
A Low-level Framework for a Probabilistic Treatment of the Topological Description
of a Robot Mission

F. Ferreira and V. Santos
Department of Mechanical Engineering

University of Aveiro, 3810-193 Aveiro, Portugal
Email: cfferreira,vsantos@mec.ua.pt

J. Dias
Institute of Systems and Robotics

University of Coimbra, 3030-290 Coimbra, Portugal
Email: jorge@isr.uc.pt

Abstract— This article describes a mathematical basis re-
quired to integrate features obtained for perception for topo-
logical navigation. It is intended for application to navigation in
an environment that is not mapped, but in which a mission is
described in the form of a semantic description of the perception
stimulus that the robot is expected to encounter. The need to
integrate features from different sensors led to the use of an
uncertainty estimate employed in information theory; binary
entropy. By using entropy, the features are ranked in order of
decreasing uncertainty. This article describes the state of the
work in an as yet preliminary stage, but appears promising for
application to navigation using topological information. It also
offers interesting perspectives on commonly used sensory data
such as local intensity image features.

Index Terms— Binary entropy, Autonomous navigation, Topo-
logical Features.

I. INTRODUCTION

Mapping applications, using either metric or topological
methods, or both, have improved immeasurably to the present
day. Single robots [1][2] or teams [3] are now able to
effectively use spaces meant for humans and even replace
the humans in applications in these spaces.

Although much work has been done on mapping of indoor
environments, a large set of applications that require navi-
gation in large indoor and outdoor environments have still
not been satisfactorily resolved; for example, applications in
which semantic descriptions or navigation cues, placed for
human users of the space, are given to the robot, instead
of requiring the robot to map the entire environment. Such
applications would involve a topological description for a
single path through the environment in terms of the landmarks
that will be encountered. The robot would selectively integrate
indicated and other landmarks and features based on their
marginal information contribution.

Researchers have been tackling with the more complex
problem in which a topological representation of the com-
plete environment is provided and the robot must perform a
given motion subject to certain constraints. Markov models
have justifiably been used as representations of the physical
motion of the robot in the environment. The uncertainty
in the pose of the robot and in the perceptual capabilities
of the robot have resulted in the modeling of the position
[given-the-perception] as a Hidden-Markov-Model. When the
requirement of autonomous navigation and path planning (in
greater or smaller degree) is added to localization problem,
tools dealing with the stochastic treatment of Markov pro-

cesses have been applied. Kaelbling [4] explains the need
for and the means to model navigation using a topological
mapping as a Partially Observable Markov process, with a
special emphasis on the motion. Simmons [5], uses a similar
approach emphasizing and developing a model of the pose of
the robot instead. This article describes work that borrows the
Markovian means of handling the Bayesian inference when
perception is performed using the topological approach. Its
focus, however, is on the information content of the features
used in the perception process.

This article and the work on the robot platforms which
it describes aims for the integration of different sensors
including vision, stereo vision and a laser range finder.
Presently, a partial system has been developed to demonstrate
the framework using only a laser rangefinder (LRF). The
addition of other sensory systems will use an approach similar
to the one adopted for the LRF.
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Fig. 1. Excerpt of a topological map indicated the edges and nodes

At this stage, a brief description of the terminology utilized
in this work is in order. The Mission refers to a sequence of
movements that the robot must perform to get from a starting
place to a final destination. The robot will depend on features
obtained from sensing the environment and associated with
various places while completing the mission; Views refer
to collections of features at discrete instances. For example,
views can be composed of SIFT features in images [6][7],
doors [8], lines and corners in a laser range image; each
feature is arranged in a feature ’space’ defined independently
for each type of sensor. Affordances, a reference to the
term ’affordance’ coined by J J Gibson [9], refers to the
possibilities of motion that the environment provides locally.
Behaviors refer to motion that follows a particular control
law.

The mission that a user presents to the robot is built into a
graph description. The path indicates the topological path that



the robot must travel, see Fig. 1. The topological description
of the mission takes the form of a path in the Graph G =
〈N, E, I〉 where N indicates the set of nodes, E the set of
edges and I the set of incidental relationships that unite nodes
and edges. Each node is an 4-tuple Ni = 〈V, TV, M, TM〉
where V indexes named views, TV the topology of the views,
M the affordances at the node, and TM the topology of these
affordances. Each edge Ek = 〈M, R, D〉 is denoted as a
triple where M defines a single or a sequence of behaviors,
R denotes the reason for termination of the edge and D
represents the distance covered since the beginning of the
edge. The incidence relationships that join nodes to edges are
denoted by Ik = 〈bi, Ni, Nj , bj〉 which indicate the initiating
behaviors, starting node, ending node and ending behavior in
that order. The path in the topological graph is the exhaustive
set of edges from the first node, Ninitial, to the final node
Nfinal.

Before a robot can perform a mission autonomously,
the user leads the robot through the environment in
an environment-familiarization phase. This environment-
familiarization phase is completed by alternating between the
user choosing behaviors (at a node) and the robot executing
these behaviors. As the robot travels with the behaviors
specified, it automatically detects new possibilities or its
inability to perform the current behavior: resulting in the
creation of a new node and a new set of behavior choices
for the user.

The Views containing the features and the actions asso-
ciated with taking the robot from a Node to the next one
are recorded in a ’perception string’. During autonomous
navigation, successful identification of previously ’recorded’
features allows for an estimation of the current position of
the robot in the mission. A key problem remains, that of
evaluating the ’quality’ of the prediction and a comparison
of the quality across different features obtained by different
sensors.

To tackle this problem, the information obtained in the
environment-familiarization stage is propagated backwards,
along the path, to obtain a measure of the importance of each
feature to each node and edge in the path. This measure,
defined in terms of the conditional entropy of the feature with
respect to some persistant feature such as the distance covered
or the time elapsed, is then used to obtain an ordering of the
features denoting their ’quality’. The use of ’good’ features
along the mission coupled with information gained from
motion should improve the chances of the robot successfully
staying on the path and completing the mission. It shall
also allow the use of long-viewing sensors such as vision
for localization by explicitly quantifying the quality of the
information that these sensors provide.

II. UNCERTAINTY OF ROBOT POSITION ALONG THE

MISSION

The method described in this article is inserted in a larger
work that aims at the integration of sensory data obtained
from a number of sensors. The work is to be implemented on
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Fig. 2. Layout of the Path and a topological representation of the mission

two, very different robot platforms equipped with different
sensors. A modular sensor approach is required to fuse
features from different sensors without a calibration of the
complete sensor setup; the latter being a solution that would
be difficult to port to another robot platform.

The uncertainty in the robot location has been defined in
terms of the uncertainty of moving from one node to the
other. Accordingly, the robot is localized if at any Node
Ni, the correct OutGoingEdge is initiated given that the
InComingEdge was correctly initiated. All the possibilities
that make the robot perform some motion that does not
correspond to the OutGoingEdge edge lead the robot to places
that are not on the path, and are collectively called the ’Lost’
node (shown in the topological representation in Fig. 2 as
NLOST ). Thus, if an edge is selected at a node, then either

1) It will arrive at the next node Ni+1 on the mission.
2) It will get off the path, denoted by reaching a lost node

NLOST .

The probability of getting from one node to another de-
pends on the number of different affordances at a node. It
also depends on the uncertainty of the behavior once it is
chosen, though, in this exercise this source of uncertainty has
been neglected.

Let the topological map of the positions that the robot can



take be composed of a random variable X which takes values
in the set 1, 2, 3, . . . , n corresponding to the robot occupying
each of the nodes N1, N2, . . . , Nn respectively, i.e. X = i
when N = Ni.

During navigation, another Node NLOST is added to
account for the robot being at some unknown position as
seen in Fig. 2. Without loss of generality, we can allow X
to take the value of −1 when the robot is at NLOST . The
robot is said to be localized when 1 ≥ X ≥ n and lost when
X = −1.

The change in position as the robot executes the mission
can be modeled as a Markov process. A single-step tran-
sition probability matrix denotes the probability of moving
successfully to the next node in the mission or getting ’lost’
at each node. It depends on the layout of the environment and
the the reliability of the edge traversing behaviors. During
autonomous navigation the robot is not certain of detecting
that it has arrived at a node nor is it certain of correctly
identifying the node. The single-step transition probability
transition matrix in the case of navigation is shown in Fig.
3. If the next node is always identified (never skipped), then
this matrix indicates the chances of the robot moving one
step-at-a-time along the mission and the probability of getting
off the path at each step. In case the detection of a node
is not deterministic, there is a non-zero probability that the
robot skips one or more nodes ahead, and this is obtained by
multiplying appropriate rows of the matrix.

X=1 2 3 ::: n¡1 n ¡1
X=1 0 p1 0 ::: 0 0 (1¡p1)
2 0 0 p2 ::: 0 0 (1¡p2)
3 0 0 0 ::: 0 0 0
... ... ... ... ... ... ... ...

n¡1 0 0 0 ::: 0 pn¡1 (1¡pn¡1)
n 0 0 0 ::: 0 1 0
¡1 0 0 0 ::: 0 0 1

Fig. 3. Single-step transition probability matrix in the case where the robot
is navigating autonomously.
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Fig. 4. Schematic of the Complete procedure adopted for localization.

The localization itself is performed by maintaining one
or more hypothesis of the current robot position. A single
action is associated with each position, see Fig. 4. The
action associated with the winning node is chosen whatever
the strategy used to pick this winning node. It must be
emphasized that the focus of this article lies solely in the
study of the information content of the features.

III. UNCERTAINTY IN THE CONDITIONAL ESTIMATION OF

THE POSITION GIVEN A FEATURE

Let Y be a random variable which denotes the state
of perception of a single feature. Y can take the values
y1, y2, . . . , ym denoting ’m’ distinct and detectable states that
the feature can take.

Y is correlated with the position X of the robot. The
correlation may not be perfect however (the function is not
injective), indicating that the same value of Y can be obtained
at more than one position (X).

The aim of using the feature Y in any process of perception
is to estimate the position that the robot occupies given the
Y equals some value yt, that is to obtain P (X |Y = yt). For
an efficient use of the features, the probability distribution
of Y = y1, y2, . . . , ym, of X = x1, x2, . . . , xn and the
relationship between Y and X , i.e. P (X |Y = yt), must be
captured in some way.

The approach that has been described here attempts to
evaluate the uncertainty in the probability distribution for
this conditional relationship, P (X |Y = yt). This uncer-
tainty has been modelled in terms of the binary entropy
of the distribution. As might be expected, the effect of the
uncertainty in the position of the robot itself, and in the
relation between perception and position as captured in the
environment familiarization stage, and the values that Y can
take, all contribute to the uncertainty of the above relation.

The Entropy of the random variable was described by
Shannon [10] in terms of the probability distribution as shown
in (1).

H(X) = −
∑

x

p(X = x)Log2(p(X = x)) (1)

This value of the entropy is expressed in the number of bits
and takes significance as a measure of the uncertainty of the
distribution (see [11] for an excellent introduction).

We can write the joint entropy of X and Y in terms of
conditional and independent entropy as in (2),

H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X |Y ) (2)

By combining the above two equations we can write the
expression (3), which includes the mutual information term
I(Y ; X).

H(X |Y ) = H(X) + H(Y |X) − H(Y )
= H(X) − (H(Y ) − H(Y |X))
= H(X) − I(Y ; X)

(3)

A couple of inferences about the desirable behavior of each
of the above terms can be immediately obtained from (3).

1) The entropy H(X), of the random variable X . During
autonomous navigation, the transition matrix now in-
cludes an extra node NLOST and the probabilities are
less concentrated. Thus H(X) > 0 during navigation
as compared to the case when it is equal to zero



during the environment-familiarization phase. A change
in the probability distributions for X changes both the
conditional entropy of the feature and entropy H(X).
The change in the value of X is still a Markovian
process though.

2) The entropy H(Y ) of the random variable Y . This term
measures the uncertainty of the values taken by Y. A
higher entropy is a desirable characteristic as this term
is a subtractive component. A random variable Y which
can take as large a number of distinct states with a
uniform probability distribution is desirable, as it will
result in a higher entropy.

3) The entropy H(Y |X) of Y given X . This entropy must
be minimized which is to say that the features should
be as correlated to each of the values of X as possible
(or Y must be an injective function X). In various
localization and navigation algorithms developed till
now, this term has been reduced by limiting the range
over which the an environmental property affects the
perception. Thus, sensing is limited to the near vicinity
of the pose of the robot and the perception is recorded
at positions that are sufficiently distinct from each other.

IV. EVALUATING THE ENTROPY TERMS

A. Evaluating H(X)

The entropy of the distribution of X is a function of the
total number of nodes in the path and of the number of nodes
that are yet to be covered to complete the mission. Since
changes in X are Markovian, only the position of the last
node need be maintained to estimate the new position, i.e.
if X changes from 1 → 2 → . . . → i . . . → j then the
probability of the transition from i to j is given by (4).

P (X = j|X = 1, X = 2, . . .X = i)
= P (X = j|X = i) (4)

The entropy of the random variable X can be evaluating
using (5). Two different approaches might be used to obtain
the probability distribution required to evaluate H(X); not
maintaining a prior estimate of its position (assuming all
values of X as equally likely at all moments) or maintaining
an estimate of its last known position before it moved. Greater
the number of nodes left to be covered and lesser the precision
with which the robot’s position is known, greater is the
entropy.

H(X = 1) =
∑

j H(X = i|X = j), ∀i �= j (5)

Case: Robot has no prior estimate of its position. If the
robot has no estimate of its current position, then, each of
the nodes (including the lost node Nlost) is equally likely
and the entropy is given by (6). The affordances of the
environment are not considered and, hence, the transition
probability matrix of Fig. 3 is not considered.

H(X)no prior estimate = 1
n+1 log2(n + 1) (6)

Case: Robot has an estimate of where it started out
from. Although the robot moves along the edge that will
take it to the next node, it is not sure of detecting this
next node and might fail to identify this and other nodes. If
the probability of correctly identifying a node ’i’ is denoted
by P (Xdetect i), then, using the transition probability matrix
in Fig. 3, the entropy H(X) might be calculated using the
recursive equation of the form in (7).

H(X |X = i) = pilog2(pi)P (Xdetect i)+
(1 − pi)log2(1 − pi)+
(1 − P (Xdetect i)) × (H(X |Xi+1))

(7)

Thus, we see that as the number of nodes travelled in-
creases, the entropy reduces, not as a result of the perception,
but because of the number of nodes yet to be reached are
reduced.

Also, in a more robust set-up, if multiple hypothesis of the
position are to be maintained, using P (X |Y ), then a separate
different value of H(X |Xi) for each estimate of the starting
node Ni must be maintained.

B. Evaluating H(Y |X)

The conditional entropy of Y given X is calculated ac-
cording to (8).

H(Y |X) = P (X = 1)×∑
k P (Y = yk|X = 1)log2(P (Y = yk|X = 1))

+P (X = 2)×∑
k P (Y = yk|X = 2)log2(P (Y = yk|X = 2))

+...
+P (X = n)×∑

k P (Y = yk|X = n)log2(P (Y = yk|X = n)
=

∑
i{P (X = i)×∑
k

[−δX=i,Y =yk

|Y =yk| log2

(
δX=i,Y =yk

|Y =yk|
)]

}
(8)

where δX=i,Y =yk
is the Kronecker delta function and is

equal to ’1’ if feature Y takes value yk when X = i and 0
otherwise, and |Y = yk| is the total number of times that Y
takes the value yk over all the nodes X = 1, ...n.

In case there is uncertainty (type 1 and type 2 estimation
error) in the detection of features, this error can be included
by substituting the Kronecker delta function by the probability
P (Y = yj |X = i) for all yj .

There is still the question of the perception at the lost node,
NLOST . Since it cannot be included during the environment-
familiarization phase, we have no data with which to ex-
plicitly estimate H(Y |X = −1). Instead, we can assume
that each outcome of Y is likely with, the same probability
distribution that it has over the mission, i.e. over X = 1, ..n.

H(Y |X = −1) = P (X = −1)×∑
k

[
−P (Y =yk)

m log2

(
P (Y =yk)

m

)]

(9)



C. Evaluating H(Y )

The entropy of the random variable Y is obtained from the
probability distribution from all the values that Y can take
over the entire mission as shown in (10).

H(Y ) =
∑

k P (Y = yk|X = 1, 2, . . . , n)×
log2(P (Y = yk|X = 1, 2, . . . , n)) (10)

The more the number of states that a feature can take, greater
is the information that the feature brings to the perception
process. Thus a feature that can take only one of two states
brings with it the least amount of information.

The probability distribution of the states themselves also
affects the term H(Y ). Other factors being equal, the greatest
amount of information is carried by a feature in which the
states are equally likely.

V. THE SOFTWARE ARCHITECTURE AND THE

PERCEPTION PROCESS

In Fig. 5 the architectural layout of the setup is shown
with the layers of software that seek to implement reactive
behavior at the bottom, and those concerned with deliberative
behavior at the top. The communication between objects
occurs using TCP sockets. The Sensors have been developed
as independent objects that service requests as they arrive.

The perception process consists of self-contained ’sensor
classes’ that are entrusted with the task of extracting features
from the current sensor data. These features are matched
against a previously created database of features and provide
the localization modules with a list of feature IDs that corre-
spond to the current features being observed. The database of
features can be explicitly specified as in the case of the Laser
Range Finder sensor that detects doors, walls and corners, or
it might be built automatically as in the case of vision, where
the database of conspicuous local image features (described
by their SIFT descriptors[6]) are collected during a previous
data-familiarization phase. It has been considered that the
database does not change during the course of the mission,
which itself consists of traversing a path completely and just
once. However, new features might be added to the database
for use in a subsequent mission.

VI. EXPERIMENTS

A mission whose layout is depicted in Fig. 2 was simulated,
with the topological map of the path shown in the image at
the bottom of the same figure. The aim of this exercise is to
verify the evolution of the conditional entropy of the position
of the robot given each of the features. More specifically, the
conditional entropy will be compared for different features
and under two different assumptions i.e. given no prior
probability distribution and, given a prior probability of the
position. Four features were compared,

1) Y 1 = A Door; can take one of three states, no door
in sight, door in sight and next to a door.

2) Y 2 = A Corner; can take one of three states, no corner
in sight, corner in sight and next to a corner.
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Fig. 5. Layered architecture with low-level reactive layers, intermediate
’drivers’ and high-level layers concerned with topological localization.

3) Y 3 = A Unique marker at End Point; can take one of
two states, unique marker is not visible, unique marker
is visible. Local SIFT features [6][7] in an intensity
image can be represented using this type of feature.

The values taken by each of the above features at each of the
nodes of the path shown in Fig. 2 is shown in the table in
Fig. 6. The entropy values, calculated using the formulae in
the earlier section are presented in the table in Fig. 7 and the
final H(X |Y ) values are plotted in the graphs shown in Fig.
8. It can be seen, from Fig. 8, that the conditional entropy

Feature \ Position X = 1 X = 2 X = 3 X = 4 X = 5 X = 6 X = 7
Y = A door = 

{No_Door=1,See_Door=2,At_Door=3} 2 3 3 3 1 3 3
Y = A corner = 

{No_Corner=1,See_Corner=2,AtCorner=3} 1 1 1 2 3 2 1
Y = EndMarker = 

{NoEndMarker=1,SeeEndMarker=2} 1 1 1 1 1 1 2

Fig. 6. Values taken by the random variables Y1 to Y3 during the
environment-familiarization phase in the mission from Fig. 2..

Cond. Entropy\ Initial Posn Est X = 1 X =2 X = 3 X = 4 X = 5 X = 6
H(Y1|Xinitial) 0.58 0.70 0.74 0.77 0.76 0.82

H(Y1) 1.38 1.38 1.38 1.38 1.38 1.38
H(Y2|Xinitial) 0.58 0.70 0.75 0.74 0.78 0.82

H(Y2) 1.38 1.38 1.38 1.38 1.38 1.38
H(Y3|Xinitial)

H(Y3)
0.19 0.19 0.19 0.20 0.21 0.26
0.59 0.59 0.59 0.59 0.59 0.59

H(X|Xinitial) 1.86 1.72 1.60 1.50 1.34 0.90

Fig. 7. Calculated values of the conditional entropy for the simulation. The
values are plotted in the lower graph in Fig. 8.

of the robot position given a prior position of the robot is
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Fig. 8. Conditional Entropy of the estimate of the position of the robot
without (top) and, given an estimate of the position of the robot and that the
robot has moved (bottom).

always lower than if no prior probability is included. While
the uncertainty, H(X), contributes most to the conditional
entropy depicted in the graphs in Fig. 8, it affects all the
features in a similar way allowing us to make a comparison
between the entropy of each of the features.

Features one and two are similar in nature despite depicting
different landmarks. The number of states that the features can
take could be increased, thereby improving the discerning
ability of the features. Also, an aspect that has not been
touched upon is the cross-correlation between features. It can
be seen that the entropy of feature one and two are similar but
a compound feature, a function of these features, might offer
a much lower entropy given the larger number of possible
states and also the lack of correlation between the states of
feature one and two. A complete enumeration of the joint
states of these two features would result in the creation of
another feature with more states and, hence, greater entropy.

In the case of feature three, the unique marker at the end
point, it can be seen that while it is of relatively little use along
most of the mission, it dramatically improves in ’quality’
as the end point approaches. While the relative entropy
H(Y |X), of this feature is very low, the entropy H(Y ) of the
variable is also low, resulting in a poor ’quality’ feature over
most of the mission. Its usefulness increases greatly in the
vicinity of the position where it is expected. Thus, maintaining
a prior estimate of the position has a considerable influence
on the usefulness of this type of feature, the type of feature
that we intend to use extensively in our work.

VII. SUMMARY AND CONCLUSIONS

A mathematical formulation that can evaluate the uncer-
tainty of the estimate of the position of the robot as provided

by a single feature was developed. The different sources of
uncertainty that contribute to the uncertainty of this condi-
tional probability are identified and evaluated using consistent
reasoning. The method allows the use of very different types
of feature and even allows the detection of features to be
probabilistic. The approach can be extended to any final
scheme for localization ranging from a heuristic method that
chooses the most likely position to a more elaborate system
using filters and/or the cross-correlation of the conditional
probabilities P (X |Y ).

While the experimental validation of this exercise was
only partially complete, the exercise provides a basis with
which to evaluate the sensory information required to perform
navigation along the path and maintain a high probability of
completing, successfully, the mission.

This article describes work that is being carried out to eval-
uate the information that is provided for the inference of the
position change in an autonomous navigation system. Future
work includes the integration of the information provided by
two or more features (detected by the same sensor or by
different sensors).
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