classifier is quite robust it
is trained to detect frontal faces only and when
the user turns slightly his head to look at some-
thing else, the classifier might fail. The role of the
tracker is to produce an estimate that is used as
the best information when the classifier fails. A
constant velocity model for the dynamics of the
target in the image plane of the form

xp = f(Xp—1, V1) (4)
for the evolution of system state and
Yk = h(xy, 1e) (5)

.. .qT
for the measurements, where x;, = [:c YyszTyY s]k

is the state vector that contains the position in
the image plane and a scale factor as well as their
first derivatives. v and puy are realisations of the
process and measurement noise respectively. This
model is used to construct a Kalman filter whose
equations can be found in (Kalman, 1960).

The purpose of increasing the speed of the tracker
is attained by reducing the image area where the
classifier is going to search for faces. The search
area is centred on the estimated position and its
size depends on the values found on the diagonal
of the covariance matrix. The effect of this is
that when the estimate is good enough and the
tracked face is found inside the search window
the variance is small and so is the size of this
window resulting in a higher frame processing
rate. If the face is not found inside the search
window the prediction is not corrected and the
covariance grows. After a few iterations without
detecting the tracked face the search window will

occupy the area corresponding to the whole image
what will reduce to the classical application of the
classifier.

5. SYSTEM ARCHITECTURE

The system architecture is made of three main
modules: learning, face detection and face recog-
nition. The first one is the learning process in
which the system builds the eigenspace of the
person with whom the robot is going to interact.
Once this eigenspace is calculated the system is
able to recognise the face of the person during
the tracking process. For each captured image
the system detects and extracts the faces, and
projects them in the eigenspace of the person the
robot is interacting with in order to know if it is
interacting with the right person and where is the
person in the image (see figure 4.
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Fig. 4. System Architecture

5.1 Learning Process

The learning process starts with the acquisition
of a face images sequence of the person the robot
is going to interact with. The person should stay
in front of the camera until face detector detects
and extracts 40 face images.

Calculate the first
20 eigenfaces

Collect 40 images of Extracted Resize
the face window (30x30)

(- m

Add
to database

Fig. 5. Learning process

Every face image extracted is converted to grey
level and scaled to 30 x 30 pixels. With this set
of 40 grey level 30 x 30 face images the system



is able to build the eigenspace of the person by
calculating his first 20 eigenfaces (PCA). Fig.
5 illustrates the complete learning process of a
person. It takes about 15 seconds in a 450 Mhz
Pentium II processor.

5.2 Recognition Process

As in the learning process, the first stage of the
recognition process is the detection and extraction
of faces from the input image. Once this images
were extracted they are scaled to 30 x 30 pixels
and projected in the eigenspace of the person the
robot is interacting with. From the coefficients
of projection the system is able to compute the
probability of each detected person being the
right one. The probability values are stored in a
linked list in descendant order. Using a decision
mechanism the system is able to know whether or
not the robot is interacting with the right person
and in the negative case the robot can recognise,
among the people around, the person it should
interact with.
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Fig. 6. Recognition process

Face Recognition Output image

In practice a very simple framework is used to
produce an effective a highly efficient decision
mechanism which is described elsewhere (Barreto
et al., 2004). This mechanism increases system’s
performance for the case where two or more people
are detected in the image.

6. RESULTS

A 13 stage cascaded classifier was trained to detect
frontal upright faces. Each stage was trained to
eliminated 50% of the non-face patterns while
falsely eliminating only 0.2% of the frontal face
patterns. In the optimal case, we can expect a
false alarm rate about 0.002' = 8-1072¢ and a
hit rate about 0.998'3 = 0.97 (see Fig. 2).

To train the detector, a set of face and non
face training images were used. The face training
set consisted of over 4,000 hand labelled faces
scaled and aligned to a base resolution of 24 x 24
pixels. The non-face subwindows used to train the
detector come from over 6,000 images which were
manually inspected and found to not contain any
faces. Each classifier in the cascade was trained
with the 4,000 training faces and 6,000 non-face
windows using Adaboost.

6.1 Speed of the Final Recognition System

The introduction of the Kalman filter to reduce
the search region has demonstrated its value.
Actually on a 1GHz PIII laptop, the detection
and recognition runs at a 8.6 fps whereas with the
Kalman improvement its processing rate depends
on the area occupied by the face. Naturally the
larger improvements are observed when the user’s
face occupies the least detectable area on the
image. In this case processing speeds of 24 fps are
obtained.

6.2 Experiments on Real-World Situations

Fig. 7. Three frames from a Real-Time Face
Recognition system output sequence.

The system was tested in some real-world situ-
ations and Fig. 7 presents a sequence of images
captured by the robot’s camera and processed by
the real-time face recognition system. Figure 8
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Fig. 8. Top: Estimated position and velocity. Bot-
tom: Estimated position, measured position
and prediction covariance

shows an example of the estimated parameters
by the Kalman filter that can be compared to
the measured ones. Figure 9 shows a sequence of
tracking where it is visible that when recognition
fails the search area grows, in fact its size is related
to the prediction covariance of the filter.



Fig. 9. Tracking Sequence where it is visible the
search region (black), predicted face region
(cyan) and detected face region (green).

7. CONCLUSIONS

This article gives a contribution for the develop-
ment of new human-machine interfaces for mo-
bile robots and autonomous systems, based on
computer vision techniques. The article presented
an approach for real-time face recognition and
tracking which can be very useful for human-robot
interaction systems. In a human robot interaction
environment this system starts with a very fast
real-time learning process and then allows the
robot to follow the person and to be sure it is
always interacting with the right one under a wide
range of conditions including: illumination, scale,
pose, and camera variation. The face tracking
system works as a preprocessing stage to the face
recognition system, which allows it to concentrate
the face recognition task in a sub-window previ-
ously classified as face. This abruptly reduces the
computation time. The introduction of a position
predictive stage would also reduce the face search
area driving to the creation of a robust automatic
tracking and real-time recognition system.

This paper also presents a Pre-Learnt User Recog-
nition System which works in almost real-time
and that can be used by the robot to create a set
of known people that can be recognised anytime.
The robot has a certain number of people in the
database and once a known face is found it can
start following and interacting with it. Of course
this system can also be used in security applica-
tions since it has the ability of tracking a set of
known people.
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